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In science, the word `uncertainty' does not mean a mistake. In fact, the term

refers to the fact that we cannot make measurements to in�nite accuracy

and precision and we cannot eliminate them just by being more careful, smart

or using more expensive equipment. The best we can do is to ensure that

uncertainties are as small as reasonably possible and more importantly, to

have a reliable quantitative estimate of how large they are.

1 Measurement matters

Measurement is an essential part of science and without measurement scien-

ti�c models and theories can not be implemented. Careful measurement with

properly identi�ed uncertainties can lead to a new discovery. For an engineer,

the accurate measurement may lead to improved complex systems e.g., space

shuttles, while in medical metrology accurate measurement of blood pressure

lessens the risk of misdiagnosis and disease.

The world of physics revolves around fundamental constants such as the speed

of light c , Planck's constant h, the �ne-structure constant � and the gravita-

tional constant G. All these constants were measured with some uncertainty

because a measurement is meaningless without uncertainty. The values of

some fundamental constants are shown in Table (1).

The values enclosed in brackets are uncertainties in the respective measured

constants. For example, the value of h is 6:62606957 (29) � 10�34 Js tells

that the Planck's constant is measured with an uncertainty lying between

6:62606929� 10�34 Js and 6:62606957� 10�34 Js. It can also be written as
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Fundamental constant Symbol Measured value

Planck's constant h 6:62606957 (29)� 10�34 Js

Boltzmann conatant kB 1:3806488 (13)� 10�23 J-K�1

Charge of the electron e 1:602176565 (35)� 10�19 C

Stefan-Boltzmann constant � 5:670373 (21)� 10�8Wm2K�1

Table 1: Values of some fundamental constants.

[6:62606929; 6:62606957]�10�34 Js which shows that the number is between
this range.

1.1 Rounding o� and signi�cant �gures

When a number has too many signi�cant �gures then the number of signif-

icant �gures can be reduced by a method called `rounding'. For example, if

the distance is measured as 2:1451m with �ve signi�cant �gures, and it is

required to quote the precision to three signi�cant �gures, the value becomes

2:15m. Since 2:15m is more closer to 2:1451m, therefore rounding it to

2:14m would be incorrect.

The question is what if the original �gure ends in 5 or greater than 5. The

most suitable selection of rounding is to retain an even value but increase

the value of an odd digit by one. Some rounded values are shown in Table

(2). Doing this consistently ensures that we do not introduce any bias in our

results.

Observed value Rounded value

3:05 3:0

3:15 3:2

3:25 3:2

3:35 3:4

3:33 3:3

3:36 3:4

Table 2: Examples of rounding o� of some values.

In physics the precision of the numerical values is an important concept.

We will say more about this now. From the point of view of experimental

sciences, the three numbers 3; 3:0; 3:00 are di�erent from signi�cant �gure

and precision perspective. For example, the value 3:00 tells that the number

could be some number between 3:005 and 2:995. The relative precision of
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this number is,

Relative precision =
0:005

3:00
� 100 = 0:17%:

Similarly the relative precisions of the other two numbers are shown in Table

(5).

Value Relative precision

3 (0:5=3)� 100 = 17%

3:0 (0:05=3)� 100 = 1:7%

3:00 (0:005=3:00)� 100 = 0:17%

Table 3: Relative precision of some numbers.

By looking at the precision of these numbers we can say that the number

3:00 is much more precise (smaller percentage means precise measurement).

This also shows that the experimentalist has an instrument that can achieve

this much precision.

Likewise if we measure the mass of a wooden block using two di�erent elec-

tronic weighing balances which display 4:1 g and 4:12 g, respectively. The

relative precision of the reading 4:1 g is 1:2% while the value 4:12 g is 0:12%

precise. We can therefore say that the second balance is more precise than

the �rst one.

2 An introduction to uncertainty

We live in an uncertain world. For example, will the weather be suitable to

have a barbecue at the weekend? Is the investment we made a wise decision

or not? Uncertainties are everywhere. In some cases, it is possible to reduce

these uncertainties and we can always quantify them.

