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The fundamental properties of the signal structure in Franck-Hertz experiments are analyzed. The
central result is that the spacings between the minima in Franck-Hertz curves are not equidistant but
increase linearly with the number of minima. This increase is especially pronounced at low atomic
pressure. We suggest that the increase of the spacings is caused by the additional acceleration of
electrons over their mean free path after the excitation energy is reached. Our model accurately
estimates the lowest excitation energies of mercury �4.67 eV� and neon �16.6 eV� atoms and the
mean free path of electrons in standard Franck-Hertz experiments. These results contradict the usual
assumption that the spacings between successive minima or maxima are equal. We demonstrate that
a standard Franck-Hertz apparatus can be upgraded to do more advanced experiments. © 2006
American Association of Physics Teachers.
�DOI: 10.1119/1.2174033�
I. INTRODUCTION

The Franck-Hertz experiment on electron-mercury colli-
sions is one of the key demonstrations of the quantum be-
havior of atoms and provides a direct nonoptical demonstra-
tion of the existence of discrete stationary energy levels in
atoms. In 1925 Franck and Hertz received the Nobel Prize
for this work.1,2 It is widely used in undergraduate physics
teaching laboratories. Usually the experiment is limited to
the determination of the energy required to excite the first
energy levels of mercury or neon atoms.

A typical arrangement of the Franck-Hertz experiment
with a Hg or Ne tube is shown in Fig. 1. The tube consists of
an indirectly heated cathode C, two grids G1 and G2 sepa-
rated by a distance L, and an anode A. A small voltage U1
can be applied between the cathode C and grid G1 to control
the emission of electrons. The presence of this voltage is not
critical and in some tubes G1 is absent. An accelerating volt-
age U2 is applied between the two grids, where electrons can
gain enough energy to create inelastic collisions with atoms.
A small retarding voltage U3 is applied between grid G2 and
anode A so that an electron that has undergone an inelastic
collision close to G2 has insufficient energy to reach the an-
ode. The mercury tube needs to be heated to a temperature
between 140 °C and 200 °C so that mercury pressure is suf-
ficiently high.

When the electron energy is high enough to overcome the
retarding potential U3, they reach the anode and are included
in the measured anode current I. Electrons with an energy
less than eU3 are unable to reach the anode and are collected
by the grid G2 instead. For small accelerating voltages U2 the
anode current characteristics of a Franck-Hertz tube are simi-
lar to that of a triode. For greater voltages U2, electrons are
accelerated between the grids until they have enough energy
to excite an atom. At this voltage the anode current decreases
and passes through a minimum when almost every electron
has suffered an inelastic collision. Subsequently the excited
atoms return to their ground state by the spontaneous emis-
sion of a photon. At the voltage corresponding to the current
dip a light emission in the tube near the second grid can be
observed.3,4 A further increase of U2 leads to the additional
acceleration of electrons until they gain enough energy to
excite an atom again. As a result the anode current passes

through its second minimum, corresponding to two inelastic
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collisions of each of the free electrons with atoms. This pro-
cess repeats with the increase of the voltage U2, and several
current dips can be observed at nearly integer multiples of
the excitation energy of the atoms in the current-voltage dia-
gram �the Franck-Hertz curve�.

It is generally assumed that all the maxima or minima
spacings in Franck-Hertz curves are equal and correspond to
the first excitation energy of atoms.4–8 It is even suggested
that the magnitude of the lowest excitation energy can be
calculated by using the mean value of the maxima8 or
minima9 spacings. Depending on the pressure in the tube and
the number of measured spacings, these determinations for
Hg atoms range from 4.8 to 5.1 eV. This result contradicts
the expected value10 of 4.67 eV for the lowest excitation in
Hg atoms, 6 1S0→6 3P0 �see Fig. 2�. Higher values for the
lowest excitation energy of Hg atoms determined from the
experimental data have usually been identified with the tran-
sitions to the second 6 1S0→6 3P1 �4.89 eV� or to the third
6 1S0→6 3P2 �5.46 eV� excited levels, which are claimed to
be stronger.7

It is not generally realized that the spacings between the
maxima and the minima in the experimental records are not
equidistant, although the continuous increase of these spac-
ings as a function of the order of the minima or maxima is
usually visible.4–9 In this article we present data that demon-
strates the increase of the spacings and introduce a model
explaining this increase. Our model provides accurate deter-
minations of the energies of the first excitation levels of mer-
cury and neon atoms that compare well with published val-
ues. In addition, we obtain information on the mean free path
of the electrons and on the cross section of inelastic colli-
sions of electrons with atoms.

