
~ A backyard swing provides an

example of oscillatory motion. Such

motion occurs everywhere in the

physical world, from vibrations in

molecules to oscillations in the shape

of the Sun.
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Oscillatory Motion

R
hythmic motion-also known as periodic motion-is a common occurrence in

the physical world. The very concept of time arises from the observation that

certain motions, such as the human heartbeat and the cycling of the seasons, re-

peat themselves in a reliable and regular way. An important class of periodic motions

involves what are known as restoring forces, forces that act to bring an object back to an

equilibrium point. As we have already seen in Chapter 7, such restoring forces have po-

tential energy functions with minima at the equilibrium point. Objects in this sort of

motion oscillate, and oscillatory motion is the central subject of this chapter. The most

basic type of oscillatory motion is omnipresent in nature: simple harmonic motion.

This motion occurs when the strength of the restoring force is directly proportional to

the object's displacement from the equilibrium point. Everyday examples are the mo-

tion of a mass on the end of a spring and the motion of a pendulum. The position of an

object in simple harmonic motion varies with time as a sine or a cosine. While the

spring force is an example that we will use repeatedly, simple harmonic motion is of

universal importance because virtually any small oscillatory motion about a stable equi-

librium point is simple harmonic motion.

We'll also see the effects of dissipative forces in this chapter-which not surpris-

ingly cause the motion to progressively die out-and the effects of an oscillatory dri-

ving force. The presence of the driving force illustrates the remarkable feature known as

resonance, in which the motion can become catastrophically large if the frequency of

the driving force is just right.
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13-1 The Kinematics of Simple Harmonic Motion

Simple harmonic motion, which describes the small repeating motion followed by a

mass on the end of a spring or a pendulum, is a simple form of oscillatory motion. The

word "harmonic," signifying agreement and accord, reveals that humankind have al-

ways seen beauty in this motion. In the back-and-forth of simple harmonic motion, the

position x( t) of an object is of the form sin( wt) or cos( wt), where the coefficient eo is

the angular frequency. Both sines and cosines repeat themselves periodically as time t

passes. The trigonometric functions are functions of a dimensionless argument, an

angle measured in radians (or, sometimes, degrees). Thus the coefficient of the time

must have the dimensions [T-1]. We'll see later that the angular frequency eo is a fun-

damental property of the motion, determined by the inertia of the moving objects and

the restoring force acting on them.

How do we figure out whether the motion of a mass on the end of a spring is de-

scribed by a sine or by a cosine? Let's look at a graph of sin e versus e next to a graph
of cos e versus e (Fig. 13-1). Both functions repeat every time the angle e changes by
27Trad. When e = 0, the sine function is zero, whereas the cosine function is + 1, but
this is only a matter of placing the axis. Indeed, the functions are identical if the origin

of the e axis is shifted. We can specify such a shift of e by an angle we call the phase,
8. By what angle 8 would e have to be shifted so that the sin e curve in Fig. 13-la is co-

incident with the cos e curve of Fig. 13-1b? If 8 is chosen properly, the function

sin(wt + 8) can represent sin(wt), cos(wt), or anything in between. The phase simply

makes explicit the "starting" point for harmonic motion. Both sine and cosine have the

same shape, but displaced, and the phase sets the amount of displacement.

Another quantity that characterizes oscillatory motion is how far the moving object

gets from the equilibrium position before it turns around. In the case of a point mass in

simple harmonic motion in, say, the x-direction, the motion is symmetric from one side

to the other, and the maximum distance of displacement to the right of the equilibrium

point equals the maximum distance of displacement to the left. We call this distance the

amplitude, A. It is by definition positive. The sine function is dimensionless and varies

between -1 and +1. But x(t) has dimensions of length. To express x(t), we therefore

have to multiply the harmonic sine (or cosine) function by a constant with dimensions

of length, and this constant is the amplitude A described above. The resulting expression

for the position of an object in simple harmonic motion is

x(t) = A sin(wt + 8), (13-la)

SIMPLE HARMONIC MOTION

and we can immediately confirm that A describes the magnitude of the maximum

excursion away from the point of zero displacement (Fig. 13-2). An alternative form of

this expression turns out to be very useful. We can use the basic trigonometry rule

sin(x + y) = sin x cos y + cos x sin y to rewrite sin(wt + 8) as

x(t) = [Acos8]sin(wt) + [A sin 8] cos(wt).

x(t)

The red curve differs
from the blue curve only
by the phase angle 8.

sin El

e
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cos El

e
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••. FIGURE 13-1 Plots of Ca)sin 8

and (b) cos e, both as a function of 8.