Remember not to use the word `error' as errors are mistakes, idealized and

can never be known completely. Always use the word `uncertainty' because

uncertainties are quanti�able and transferrable.

There are two kinds of uncertainties: Type A and type B.

2.1 Type A uncertainties

These uncertainties are random uctuations in the measured values and can

easily be identi�ed by repeating the experiment. The reliability of a mea-

3



surement can be accessed by repeating a measurement several times. The

analysis for a sequence of repeated measurements that results in slightly dif-

ferent values can be done by calculating the mean and then �nding individual

di�erences from the mean. The scatter of these individual di�erences cor-

respond to the uncertainty of the measurement, the greater the scatter the

more uncertain the measurement [1], [2].

Suppose a student measures g, the acceleration due to gravity �ve times and

�nds the following results (in ms�2),

9:9; 9:6; 9:5; 9:7; 9:8:

The �rst question addresses that what would be the best estimate of g?

The statistical method for �nding the best value for a measurement is to

repeat the measurement many times and then taking the average value. The

readings are recorded in Table (4).

Value of g (m/s2) Deviations (m/s2) Square deviation (m2/s4)

9:9 0:2 0:04

9:6 -0:1 0:01

9:5 -0:2 0:04

9:7 0:00 0:00

9:8 0:1 0:01

average: 9:7 avg deviation:0:0 avg square deviation: 0:02

Table 4: The standard deviation in a measurand.

It turns out that the average deviation is zero! For random uncertainties, we

are as likely to overestimate a value as underestimate it. A much more useful

quantity is the square of the deviation. The sum of the square of deviation

is 0:1, a non zero number! We can now take the average of this number and

square root it to get the uncertainty. This �nal answer is known as standard

deviation.

The standard deviation in mathematical form is,

Standard deviation (s) =

√
d2
1 + d2

2 + d2
3 + d2

4 + d2
5

N
=

√
�d2

i

N
:

where di = xi � �x represents the deviation from the average value.

But, there is a problem with this equation. What if we make only one mea-

surement? The standard deviation will be equal to zero in that case, which

clearly is an absurd statement. The uncertainty can never be zero. We over-

come this problem by introducing the expression,

Standard uncertainty (�) =

√
n

n � 1
(s) : (1)
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Finally, the uncertainty in the �nal answer is given by the standard uncertainty

of the mean which is given by:

�mean =
�p
n
=

1p
n � 1

s :

For the example at hand, the calculator returns 0:0707. Now the question

is how to quote the uncertainty? The relative precision of the best approxi-

mated value is (0:05=9:7� 100 = 0:52%), while the relative precision of the

calculated uncertainty is,

Value of g in (m/s2) Uncertainty Relative precision

9:70 0:07 0:07=9:7� 100 = 0:72%

9:7 0:1 0:1=9:7� 100 = 1:03%

Table 5: Relative precision of the uncertainty of a measurand (the acceleration

due to gravity g).

Eyeballing the third column in the table above, the precision for uncertainty

cannot be better than the best estimate. Hence we choose (9:7� 0:1m/s2).

2.2 Type B uncertainties

Type B uncertainties involve speci�c information regarding the measurand

that can be found in the calibration report. The calibration report gives the

estimated uncertainty of the measurand. Another kind of type B uncertainties

involves those due to the �nite resolution of the measurement scale.

The uncertainty of a single measurement is restricted by the accuracy and

precision of the measuring instrument and also depends on some factors that

a�ect the ability of the experimenter to make a measurement [4]. We sepa-

rately discuss type B uncertainties due to the �nitude of the measuring scale

in digital and analog instruments as well as type B uncertainties due to the

instrument's rating and accuracy.

2.2.1 A digital reading

Suppose you measure a voltage value using a digital device. The question is

how would you calculate the standard uncertainty associated with the scale

of the reading? The key is to assign a probability distribution with each

measurement.
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1.675 1.685
Voltage / V

1.675 1.685

Probability density / (1/V)

1.68

1.68
V

(a)
(b)

1/2∆

∆∆

(µ−∆) (µ−∆)(µ)

Figure 1: (a) A digital reading displayed on a digital voltmeter and (b) the

associated probability distribution function assigned to this reading.