II. EXPERIMENTS WITH A MERCURY TUBE

The Franck-Hertz experiment with Hg atoms has been per-
formed with a commercial experimental apparatus.9 It is
similar to the apparatus shown schematically in Fig. 1 except
the grid G1 is absent. The distance between the cathode and
grid G2 is L=7 mm. Figure 3 shows a Franck-Hertz curve
with the Hg tube at the temperature T=170 °C. The anode
current increases and oscillates as the voltage U2 increases
and shows 12 dips of the anode current. The separation be-

tween the 4th and the 12th dip is 39.1 V. The first three dips
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are not very well defined and are excluded from the data
analysis. The mean spacing is �39.1 V� /8=4.89 V and is
larger than the first excitation energy in mercury, 4.67 eV.
An accurate evaluation of the individual spacings between
the minima as well as between the maxima reveals their sys-
tematic increase. The spacing between the 4th and the 5th
minimum is 4.78 eV, whereas the spacing between the 11th
and the 12th minimum is 5.03 eV. We will show that this
increase is due to the additional acceleration of electrons
over the mean free path after the excitation energy has been
reached, but before inelastic collisions with atoms occur.

The observed increase of the spacing between the maxima
and minima varies with the temperature of the Hg tube.
Figure 4 shows that three spacings in the Franck-Hertz curve
at 145 °C correspond to 3.25 spacings at 200 °C. This ob-

Fig. 1. Schematic diagram of the Franck-Hertz experiment.
Fig. 2. Lowest energy levels in Hg �Ref. 10�.
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servation supports our model, because the mean free path of
the electrons decreases with the atomic density and therefore
with the tube temperature.

III. MODEL OF INELASTIC COLLISIONS

Figure 5 shows the motion of an electron between two
grids in a Hg tube in the presence of the accelerating poten-
tial U2. While it accelerates the electron gains energy and
collides with mercury atoms. If the electron energy is smaller
than the lowest excitation energy of the mercury atoms, the
collisions are elastic and the energy loss by the electron is
very small because of the large mass difference between the
colliding particles. If the electron energy reaches the excita-
tion threshold of Hg atoms, inelastic collisions may occur.
Before the inelastic collision takes place, an electron must
come close to a mercury atom. The average distance that an
electron moves before the inelastic collision takes place is
the mean free path �. The electrons continue to gain energy
over a distance equal to the mean free path and can excite not
only the lowest but also one of the higher energy states of the

Fig. 3. Typical Franck-Hertz curve recorded with Hg tube at 170 °C.

Fig. 4. Franck-Hertz curves recorded with Hg atoms at two different tube
temperatures. The curves are shifted horizontally so that two of the maxima

coincide.
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atoms. This phenomenon significantly modifies the Franck-
Hertz curves and has to be taken into account when analyz-
ing the experimental data.

Figure 6�a� shows the energy gain of a free electron mov-
ing in the tube between the two grids. The potential U2 is set
slightly above the first excited state of the atoms so that
electrons, after reaching the lowest excitation energy Ea,
move an additional distance � before they reach the second
grid G2. Over this distance the electrons gain the additional
energy �1 and with a high probability inelastically collide
with atoms. We assume that an electron loses most of its
energy after an inelastic collision, corresponding to the idea

Fig. 5. Schematic of the energy transfer from electrons to atoms.

Fig. 6. Electron energy between grids G1 and G2 in a Franck-Hertz tube
with an accelerating voltage sufficient for one �a� and two �b� inelastic
collisions. Ea is the lowest excitation energy of atoms, and �1 and �2 are

additional energies gained by the electrons along the mean free path �.

425 Am. J. Phys., Vol. 74, No. 5, May 2006
that there are many other energy states in the atom above Ea
that can be excited. This assumption is justified for both Hg
and Ne atoms.

Figure 6�b� illustrates how an electron gains energy at a
higher accelerating potential in comparison to Fig. 6�a�. Be-
cause the electric field is higher, electrons gain more energy
��2��1� along the mean free path �. Electrons inelastically
collide twice with atoms and their total energy gained in the
electric field between two grids is E2=2Ea+2�2. This case
corresponds to the second minimum in a Franck-Hertz curve.