.•• FIGURE 13-2 In simple harmonic

motion the phase, 8, corresponds to a

sliding of the curve of displacement

versus time to earlier or later times. The

amplitude and period of the motion are

also shown.
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The original quantities A and 0 are two constants that characterize the motion, and we

can think of the two quantities in square brackets as combinations of these two con-

stants that equally well characterize the motion. In other words, simple harmonic mo-

tion can alternatively be expressed as

x(t) = a1 sin(wt) + a2 cos(wt). (13-lb)

Comparing the intermediate step with Eq. (13-la), we find relations that can be used to

connect the constants a I and a2 to the constants A and 0,

aj = A cos 0, a2 = A sin 0.

Inverting, we can express A and 0 in terms of a 1and a2:

A2 = aT + a~, tan 0 = a2Ia,.

Which of these two forms, Eq. (13-la or b), is more convenient depends on the

circumstances, and we'll sometimes use one and sometimes the other.

Properties of Simple Harmonic Motion

Three independent parameters appear in simple harmonic motion and describe the mo-

tion: the amplitude A, the phase 0, and the angular frequency w. The amplitude and the

phase are determined by specifying the position x( t) at t = 0 and the maximum mag-

nitude of x(t). It follows in this case from Eq. (13-la) that x(O) = A sin 0, while

IXmaxl = A. These two equations give A and 0 in terms of x(O) and IXmaxl. Or one may
know the position x(t) and velocity v(t) = dxf dt at an initial time t = O. In this case

we say that A and 0 are determined by the initial conditions for the motion. It follows

from Eq. (13-la) that x(O) = A sin 0. We can also use Eq. (13-la) to find the velocity

v(t) = dxl dt = Aw cos(wt + 0) [see Eq. (13-7)], so that v(O) = Aw cos 0. The two

expressions x(O) and v(O) are enough to specify both amplitude and phase provided

that w is known. A similar analysis can be done for Eq. (13-lb), in which the two con-

stants aj and a2 are determined by initial conditions. The fact that w needs to be known

here suggests that we should turn to that constant next.

The angular frequency w is a measure of the repetition time for the motion, i.e., the

time for one full cycle of the motion. We call this time the period T. The sine function

repeats itself either when the angle increases by 21T rad (see Fig. 13-1) or, because 0 is

a constant, when wt increases by 21T. Thus the period satisfies wT = 21T. We can solve

for the period:

21T
T=-.

w
(13-2)

PERIOD OF SIMPLE HARMONIC MOTION

Thus the value of the angular frequency w determines the period. In Chapter 3, where

we described uniform circular motion, we defined the frequency, f, as the number of

full oscillations per unit time, or equivalently the inverse of the period. A period of 5 s

means a frequency of one complete repeat of the motion every five seconds, while a

period of 0.5 s means a repeat frequency of two per second, and so forth:

I
f =-.

T
(13-3)

FREQUENCY OF SIMPLE HARMONIC MOTION

If the period is measured in seconds, the frequency is measured in s-I. In SI, the unit s-]

is the hertz (Hz), named after the physicist Heinrich Hertz:

1 Hz = 1 s-1. (13-4)

By comparing Eqs. (13-2) and (13-3), we find that

w

f = 21T'
(13-5)
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CONCEPTUAL EXAMPLE 13-1 Your classmate states

that if the accelerationof a mass acted on by a spring is proportional to

the displacement from the equilibriumpoint of the mass, then the far-

ther the mass gets from the equilibrium, the larger the acceleration,

and the mass will soon be accelerating so much that it will be in the

next countyin a fewminutes. Is he right?Howwouldyou correct him?

Answer It is indeed true that the acceleration is proportional

to the displacement, but as a look at Eq. (13-8) verifies, there is a

crucial minus sign in the relation. This sign keeps the motion within

bounds, If the displacement is to the right of the equilibrium point,

the acceleration is to the left, tending to send the mass back to the

left; if the displacement is to the left, the acceleration is to the right,

tending to send the mass back to the right. Without the minus sign,

your classmate is correct. In that case, the position is an exponential

function of time rather than oscillatory.