The determination of the standard uncertainty is based on the idea of math-

ematical moments. A moment is a quantitative measure of the shape of a

set of data and the second moment characterizes the width of the probability

density function. The calculation of the standard uncertainty is based on the

second moment, also called the variance.

The mathematical expression for the second moment of a function f (x) is,

�2 =

∫
1

�1

(x � �)2f (x)dx; (2)

where � is the mean value. For example in Figure (1b) the value of � is

1:68V.

For a rectangular probability distribution function, the value of the function at

the center is (f (x) = 1=2�). Substituting this value in the above expression

yields,

�2 =

∫ �+�

���

(x � �)2
(

1

2�

)
dx: (3)

Let's substitute,

z = x � � and dz = dx:

The substitution yields,

�2 =

∫ �+�

���

z2
(

1

2�

)
dz =

�2

3
: (4)

Since the standard uncertainty is the square root of the variance (u =
p
�2),

hence we can de�ne the uncertainty for a rectangular pdf as,

urectangular =
Half of the length of the intervalp

3
: (5)
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Suppose you measure the voltage across resistor using a digital voltmeter as

shown in Figure (1a). The best estimate of the voltage is 1:68. The last

digit 8 represents the interval 1:675 to 1:785. All we can assume is that the

voltage value is distributed between 1:675 and 1:685 with equal probability.

The probability function would be a rectangular function with limits 1:675 to

1:685 as shown in Figure (1b).

So for the above example, the uncertainty becomes,

Standard uncertainty in voltage (uscale) =
1
2
(1:685� 1:675)p

3
;

= 0:0029V : (6)

The uncertainty in the above equation is due to the resolution of the mea-

suring device.

2.2.2 An analog reading

To determine the best approximation of a single measurement while using an

analog device is slightly complicated because it relies to a larger extent on

your judgement.

83.40 83.5083.45
Mass / g

80 90

83

84

(a)

(b)

1/∆ Probability density / (1/g)

(µ−∆) (µ+∆)(µ)

f(x) = −       +
1

∆
2

1
∆

f(x) =      + 
1

∆
2

1
∆

Figure 2: (a) An analog reading displayed on an analog balance and (b)

associated probability distribution function.

Assume that you are measuring the mass of a can using an analog balance

and the reading apparent on the scale is shown in Figure (2a). The reading
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you might take as the best approximation is 83:45 g but it could be a little

bit larger or smaller than the observed value. Now, in this situation you need

to make a judgement in assigning a probability distribution. For example, you

know one thing for sure that is you can declare that the probability of the

values being 83:40 g or 83:50 g is precisely zero. So you proceed from the

best approximated value towards the unlikely value and assign a probability

distribution function which is triangular shaped with extremities at 83:40 g

and 83:50 g, as shown in Figure (2b).

The standard uncertainty of a triangular probability distribution can be calcu-

lated using Equation (2). Assuming � = 0, the expression becomes,

�2 =

∫ �

��

x2f (x)dx;

=

∫ 0

��

x2
(

1

�2
x +

1

�

)
dx +

∫ �

0

x2
(
� 1

�2
x +

1

�

)
dx; (7)

= ��2

2
+

2�2

3
=

�2

6
: (8)

You can also repeat the integration assuming a non-zero �. Hence we can

de�ne the standard uncertainty associated with a analog reading as,

utriangular =
Half of the length of the intervalp

6
=

�p
6
: (9)

For the measured mass displayed in Figure (2), the uncertainty becomes,

Standard uncertainty in mass =
1
2
(83:50� 83:40)p

6
= 0:02 g ; (10)

and �nally, the best approximated value for mass is,

Mass of the can = (83:45� 0:02) g:

2.2.3 Rating or accuracy of the instrument

Now, in a comprehensive probabilistic approach, then we also need to consider

the uncertainty associated with rating of any digital device. For example, if the

digital voltmeter's rating is 1% of the displayed reading, then the associated

uncertainty of the reading (1:68V) being measured on a digital voltmeter is,

uinstrument @1% = 0:01� 1:68 = 0:0168V;

and the combined uncertainty for this digital device turns out to be,

ucombined =
√
u2scale + u2instrument;

=
√
(0:0029)2 + (0:0168)2 = 0:0170V;
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where uscale is the type B uncertainty taken from Equation (6).