For n inelastic collisions the energy gained by the elec-
trons is

En = n�Ea + �n� . �1�

At typical tube pressures, the mean free path of the electrons
is much less than the distance between two grids, ��L. With
this assumption we have �n�Ea and

�n = n
�

L
Ea. �2�

If we use Eqs. �1� and �2�, the spacing between two minima
in a Franck-Hertz curve is given by

�E�n� = En − En−1 = �1 +
�

L
�2n − 1��Ea. �3�

Equation �3� shows that the spacing �E�n� between the
minima increases linearly with the minimum order n. The
lowest excitation energy Ea derived from Eq. �3� is

Ea = �E�0.5� . �4�

This value corresponds to the minima spacing �E�n� ex-
trapolated to n=0.5. As a consequence the lowest excitation
energy of atoms cannot be directly measured from Franck-
Hertz curves as is usually suggested, because this energy is
smaller than the first measured spacing at n=2, that is, be-
tween the first and the second minimum. �The spacing for
n=1 is usually not evaluated because it depends on tube
parameters.�

The mean free path of the electrons can also be derived
from Eq. �3�,

� =
L

2Ea

d�E�n�
dn

. �5�

We have assumed that the electric field between the grid G2
and the anode is much stronger than the field between the
two grids. In a typical Franck-Hertz experiment this condi-
tion is satisfied because the distance between the two grids is
usually much larger than the distance between the second
grid G2 and the anode, but in the following we will give an
example where this condition is not satisfied.

IV. THE LOWEST EXCITATION ENERGY
OF Hg ATOMS AND THE MEAN FREE PATH
OF THE ELECTRONS

Our measured results for the Franck-Hertz experiment
with a mercury tube at different temperatures are shown in
Fig. 7. The measured spacings �E between the minima of
the Franck-Hertz curves are shown as a function of the mini-
mum order n for four temperatures 145 °C�T�190 °C of
the tube, together with the linear fits according to Eq. �3�.

These results show a linear increase of the spacings with n
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for all temperatures according to Eq. �3�. We have not ob-
served a decrease of the spacings as expected from the alter-
native model, which takes into account the nonuniform dis-
tribution of the electric field in the experiments.11 The slope
of the linear fits of �E�n� in Fig. 7 decreases with the tem-
perature. This decrease is expected from our model because
the mean free path of the electrons in the mercury tube de-
creases with atomic density and therefore with the tube tem-
perature.

Figure 7 shows that all the linear fits to the experimental
data converge at approximately n=0.5 �dashed line�. Accord-
ing to Eq. �4� the value of �E�0.5� corresponds to the lowest
excitation energy Ea of the atoms. The values of �E�0.5�
obtained from the linear fits of the data for nine temperatures
in the range 140 °C�T�200 °C are shown in Fig. 8. The
error bars show a lower limit because they only include sta-
tistical errors obtained from the linear fits. Within the ex-
pected accuracy the minima spacings show no dependence
on the temperature; their mean value 4.65±0.03 V corre-
sponds to the lowest excitation energy, 4.67 eV, in Hg atoms
�6 1S0→6 3P0�.10 To our knowledge, this experiment is the
first determination of the lowest excitation energy of Hg at-
oms made with a standard Franck-Hertz experiment. Note
that even the energy resolved measurements with more so-

Fig. 7. Spacings �E between the minima in the Franck-Hertz curves mea-
sured with a Hg tube at four temperatures as a function of the minimum
order n. The corresponding linear fits �solid lines� according to Eq. �3� are
also shown.

Fig. 8. Lowest excitation energy in Hg-atoms determined with Eq. �4� by
evaluating minima �filled square� or maxima ��� spacings as a function of

the tube temperature T.
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phisticated versions of the Franck-Hertz experiment do not
resolve the lowest excited state 6 3P0 in mercury.6,12

The determination of the lowest excitation energy of mer-
cury is often performed by measuring the spacings between
the maxima in Franck-Hertz curves. To verify this approach
we determined the values of Ea from the spacings between
the maxima. Figure 8 shows that these values are lower than
expected and vary with the tube temperature. The reason is
that the maxima correspond to inelastic collisions of rela-
tively high energy electrons. The distribution of the electron
energy depends on various tube parameters and varies with
the maximum order. Moreover, the accuracy of the measure-
ments of the positions of the maxima is affected by the over-
lap of the oscillations and a rapid general increase of the
anode current. Therefore, it is more appropriate to determine
the spacings between the minima of the current. The minima
correspond to inelastic collisions of the electrons possessing
the most probable energy and hence to the local maxima of
the light emission in the tube.4

The mean free path � of the electrons for inelastic colli-
sions in the tube is determined according to Eq. �5� by the
slope of the linear fit of �E�n�. The values corresponding to
the data in Fig. 7 are given in Table I. The mean free path
decreases with the temperature and thus with the atomic den-
sity N as10

� =
1

N�
=

kBT

p�
, �6�

where � is the cross section for inelastic collisions, kB is
Boltzmann’s constant, p is the pressure of the mercury vapor,
and T is the tube temperature expressed in Kelvin. In the
temperature range from 300 to 500 K the mercury pressure p
�in Pa� is approximated13

p = 8.7 � 10�9−�3110/T��. �7�

Figure 9 shows the values of the mean free path � deter-

Table I. The values of the mean free path � of the electrons in the Hg tube
for different temperatures.