We will see in Section 13-2 that the angular frequency w can be identified with the

angular speed, a quantity we have already defined and used in Sections 3-5 and 9-1 in

connection with circular motion. Inversion of Eq. (13-2) or (13-5) gives

27T

w = - = 27Tf. (13-6)
T

When the position is specified as a function of time, the velocity and the accelera-

tion are determined by taking successive derivatives. As a consequence of Eq. (l3-la),

we have (see Appendix IV-7)

dx d
vet) = - = -[A sin(wt + o)J = wA cos(wt + 0). (13-7)

dt dt

One further derivative gives the acceleration as a function of time:

dv
aCt) = - = -w2Asin(wt + 0) = -w2x(t).

dt
(13-8)

The acceleration is proportional to the displacement. Since we will argue that virtually

all stable equilibrium situations, from the back and forth of a rocking chair to the oscil-

lation of a spider on his web in the breeze, are associated with simple harmonic motion;

thus, the proportionality of the acceleration and the displacement is a universal property

of motion near equilibrium,

Relations Among Position, Velocity, and Acceleration
in Simple Harmonic Motion

In Fig. 13-3 we plot the position, velocity, and acceleration of an object in simple harmon-

ic motion over two full periods, starting with x (t) = A sin (wt). (For convenience, the

phase has been taken to be zero. The relations discussed here are not affected by the phase.)

The photo in Fig. 13-4 represents the up-and-down motion of a ball on a spring, pre-

sented so you can follow the ball's vertical position as a function of time. This motion

matches the motion described in Fig. 13-3. In Fig. 13-3a the object is at the origin at

t = O. As we see in Fig. 13-3b, the velocity at t = 0 is maximum in magnitude and is

positive, while Fig. 13-3c shows that at this time the acceleration is zero, so that the ve-

locity is not changing. After one-quarter of the period (wt = 7T /2), the object has moved

to the right-hand extreme of its motion and is ready to turn around. The velocity is zero at

this turnaround point, but the acceleration has actually reached a maximum in magnitude

and is negative, indicating that the velocity will be turning to the left and will become

..••FIGURE 13-4 Aphotographof
the simpleharmonicmotionof themass
on the end of a spring.
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.•. FIGURE 13-3 Startingwith (a)

the graphof positionx(t) = A sin(wt),

a singlederivativegives(b) the velocity
vet) = wA cos(wt). Onefurthertime
derivativegives(c) the acceleration

a( t) = -w2 A sinewt). Wehavein each
caseplottedtwocycles,or periods,for
zerophase; the curvesrepeat afterevery

period.Note also, as the upperscale
indicates,the correspondencebetween
the numberof periodsandwt as a
multipleof 27T.
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negative. (Think of a ball thrown in the air; at the maximum height-the turnaround

point-the velocity is zero even if the acceleration is nonzero and directed toward Earth.)

After one-half the period (wt = 1T), the object once again passes through the origin, this

time moving to the left. The acceleration is again zero. The three-quarter mark

(wt = 31T /2) is at another turnaround, characterized by a maximum negative value ofx-

the object is at its left-hand extreme-and zero velocity. The acceleration is maximum and

positive, meaning that the velocity is becoming positive, and the object will subsequently

move back to the right. Finally, after one full period (wt = 21T), the object has come back

to its starting point, moving to the right through the origin with its largest positive velocity

and zero acceleration. The situation at t = 21T/ to is identical to what it was at t = O.

EXAMPLE 13-2 A cork floating on a pond moves in simple

harmonic motion, bobbing up and down over a range of 4 cm. The

period of the motion is T = 1.0 s, and a clock is started at t = 0 s

when the cork is at its minimum height. What are the height and ve-

locity of the cork at t = 10.5 S1

Setting It Up We draw a graph of the motion in Fig. 13-5,

which is along a z-axis whose origin is the midpoint of the motion.

The maximum value of z is Zmax = 2 cm, and the minimum value is

Zmin = -2 cm, which is the location at t = O.

Strategy We must find an expression for position and velocity

as a function of time given the information in the problem, and then

evaluate these at t = 10.5 s. For position, we'll use the general form

of Eq. (13-lb), which requires two constants and knowledge of w.

We are given T, and that will determine w directly. With Eq. (13-1b)

we can find the velocity by taking the derivative of the position. To

evaluate constants of our expressions, we can use the facts that at

t = 0, Z = Zmin and v = O.

z
E
22

015
I
I
I

--;s) I

11O~
1-10~0 1.~

w

t(s)

t (s)

•. FIGURE 13-5 The height and speed of a bobbing cork in a pond.

•. FIGURE 13-6 The relation

between uniform circular motion and

simple harmonic motion is evident in the

piston-linkage connection on the train

wheel and the resulting motion.

Working It Out We know the period, T, and from Eq. (13-6),

to = 27T /T. The motion (position) takes the general form

z(t) = aj sin(wt) + az cos(wt).