Hence the best approximation of voltage measurement alongwith associated

uncertainty is,

Voltage across resistor = (1:68� 0:02)V: (11)

Note that we have rounded o� the uncertainty value to the same number of

decimal places as the best estimate.

2.3 Combining type A and type B uncertainties

The type A and B uncertainties must be combined as both of them contribute

towards the combined uncertainties.

Suppose uA are the uncertainties measured by repeating the measurements

and uB either using digital, analog devices or from the rating of the instrument.

The expression for total uncertainty then becomes,

utotal =
√
u2A + u2B :

If you have a large number of uncertainties ui where i = 1; 2 3; :::; n; they are

combined in quadrature according to the prescription,

utotal =
√∑

u2i : (12)

3 A probabilistic approach towards measurement

3.1 Probability density function

The previous discussion should have convinced you that a probabilistic ap-

proach had been adopted in metrology. This has also been advocated by the

International Standards Organization (ISO) in 1993. This methodology has

also been accepted by other standards such as IUPAP (International Union

of Pure and Applied Physics, IUPAC (International Union of Pure and Ap-

plied Chemistry) and BIMP (International Bureau of Weights and Measures)

and a�ects the way in which measurements and uncertainties are reported

in scienti�c work. We have directly introduced this approach into all the

experimental work being performed at the physics lab at LUMS.

Each measurement has a probability distribution function associated with it.

A probability distribution function (pdf) is a way of describing the data be-

ing collected either from a single measurement or multiple measurements.
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Probability density is simply the probability of a variable lying between two

values bounded by an interval. The area under the pdf is always 1 or 100%.

The shape and size of this probability density function depends on the kind

of uncertainty coupled with logical reasoning and some subjective judgement.

These pdfs model all the information that we have for a particular measurand.

4.0 4.2 4.4 4.63.83.63.4

2

0
Mass (g)

P
ro

ba
bi

lit
y 

de
ns

ity
 (1

/g
)

2u= a1
6

a

u

Figure 3: A triangular probability distribution function.

Consider a triangular pdf that describes the mass of an object being measured

on an analog measuring instrument. The centre of the pdf corresponds to

the most probable value of the measurand and is shown in Figure (3). Surely

the area under the curve is one but that doesn't tell about how fat or thin

the triangle is. The average width of the triangle is a measure of uncertainty

in the measurand and referred as the `standard uncertainty'. A higher spread

of the pdf is associated with large standard uncertainty.

The �nal result of an experiment can be communicated by describing the best

approximation of the measurand (the centre of the pdf) and the standard

uncertainty (which is calculated based upon the shape of the pdf). A table

summarizing the most often used pdfs in measurement science (metrology)

are shown in Table (4).

A large number of probability density functions are useful in a variety of appli-

cations. However in physical measurements, three continuous pdfs are most

often used. A Gaussian pdf is associated with type A evaluations of uncer-

tainty involving a set of repeated measurements of a measurand with some

scatter in the readings. The type B evaluations involve a uniform pdf associ-

ated with a digital scale while a triangular one with an analog scale.
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Probability distribution Standard 

Rectangular

a

Triangular

a

Gaussian
2σ

function type
Evaluation type

Type B 

Type B  

Type A 

For a set of repeated 
measurements

A single digital 

A single analog 

uncertainty (u)

u =
a/21
3

u =
a/21
6

u =  1
n

σ

Extended
Uncertainty

reading 

reading

1u = 68%

2u = 95%

3u = 99%

1u = 58%

1.65u = 95%

1.73u = 100%

1u = 65%

1.81u = 95%

2.45u = 100%

Figure 4: (a) Commonly used probability distribution functions associated

with measurements.