T �°C� 145 160 175 190

d�E /dn �V� 0.091 0.049 0.039 0.02
� �mm� 0.097 0.052 0.041 0.022

Fig. 9. Dependence of the mean free path � on the tube temperature. The

curve represents the fit of the experimental data to Eq. �6�.
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mined in the experiment as a function of the temperature.
The curve is the fit of the experimental data using Eqs. �6�
and �7�. The cross section for inelastic collisions obtained
from this fit is �= �2.1±0.1��10−19 m2. This value agrees
with the cross section for the electron excitation of the mer-
cury state 6 3P0 given in Ref. 7.

V. EXPERIMENTS WITH A NEON TUBE

We also performed Franck-Hertz experiments with neon.
This experimental setup �Leybold Didactic GmbH, model
555870� is similar to the setup shown in Fig. 1. The curves
measured with a neon tube at different values of the retarding
potential U3 are shown in Fig. 10. The minima of these
curves reveal a systematic substructure. We explain this sub-
structure by the excitation of additional energy levels of neon
atoms above the lowest excited state. Figure 11 shows that
the first 14 excited levels in neon are divided into two
groups, Ea1 and Ea2, with a spacing of about �E=1.7 eV.14

According to our model, electrons gain additional energy
over the mean free path and excite not only the lowest en-

Fig. 10. Franck-Hertz curves recorded with a Ne tube at several retarding
voltages U3.
Fig. 11. Selected energy levels of neon �Ref. 14�.
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ergy level Ea1 of Ne atoms, but also one of the higher excited
states, for example, Ea2. Therefore, the minima in the
Franck-Hertz curves are divided into local dips correspond-
ing to the energy separation between Ea1 and Ea2. The num-
ber of the dips increases with the minimum order, because
the electrons exciting Ea2 and Ea1 levels have different initial
conditions for the next inelastic collision. The evidence for
the excitation of Ea2 levels in neon is provided by the visible
light emitting zones inside the Franck-Hertz tube in the range
from 540 to 744 nm. This emission corresponds to the spon-
taneous transition in neon atoms from Ea2 to Ea1 levels. We
see that a standard commercial Franck-Hertz experiment al-
lows us to resolve different energy states in neon, which can
be easily incorporated into the observations by undergradu-
ate students.

The presence of local dips in Franck-Hertz curves offers
an alternative way of evaluating the mean free path of elec-
trons. Figure 10 shows that the second local dip in the third
minimum of the Franck-Hertz curves becomes dominant,
which means that the mean free path is large enough for
electrons to gain the additional energy of �E=1.7 eV. There-
fore, the value of � can be estimated as:

� =
�E

eU2
L . �8�

With �E=1.7 eV, U2=60 V �third minimum�, and L
=6 mm, the mean free path of the electrons for inelastic
collisions in the neon tube is �=0.17 mm.

The mean free path of the electrons in the neon tube can
be estimated in the same way as for the mercury tube by
using Eq. �5�, assuming a homogeneous distribution of the
lower excited levels in atoms, and neglecting the local dip
substructure in Franck-Hertz curves. The spacing between
the main minima in the Franck-Hertz curves for the neon
atoms is shown in Fig. 12 as a function of n. Similar to the
mercury tube, the spacings increase linearly with n. Accord-
ing to Eq. �4� the energy of the lowest excited level of neon
atoms can be determined from the linear fit of �E�n� as
Ea1=�E�0.5�=16.5±0.2 eV. This value compares well with
the data in Fig. 11. The slope of the linear fit of �E�n� in Fig.

Fig. 12. Spacings between minima in the Franck-Hertz curve measured with
a Ne tube as a function of the minimum order n. The corresponding linear fit
�solid line� according to Eq. �3� is also shown.
12 is d�E /dn=1 V. From this slope and Eq. �5�, the mean
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free path of the electrons in the neon tube is �=0.18 mm.
This value is in good agreement with our estimate from
Eq. �8�.