With a single derivative, we also get the velocity:

v(t) = ajw cos(wt) - a2w sin(wt).

To find the constants a I and a2, we use the initial conditions. As stat-

ed above, these read, Z = Zmin and v = 0 at t = O.The second equa-

tion above is simple to apply: v can only be 0 at t = 0 if the constant

aJ = O. Applying this, the condition that Z = Zmin at t = 0 then

gives immediately a2 = Zmin. Finally, w = 27T /T = 27T / (1 s) =

27T rad/s. In summary,

Z ( t) = a: cos (cot)

and

v(t) = -a2w sin(wt)

with a2 = -2 cm and eo = 27T rad/s,

The second part of Fig. 13-5 shows the velocity of the cork.

It is straightforward to plug t = 10.5 s into these expressions. We

can also employ some simple reasoning to make a shortcut to the nu-

merical answer. Since both Z and v repeat themselves every period,

the values of Z and v at 10.5 s are the same as at 0.5 s (0.5 period).

Moreover, after half a period, the cork moves from the bottom of the

motion to the top, i.e., Z will move from Zmin to Zmax and the velocity

will once again be zero as the motion of the cork turns around. Thus

for t = 10.5 s, Z = Zmax = +2 cm and v = 0 m/so

What Do You Think? For what value(s) of Z does the acceler-

ation of the cork have maximum magnitude? For what value(s) of Z

does the acceleration have minimum magnitude? Answers to What

Do You Think? questions are given in the back of the book .

13-2 A Connection to Circular Motion

In Chapter 3 we discussed another kind of periodic motion: uniform circular motion.

The photograph in Fig. 13-6 of the wheels and driving piston of a steam engine sug-

gests that circular motion has a simple connection to harmonic motion, and we next

demonstrate this connection in more detail. Figure 13-7 shows uniform circular motion

for a point moving in the xy-plane a constant distance R from the origin. The motion is

described by an angle e, measured from the x-axis, that varies linearly with time:

e = cot + 0. (13-9)

The phase, 0, is just the value of e at time t = O.

If we were to look at a side view of the uniform circular motion of a pin stuck on a ro-

tating turntable, we would see the pin oscillate in simple harmonic motion. Figure 13-7
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Screen for

projection of
y-motion

--
Light for

projecting
y-motion

-----
indicates the projection of the circular motion on the y-axis, but you could easily project

onto both x and y. Simple trigonometry gives us these projections:

x = Rcos8 = Rcos(wt + 8);

y = Rsin8 = Rsin(wt + 8).

(13~1O)

(13-11)

Thus uniform circular motion corresponds to simple harmonic motion in both the x- and

y-directions. A cosine rather than sine appears in x, but as we discussed above, this is

just the standard form with a different phase. We can use the trigonometric identity

sin[ 8 + (17/2)] = sin 8 cos( 17/2) + cos 8 sin( 17/2) = cos 8 to replace the cosine in
Eq. (13-10) with a sine function, and we thereby obtain

x = R sin( tot + 8 + ~). (13-12)

Both the x- and y-motions are now in the standard form of Eq. (13-1a). The two mo-

tions have a phase that differs by exactly 17/2 (90°), and the sign of this phase differ-

ence specifies the direction-clockwise or counterclockwise-of the corresponding

uniform circular motion (see Problem 22).

13-3 Springs and Simple Harmonic Motion

Having described simple harmonic motion-the kinematics-and armed with our

knowledge of Newton's second law, we now can turn to the cause of the motion.

Springs give rise to simple harmonic motion. Let's restrict ourselves to one-dimension-

al motion and dispense with vector notation. The spring force on a mass displaced by x

from the equilibrium position of the spring is a restoring force linearly dependent on x,

the form known as Hooke's law:

F = -kx. (13-13)

This form is valid provided the spring is not overly stretched or compressed, in which

case it loses its "springiness" and distorts-this is why we have spoken about "small"

motions about the equilibrium point. Here k is the spring constant. It is the minus sign

in Eq. (13-13) that indicates that the force is a restoring force. A displacement in the

+x-direction gives rise to a force that acts in the -x-direction and vice versa. Fig-

ure 13-8a shows a series of possible starting points for the motion. Let us choose the

third one, where the mass is released at t = 0 from an extended position. The resulting

motion is shown in Figure 13-8b over a complete period of the motion. Newton's sec-

ond law provides us with the connection between the force and the acceleration;

namely, F = -kx = ma. Thus the acceleration of a mass on the end of a spring is pro-

portional to its displacement, with a minus sign:

k
a = --x.