3.2 Coverage intervals

The coverage interval is an interval within which the true value of the mea-

surand lies with high probability, usually 95%. This interval is very often

symmetrical about the best approximated value and correspond to percent-

ages of the area of the normal density lying within the de�ned limits. For

example, a 68% coverage interval tells that 68% area of the normal proba-

bility distribution function is within one standard uncertainty.

Suppose we measure the mass of a can and the result is quoted with 68%

con�dence or in a 68% con�dence interval is (83:45 � 0:34 g). This means

that there is 68% probability that the best approximated value of mass lies

somewhere within the interval (83:45 � 0:34 g) of one standard uncertainty.

Conversely, there is 32% probability that the best approximated value of the

measurand lies outside the interval (83:45� 0:34 g).

Consider a Gaussian probability distribution function. The general equation

of a Gaussian function is,

p(x) =
1

�
p
2�

exp

[
�(x � �)2

2�2

]
; (13)

where � is the expectation value and � is the standard deviation that gives

the width of the Gaussian pdf. The standard deviation � can also be deter-

mined by considering the point where the height of the probability distribution
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function drops to 1/
p
e = 0:61 = 61% of the maximum value and half of

this width is called the standard deviation �.

b

b1
e

=0.61b

µ µ+σµ−σ

2σ

The shaded area between 

µ−σ and µ+σ is 0.68

p(x)

x

of the total area

µ+2σ µ+3σµ−2σµ−3σ

Figure 5: A Gaussian probability distribution function, where p(x)dx is the

probability of �nding a value in the range x and x + dx .

The Gaussian probability distribution function is again shown in Figure (5).

The shaded area is between ��� and �+� corresponds to the probability of

the measurand lying within one standard uncertainty of the best approximated

value [3]. We say that with a con�dence level of 68%, our measurand has a

value in the range �� � and �+ �.

p(x)

x
0

1/a

a1
3

2u=

a

2/a

0

a

p(x)

x
a1
6

2u=

b

(a) (b)

Figure 6: Coverage probability. (a) Rectangular pdf and (b) triangular pdf.
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Further, the con�dence of intervals for a rectangular pdf covers 58% area

of the distribution function within one standard while for a triangular pdf,

it encloses almost 65% area of the probability distribution function. The

con�dence intervals for rectangular or triangular pdfs are shown by the shaded

regions in Figure (6).

4 Least squares �tting of a straight line function

Many physical laws imply that one quantity is proportional to another. Many

experiments in the teaching laboratories are designed to check this kind of

proportionality. To test whether a certain quantity y is proportional to another

variable x , we can plot a graph of y against x and see if the points lie on a

straight line. Because a straight line is so easily recognizable even visually,

this method is a simple and e�ective way to check for proportionality.

4.1 Calculation of the slope and intercept

Now the goal is to �nd the best straight line through the n pairs (x1; y1),...,(xN,yN)

of measurements as shown in Figure (7). At the start we assume that the

uncertainties are only in the dependent variable. This assumption is quite

reasonable because generally uncertainties in one variable are larger than in

the other, and can be safely ignored in the more precisely measured quantity.

y = mx + c

yi

xi

  m
x i +

 c

origin

di

Figure 7: Setting for the least squares best �t.

For a given pair of slope and intercept, the deviations are de�ned as,

di = yi �m xi � c:
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The best value of m and c , which are the properties of the best �t line, can be

�nd out by taking the minimum of the sum of the squares of the deviations,

S = �(yi �m xi � c)2:

This method is called the least squares �tting. Minimizing the squares of the

deviations yields,

@S

@m
= �2�xi(yi �m xi � c) = 0;

@S

@c
= �2�(yi �m xi � c) = 0;

Rewriting the above equations for m and c ,

m�x2i + c�xi = �xiyi ;

m�xi + cn = �yi :

Finally, solving for the constants m and c , we get,

m =
N�(xy)��x�y

N�x2 � (�x)2
;

c =
�x2�y ��x�(xy)

N�x2 � (�x)2
;

which are recipes for determining the best �t line. We have so far assumed

that all the data points have equal weights.