Figure 10 shows that an increase in the retarding potential
U3 shifts the Franck-Hertz curves to the right, which means
that a higher accelerating voltage U2 is required to reach the
same minima in the Franck-Hertz curve. The reason is that
the excitation of neon atoms occurs not only in front of the
grid G2, but also behind this grid, especially if the electric
field between G2 and the anode is less than the field between
the two grids, as is shown in Fig. 13�a�. At high values of U3
�see Fig. 13�b�� the excitation occurs mostly before the grid
G2, which corresponds to the approximation of our model.
For many minima, the influence of the retarding potential U3
is important for the last excitation only and Eq. �3� becomes
accurate for both cases.

VI. SUMMARY

We have discussed a new observation for the Franck-Hertz
experiment for mercury and neon tubes; that is, the spacings
between the minima in a Franck-Hertz curve increase lin-
early with the number of minimum. To explain this effect we
have taken into account the additional acceleration of the
electrons over their mean free path after the excitation en-
ergy is reached. The model is consistent with experimental
data and allows an accurate estimate of the lowest excitation

Fig. 13. Electron energy E between the grid G1 and anode A at �a� low and
�b� high values of the retarding potential U3. Ea is the lowest excitation
energy of the atoms and �1 is the additional energy gained by the electron
along the mean free path �.
energy of the atoms and the mean free path of the electrons.
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We also presented the first accurate determination of the en-
ergy of the first excited levels in mercury and neon using a
standard Franck-Hertz experiment. Franck-Hertz curves ob-
tained with a mercury tube at different temperatures show a
reciprocal dependence of the mean free path of the electrons
on the atomic density and permit us to determine the cross
section of inelastic collisions of electrons with atoms. Our
approach upgrades a typical Franck-Hertz experiment from a
demonstration to an experiment well suited for advanced un-
dergraduate laboratories.

ACKNOWLEDGMENTS

The authors appreciate the support of Phywe Systeme
GmbH & Co. KG, which supplied a new version of the
Franck-Hertz apparatus.

a�Electronic mail: baev@physnet.uni-hamburg.de
1J. Franck and G. Hertz, “Über Zusammenstöße zwischen Elektronen und
Molekülen des Quecksilberdampfes und die Ionisierungsspannung des-
selben,” Verh. Dtsch. Phys. Ges. 16, 457–467 �1914�.

2Nobel Lectures, Physics, 1922–1941 �Elsevier, Amsterdam, 1965�, pp.
98–129.

3J. S. Huebner, “Comment on the Franck-Hertz experiment,” Am. J. Phys.
44, 302–303 �1976�.

4W. Buhr and W. Klein, “Electron impact excitation and UV emission in
the Franck-Hertz experiment,” Am. J. Phys. 51, 810–814 �1983�.

5D. R. A. McMahon, “Elastic electron-atom collision effects in the
Franck-Hertz experiment,” Am. J. Phys. 51, 1086–1091 �1983�.

6F. H. Liu, “Franck-Hertz experiment with higher excitation level mea-
surements,” Am. J. Phys. 55, 366–369 �1987�.

7G. F. Hanne, “What really happens in the Franck-Hertz experiment with
mercury,” Am. J. Phys. 56, 696–700 �1988�.

8W. Fedak, D. Bord, C. Smith, D. Gawrych, and K. Linderman, “Automa-
tion of the Franck-Hertz experiment and the Tel-X-Ometer x-ray machine
using LABVIEW,” Am. J. Phys. 71, 501–506 �2003�.

9M. Brai, R. Butt, A. Grünemaier, K. Hermbecker, and O. Schenker,
“Laboratory experiments: Physics,” PHYWE series, LEP 5.1.03. See
�http://www.fizika.org/skripte/of-prakt/5_1_03.pdf�.

10H. Haken and H. C. Wolf, The Physics of Atoms and Quanta, 6th ed.
�Springer, Heidelberg, 2000�, p. 305.

11 F. Sigeneger, R. Winkler, and R. E. Robson, “What really happens with
the electron gas in the famous Franck-Hertz experiment?,” Contrib.
Plasma Phys. 43, 178–197 �2003�.

12P. Nicoletopoulos, “Critical potentials of mercury with a Franck-Hertz
tube,” Eur. J. Phys. 23, 533–548 �2002�.

13A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements, edited by
R. Gary �Elsevier, Amsterdam, 1963�.

14C. E. Moore, Atomic Energy Levels �National Bureau of Standards, Wash-

ington, D.C., 1949�, Vol. I, p. 76.

428Rapior, Sengstock, and Baev