m
(13-14)

An acceleration proportional to the position, with a minus sign, is just the kinematic

characteristic that we found in Section 13-1 for simple harmonic motion. Comparison of

9

.•••FIGURE 13-7 Uniform

e circular motion in the xy-plane, and

its projection onto the y-axis. The

projection represents simple

harmonic motion, easily visible in a

plot of y versus e = cot + 15,as on
the right.
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~ FIGURE 13-8 (a) Some possible

starting points for the motion of a mass on

the end of a spring. (b) The simple

harmonic motion of the mass when it is

released from the stretched position. The

speed is lowest (and the acceleration is

highest) when the displacement from

equilibrium is a maximum, and the speed

is highest (and the acceleration is lowest)

when the displacement is a minimum. We

can also see the play between kinetic and

potential energy; one is large where the

other is small.
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Eqs. (13-8) and (13-14) yields the important result that the angular frequency is deter-

mined by the mass and the spring constant:

k
w2 =-'

m'
(13-15)

w=~, (13-16)

ANGULAR FREQUENCY FOR MASS ON A SPRING

In turn, Eqs. (13-2) and (13-3) give the period and the frequency of the oscillations:

T = 21T~ (13-17)and

Remarkably, the period of the motion is independent of the amplitude. The same is then

true for the frequency.

The spring is the prototype of dynamical systems moving back and forth about a

stable equilibrium-virtually all such systems exhibit simple harmonic motion. All

these systems reduce to a mass on the end of a spring, in that the form of the force is the

same as that of the spring, a restoring force linear in some variable.
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CONCEPTUAL EXAMPLE 13-3 The spring constant k of

a mass-spring system is doubled. By what factor does m have to change

so that (a) the acceleration at x = 0 is unchanged; (b) the acceleration

at x = A [A is the original amplitude] is unchanged; (c) the velocity at

x = A is unchanged; (d) the period of the motion is unchanged?

Answer (a) The acceleration is proportional to x; at x = 0, the

acceleration remains zero, regardless of the values of k or m.

EXAMPLE 13-4 A mass m = 0.50 kg moves along the

x-direction under the influence of a spring with spring constant

k = 2.0 N/ m. The origin of the x-axis is at the equilibrium point of the

mass. At t = 0 s, the mass is at the origin and moving with a speed of

0.50 m/s in the +x-direction. (a) At what time t1 does the mass first ar-

rive at its maximum extension? (b) What is this maximum extension?

Setting It Up We note specifically that we are given initial con-

ditions, in this case the position and velocity at t = 0 s.

Strategy We can give a description of the position at all times,

then substitute specific times. The motion as a function of time is given

by either of the two Eqs. (l3-1)-we'll use Eq. (13-la) here. With k

and m known, we can find the angular frequency, w. And the initial con-

ditions will be sufficient to find the two remaining parameters A and 8

in Eq. (13-la). In part (a) we want the time to go from the origin to the

maximum extension, and this is just a quarter period-for that we need

only w. For part (b) the parameter A is the maximum extension.

Working It Out From Eq. (13~ 16), the angular frequency, w, is

2.0N/m ,~
--- = V 4.0 s-2 = 2.0 rad/s.
0.50 kg

(b) From Eq. (13-14), the original acceleration at x = A is

a = -(k/m)A. If k is doubled, doubling m will leave a unchanged.

(c) The velocity at the extremes of the motion-i.e., x = A-is zero,

and this is independent of the values of k or m.

(d) The period is inversely proportional to the angular frequency,

which is in turn a function of kl m. So double In to leave the period

unchanged.

(a) The time to go from the equilibrium position to the maximum ex-

tension is T /4:

1 1 27T 1 27T rad 1
t1 = 4T = 4--;;;- = 4 2.0rad/s = 43.1 s = 0.78 s.

(b) We use the information about x and v at t = 0 s to find the am-

plitude. Writing x(t) = A sin(wt + 8), we have x(t = 0) =

A sin 8 = O. This implies that 8 = O. We use this, in turn, for the

value of vat t = 0, v(t = 0) = Aw cos(O) = Aw. (The argument

of the cosine is zero because both t and 8 are zero.) Thus

v(t = 0) 0.50 m/s
A = --- = ---= 0.25 m,

w 2.0rad/s

which is the maximum excursion of the mass from the origin.

What Do You Think? If the speed at t = 0 were doubled,

then the time to reach the maximum extension would be (a) doubled

(b) the same (c) halved.