4.2 Example: Least squares �tting and transferring uncer-

tainties to the dependent variable

Now consider an experiment in which a spring-mass system is used to �nd

the spring constant. We are now exploring what happens if the uncertainty

in the independent variable cannot be ignored. According to Hooke's law,

F = �kx; (14)

where k is the spring constant. Combining Newton's law and Hooke's law,

mg = �kx: (15)

The above equation is a simple linear equation and can be written as,

y = m x + c; (16)

where m is the slope and c is the intercept.

14



Mass (g) Extension (cm)

20 3:0

42 6:8

64 10:5

86 14:0

108 17:5

Table 6: Model table for experimental results.

Suppose we hang a mass hanger on a stand and measure its mass using an

electronic weighing balance. Now adding weight into it, we see that the length

of the spring increases. We note down this extension using a meter rule. The

obtained data is summarized in Table (6).

The weighing balance has a digital scale while the scale on the meter rule is

an analog one, both involve type B uncertainties. The uncertainty in mass

limited by resolution of the digital weighing balance and due to its rating is

given,

um(scale) =
�p
3
=

0:5p
3
g = 0:3 g;

um(rating) @ 1% = 0:01� (each value of mass):

The total uncertainty in the independent variable (mass) can be calculated

using the following expression,

ux =
√
(um(scale))2 + (um(rating))2; (17)

= 0:4 g (for 20 g mass) (18)

the value of ux will be di�erent as the um(rating) is di�erent for each mass.

The uncertainty in the dependent variable (extension) is,

uy = uextension (scale) =
�p
6
=

0:5p
6
cm = 0:2 cm:

The data has uncertainties both in dependent and independent variables and

the least-squares require uncertainty only in the dependent variable. In order

to address this issue we will transform the uncertainty from independent to

dependent variable by employing the transformation rule,

utrans =
dy

dx
ux : (19)

The trivial step is the determination of the slope (dy=dx) which can be done

using either of the following approaches,
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� tracing the best straight line passing through the experimental data,

� numerically estimating the slope value by looking at adjacent points,
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Figure 8: Graph with errorbars: (a) Uncertainties in both the dependent and

independent variables and (b) uncertainties are transformed to the dependent

variable only.

By adopting the �rst method, we obtain the slope,

dy

dx
= 0:1679m/N;
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and the total uncertainty in the dependent variable becomes,

uT =
√
u2trans + u2y : (20)

The graph with uncertainties both in dependent and independent variables is

shown in Figure (8a) while the graph for transformed uncertainty is plotted in

Figure (8b). uT is the total uncertainty which includes its inherent uncertainty

uy as well as the portion utrans that it has inherited from the independent

variable. From this point onwards, we proceed with the assumption that no

uncertainty remains in the independent variable; we have properly accounted

for it by reecting its e�ect into the dependent variable.

Now introducing weights for each experimental point,

wi =
1

u2
T;i

: (21)

The weights are associated with the reciprocal square of uncertainties and

mean that any measurement which is less precise contributes very little to

the total uncertainty. For example, if a measurement is three times less

precise than the rest, its weight is 9 times less than the other weights and for

many purposes this can simply be ignored. The mathematical relations for

�nding the values of the slope m and intercept c in this approach of weighted

uncertainties are,

m =
�w �w(xy)��wx �(wy)

�w �(wx2)� (�wx)2
; (22)

c =
�(wx2)�(wy)��(wx)�(wxy)

�w �(wx2)� (�wx)2
; (23)

where x is the independent variable, y is the dependent variable and w is the

weight.