Additional Constant Forces

Suppose we start with a spring force and we add a constant force to it that acts along the

same line. How different is the motion of an object under the influence of both these forces

from the motion with the spring force alone? The answer is, remarkably little. The only

thing that changes is the equilibrium point. As we have seen, the original (one dimension-

al) spring force always takes the form F;;pring = -k(x - xo) (the sign takes into account

the vector nature in one dimension), here aligned with the x-axis. The quantity x - Xo is

the displacement of the mass from its equilibrium point at x = xo. The period of this

spring, or indeed any spring, is independent of the equilibrium point. Now imagine adding

(also acting along the x-axis) a constant force Fe' We can always write Fe in the form

Fe = kXI,

where k is the same spring constant as for the original spring and XI '= Fe/k. That

means the net force takes the form

Fnel = Fspring + Fe = ~k(x - xo) + k.x, = -k(x - [xQ + xJJ).

This is again a spring force, with the same spring constant as the original spring force.

Thus the motion will have the same frequency, but a shifted equilibrium point, Xo + XI

instead of XQ.

This behavior is exhibited by a mass hanging vertically from a spring. The supple-

mentary constant force is that of gravity. The frequency of the simple harmonic motion

will be the same whether the spring is hanging vertically or not. For the hanging case,

and assuming the spring itself is much less massive than the mass attached to its end,

the equilibrium position will be lowered by an amount Lly proportional to the addition-

al weight of the mass, as in Fig. 13-9. More precisely, we have

mg = k Lly, or Lly = mgfk.

The harmonic motion is measured from the new equiibrium position.

i
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~ FIGURE 13-9 A mass on the end

of a spring is suspended vertically. (a) If

its equilibrium length would place it at

height Yo in the absence of gravity, then

(b) it will be stretched an additional

amount, Doy, to a new equilibrium

position, Yl ' under the influence of

gravity. (c) Free-body diagram for the

mass.

(a) (b) (c)

y

Free-body diagram

- - - --f

-_-_-_-_-jO~~ ~ ~ ~ ~y~ ~y~ ~ ~ I ·:'8
y=o

13-4 Energy and Simple Harmonic Motion

We examined energy considerations for the spring force in Chapter 7, where we found

that the work done by a spring force in moving a mass from one position to another is in-

dependent of the path taken by the mass. That means that the spring force is conservative

and has a potential energy function U (x) associated with it. The total energy E (the sum

of kinetic energy, K, and potential energy) is conserved throughout any motion.

In Section 7-1 we computed the potential energy U(x) of an object attached to a

spring and found

(13-18)

POTENTIAL ENERGY FOR MASS ON A SPRING

In Eq. (13-18) zero potential energy has been chosen at the equilibrium position of the

spring, x = O.The kinetic energy is simply

K = l..mv2
2

(13-19)

Because both x and v are known for simple harmonic motion from Eqs. (13-1) and

(13-7), the variation in time of U and K can be plotted. If we write the argument tot + 8
as e, we have

(13-20)

and using w2 = k/m [Eq. (13-15)],

1 1
K = -mA2 w2 cos ' e = -kA2 cos2 e.

2 2

Figure 13-10 is a plot of the potential and kinetic energy functions as e varies between 0
and 21T, which corresponds to a complete cycle. Both sin2 e and cos2 e vary between 0
and 1; when sin2 e is a minimum, cos2 e is a maximum and vice versa. Thus U and K

each vary between 0 and kA2/2. Suppose that an object attached to a spring starts at the

origin and moves to the right, motion you can follow on the graphs of Fig. 13-10. At

the origin the potential energy is zero and K is a maximum. As the mass moves to the

right, it slows until it has reached its turnaround point at one-quarter cycle, where the

velocity and hence K are zero. Because x is at its maximum here, U is also a maximum.

The mass now moves to the left, gaining speed until the speed is a maximum as it passes
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Position

o

.•••FIGURE 13-10 The potential

energy and the kinetic energy of a mass in

simple harmonic motion plotted over one

cycle (a) as a function oUi, with the

origin at the equilibrium point, and (b) as

a function of displacement x. When one is

a maximum, the other is a minimum, and

their sum, the total energy, is conserved.Position

through the origin once more. Here, after one-half cycle, K is a maximum and U is a

minimum. Finally, at the left-hand turnaround point, K is a minimum and U is a maxi-

mum. The energy flows back and forth between U and K.

The Total Energy

The total energy, E = U + K, must be constant. We have (again, e cot + 0)

1
+ -kA2 cos2 e
2

Because the sum of sirr' e and cos ' e is unity for any e, E is indeed constant in time:

(13-23)

TOTAL ENERGY OF MASS ON A SPRING

The dependence of energy on the square of the amplitude is typical of simple harmonic

motion.

EXAMPLE 13-5 A mass In attached to a spring of spring con-

stant k is stretched a length X from its equilibrium position and re-

leased with no initial motion. (a) What is the maximum speed

attained by the mass in the subsequent motion? (b) At what time is

this speed first attained?

Strategy For part (a) the conservation of energy is a useful tool.

Initially all the energy is potential, and the maximum speed occurs

later, when all the potential energy is converted to kinetic energy.

Once we know the maximum kinetic energy, we also know the max-

imum speed. For part (b) we are asked about time, and we need more

information than energy alone can supply. However, we can use our

knowledge that in spring motion the potential energy is zero when

the mass passes through the origin, and that time is one-quarter peri-

od later than the time it is at a maximum extension, which in this

case is the starting point of the motion.

Working It Out (a) Just before the mass is released from rest at

a position x = X, all of its energy is potential energy; that is, the

total energy is

(continues on next page)
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(b) The maximum speed is attained when x = 0 (zero potential

energy). The mass is released at the maximum value of x, so the first

time the mass passes through the origin is one-quarter period later:

This agrees with Eq. (13-23) because the maximum displacement of

the motion is, by definition, the amplitude of the motion. E is the

value of the energy at all times. When the maximum speed is at-

tained, all the energy is in the form of kinetic energy:

I 2 __ 1 2
2lnVrnax - E - 2kX .

We solve for vrnax:

Vrna.< = fIx = wX.'Ij-;;;

U(x)
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I

¥

.•. FIGURE 13-11 A potentialwell,

in whichpotentialenergyhas a minimum
at x = xQ. Thispoint is a point of stable
equilibrium.The dashedline is a parabola
thatmatchesthe minimumof thewell.

What Do You Think? Weasked for the first time the maximum

speed is attained, implying that this maximum speed is attained a sec-

ond time at least. How many times is the maximum speed attained?

It's Not Just About Springs

The motion described in this chapter is of universal importance because almost all sys-

tems that are in stable equilibrium exhibit simple harmonic motion when they depart

slightly from their equilibrium position. Everyday experience bears this out in a qualita-

tive way. For example, a marble nudged a little from its stable equilibrium at the bottom

of a bowl rolls back and forth, a child's swing will move back and forth through the sta-

ble equilibrium position when it is disturbed, and an automobile rocks up and down on

its worn shock absorbers. It is obvious that this motion is oscillatory, and as we'll argue

below, it is also simple harmonic motion as long as the amplitude of the oscillations is

small enough. Table 13-1 gives a sampling of the range of periods of mechanical sys-

tems that move in simple harmonic motion.

TABLE 13-1 • Periods of Mechanical Systems in Simple Harmonic Motion

Mechanical System

Sloshing of water in a tidal basin or large lake

Large structures (bridges, buildings)

Strings or air columns of musical instruments

Piezoelectric crystals, ultrasound generators

Vibrations in molecules

Period (s)

102 to 104

>1

5 X \0-2 to 10-4

10-5 to 5 X 10-1

IO-J4

x

The discussion of energy in this chapter tells us why simple harmonic motion oc-

curs in these situations. For a spring, and indeed for every case of stable equilibrium, a

mass is confined to a potential energy well (Fig. 13-11). A potential energy well has a

minimum on a graph of potential energy versus a position variable. For a spring the po-

sition variable x is the stretch of the spring, and the minimum potential energy occurs at

zero stretch, the position of stable equilibrium. In this case the potential energy function

is parabolic in x; it is proportional to x2. The reason that almost any oscillation about a

stable equilibrium point is simple harmonic motion is that in most cases any minimum

in a potential energy-versus-position curve is a parabola close enough to the minimum

point, at least if the amplitude of the motion is not too large.