�nally, the expressions for the uncertainties in m and c are,

um =

√
�w

�w �(wx2)� (�wx)2
; (24)

uc =

√
�(wx2)

�w �(wx2)� (�wx)2
: (25)

5 Propagation of Uncertainties

Most physical quantities cannot be measured directly. First, we measure some

quantities directly that can be directly measured and then infer from these
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the quantity of interest. For example, the velocity v of a car is measured by

measuring the time it takes to travel a particular distance and then calculating

the speed by using v = d=t. We must �rst estimate the uncertainty in the

measured quantity and then �gure out how these uncertainties \propagate"

through the calculations to produce an uncertainty in the �nal deduced an-

swer. Given below are some rules for �nding propagated uncertainties, the

particular rules followed by a general rule.

5.1 Uncertainty in sums and di�erences

If q = x + y or z = x � y , the uncertainty in q is given by:

�q =

√
(�x)2 + (�y)2,

and the uncertainties always add, no matter whether we are adding or sub-

tracting the measured quantities. In this section, we are using delta to denote

the uncertainty.

5.2 Uncertainty in products and quotients

If the equation is q = xy or q =
x

y
, then the uncertainty in q is:

�q = q

√(
�x

x

)2

+

(
�y

y

)2

5.3 Uncertainty in a power

If the equation is q = xm, the uncertainty is given by:

�q = q

√(
m�x

x

)2

.

5.4 General formula for uncertainty propagation

We already have seen uncertainties both independent and propagate through

sums, di�erences, products and quotients. However, many calculations in-

volve one or more complicate functions. The question is how do uncertainties

18



propagate in these functions. For example, what if the quantity of interest is

q(x) = 1= sin(x) or q(x) =
p
x . In such cases the best approach is to draw

a graph of q(x) as shown in �gure (9).

q(x)

q

q

x

max

best

q
best

q
min

δq

δq

x
best
- δx x

best
+ δx

Figure 9: Graph of q(x) versus x . If x is measured as xbest � �x then the

best estimate for q(x) is qbest. The largest and smallest values of q(x) which

correspond to xbest + �x .

Suppose �x is the uncertainty in x and de�nes the extremity or range of

variable x and is a measure of the uncertainty in x . The largest probable

value of x is xbest + �x and the corresponding largest value of q is qmax.

Likewise the minimum probable value of x is xbest� �x and the smallest value

of q is qmin shown in Figure (9). If we assume the uncertainty �x is small,

we can take the section of the graph under consideration to be approximately

straight with qmax, qmin equally spaced and lying on either side of the qbest.

The uncertainty �q can be estimated as,

�q = q(xbest + �x)� q(xbest): (26)

Now using the fundamental approximation of of calculus that, for any function

q(x) with su�ciently small increment v

q(x + v)� q(x) =
dq

dx
v ; (27)

assuming the uncertainty �x is small and equating Equations (26) and (27)

yields,

�q =
dq

dx
�x: (28)
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Thus the value of uncertainty in q(x) is found by multiplying the derivative of

q with respect to x with the uncertainty in x . You can convince yourself that

the uncertainties calculated above for sum, di�erence and quotient etc. are

in complete agreement with this fundamental approach. This is also called

the Taylor series approximation.

Now if a quantity q is measured using some input variables x , y and z which

are measured with uncertainties �x , �y and �z , respectively. If we assume

that all the measured uncertainties are small, then �q can also be �nd out

using the Taylor series approximation mentioned above,

�q2 =

[(
@q

@x
�x

)2

+

(
@q

@y
�z

)2

+

(
@q

@z
�z

)2]
+

[
@q

@x

@q

@y
�x�y +

@q

@y

@q

@z
�y�z +

@q

@z

@q

@x
�z�x

]
: (29)

The above expression is conveniently referred as the `law of uncertainty prop-

agation'. The square terms are always positive and never cancel each other.

However, the cross terms may cancels out due to the fact that each term

may be positive or negative. Hence the exact formula for uncertainty is,

�q =

√(
@q

@x
�x

)2

+

(
@q

@y
�z

)2

+

(
@q

@z
�z

)2

: (30)

Equation (30) shows a direct relationship between multiple variables and their

standard uncertainties.
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