The Taylor expansion (Appendix IV-8) is a very general mathematical result that

allows us to see why the minimum of a potential energy well forms a parabola and ex-

plains why simple harmonic motion is universal near equilibrium. Suppose we apply

the Taylor expansion to a potential energy function near a minimum. Let's label the po-

sition of the minimum as the origin, x = O. Then the Taylor expansion says that

U(x) = {U(O)} + x{U'(x)lx=o} + (x2j2){U"(x)lx=o} + ...

where we have labeled differentiation with respect to x with a prime. The quantities in

curly brackets in this expression are constants, and the variable x no longer appears in

them. The constant U(O) plays no physical role, and as we know, we can always replace

it by O. (This is implicit in the expression U = !kx2 that applies for the spring itself.)
The first derivative of U at x = 0 is zero because that is a minimum point. Thus, if we

keep the first nonzero term in the Taylor expansion-and this is a good approximation

if x remains small, so our result refers to small oscillations-we find

U(x) == (x2j2)U"(O). (13-24)
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[Here we have used the notation {U"(x)lx=o} = U"(O)]. This is indeed in the form of

a spring force, with U" (0) playing the role of the spring constant. Thus the force takes

the general form near the equilibrium point:

F(x) = - dU ~ -U"(O)x.
dx

(13-25)

The force is proportional to the displacement and in a direction opposite to the dis-

placement. It is the familiar linear restoring force of the spring.

We can conclude that almost all stable equilibrium behavior is simple harmonic

motion close to the equilibrium point. (The "almost" is present as it is conceivable

that a force might have a potential for which the term U" (0) is zero. This requires,

however, a restoring force of a very special form, and for these cases you would have

to go to the term of order (x3) in U to find the leadi ng term. Figure 13-11 shows how

a minimum on a potential energy curve can be approximated by a parabola, the

dashed curve in Fig. 13-11.

This is a harmonic oscillator potential energy for a spring with spring

constant le] + le2, so we get a period corresponding to spring con-

stant (le] + le2), the same result we obtained using forces.

What Do You Think? Suppose that the initial separation be-

tween the pegs were larger than that of the problem. Would there still

be harmonic motion for movement on the line between the pegs?
-,,-~.:.-.,. __ l'~ _'i""""',._"C.".",.",,~~_______ , _

EXAMPLE 13-6 A mass In on a frictionless table is attached

to two pegs by springs with spring constants le] and le2, respectively.

The mass can move along the straight line between the pegs. The

separation between the pegs has been arranged so that each spring is

in its relaxed position, neither stretched or compressed, when the

mass is placed at an equilibrium position. What is the motion of the

mass when it is displaced from this position? In particular, assuming

the motion is periodic, what is the period?

Setting It Up In Fig. 13-12 we show in part (a) the mass at

equilibrium, at the point x = 0 where there is no force on the mass

from either spring; in part (b) the mass is displaced to position x*-O

as indicated. We measure x positive to the right. The physical situa-

tion implies a point of equilibrium at x = O.When the mass moves

away from x = 0, the forces tend to send it back to that point, so it is

stable in this position. We want to show that when the mass is dis-

placed from x = 0, the net force is a linear restoring force, and then

find the period of the harmonic motion.

Strategy The motion is one-dimensional, along the line between

the pegs. We find the net force acting on the mass, which is a force

composed of the forces from the two springs. From the general dis-

_~ __ k1 ~ ~I~J
'l;; F=O' F=O
"--Frictionless 1 : 2

surface :
I

I
I
I
I

W 1\ {\ {\ {\ {\"" "i" "~''''',,O
~

~ I+=:
: F1 : F2
~
I x I

(a)

(b)
x= 0

..•. FIGURE 13-12 In (a) the mass is at its equilibrium position (no

net force acts on it). In (b) the mass is no longer in the equilibrium

position, and it feels a force from both springs.

----------- --
cussion of stable equilibrium, we expect that the net force will be

proportional to the displacement x, and the coefficient will give us

the net, or effective, spring constant. From this we can deduce the

period of the motion. To calculate the net force, we simply add the

two forces, taking into account their signs.

Working It Out We let positive values of force be to the right,

which takes care of the vector aspect of this problem. From Fig. 13-11

we see that for the displacement shown, the force from the left-hand

spring is F] = -le]x, while the force from the right-hand spring is

similarly F2 = -le2x. [You can check that the signs are correct: With x

positive (to the right), the left-hand spring is stretched and its force is

to the left, while the right -hand spring is compressed and its force is

also to the left.] Adding, the net force on the mass is

Fnet = F] + F2 = -(k] + k2)x.

Thus the two springs together act as a single spring with effective

spring constant

The motion is simple harmonic motion, with period

ffj!eff ) le] + k2
T = 271 - = 271 ---.

In In

Alternative Strategy A different strategy utilizes the poten-

tial energy in the two springs. For the displacement of the figure, the

potential energy in springs I and 2 are

respectively-we have chosen the zero of potential energy at x = 0

for each spring. The total potential energy is then


