

CDD and CMOS Cameras

DCU223x, DCU224x DCC1240x DCC1545M, DCC1645C DCC3240X

Operation Manual and SDK

2013

Version: 4.20 Date: 25.03.2013

Contents

F	oreword	10
1 General Information		
	1.1 Safe	ety 1'
	1.2 Ord	ering Codes and Accessories12
	1.3 Req	uirements 12
	1.4 DCx	Camera Family 14
	1.5 Con	tents 1
	1.6 Wha	at's New in this Version? 10
2	Camer	a Basics 17
	2.1 Ope	rating Modes 17
	2.1.1	Freerun Mode 12
	2.1.2	Trigger Mode 19
	2.1.3	Standby 20
	2.2 Ima	ge Display Modes 2'
	2.3 Sen	sor 23
	2.3.1	Sensor Sizes 23
	2.3.2	Micro Lenses 24
	2.3.3	Color Filter (Bayer filter) 20
	2.3.4	Hot Pixels 22
	2.3.5	Shutter Methods 30
	2.3.0 2.4 Pop	Line Scan Mode 3.
	2.4 Rea	Area of Interest (AOI)
	2.4.1	Subsampling
	2.4.2	Binning 31
	2.4.5 2.5 Digi	tizing Images 30
	2.5.1	Characteristics and LUT 39
	2.5.2	Bit Depth and Digital Contrast Adjustment 4
	2.6 Can	nera Parameters 44
	2.6.1	Pixel Clock, Frame Rate, Exposure Time 44
	2.6.2	Gain and Offset 44
	2.6.3	Automatic Image Control 4
	2.6.4	Applying New Parameters 40
	2.7 Firm	ware and Camera Start 40
	2.8 Digi	tal Inputs / Outputs 47
	2.8.1	Using Digital Inputs/Outputs 47
	2.8.2	Flash Timing (Trigger Mode) 47
	2.8.3	Flash Timing (Freerun Mode) 49
	2.8.4	Serial Interface RS-232 (DC3240x only) 50

	2.9 USB	Interface
	2.9.1	History and Development
	2.9.2	Structure and Topology
	2.9.3	USB 2.0 Cabling and Connectors
	2.9.4	USB 3.0 Cabling and Connectors
	2.9.5	Data Transmission and Bandwidth
3	Operat	ion
	3.1 uc48	30 Quick Start
	3.2 Inst	allation and Connection
	3.2.1	System Requirements
	3.2.2	DCx Driver Compatibility
	3.2.3	Installing the uc480 Software under Windows
	3.2.4	Installing the uc480 Software under Linux
	3.2.5	Connecting a DCx Camera
	3.3 App	lication Notes by Camera Model
	3.3.1	DCC1240x / DCC3240x Application Notes
	3.3.2	DCC1545M Application Notes
	3.3.3	DCC1645C Application Notes
	3.3.4	DCU223x Application Notes
	3.3.5	DCU224x Application Notes
	3.4 Inst	alled uc480 Programs
	3.4.1	uc480 Camera Manager
	3.4.1.1	Camera List
	3.4.1.2	Control Center
	3.4.1.3	General Information
	3.4.1.4	Camera Information
	3.4.1.5	Creating a Support File
	3.4.1.6	Additional Functions
	3.4.1.7	Parameters
	3.4.2	uc480 Viewer
	3.4.2.1	Start Dialog
	3.4.2.2	Toolbars
	3.4.2.3	Status Bar
	3.4.2.4	Opening a Camera
	3.4.2.5	Menus
	3.4.2.6	Dialog Boxes
	3.4.2.7	Properties
	3.4.2.8	Creating profiles
	3.4.3	uc480 Plaver
	3.4.3.1	Loading an AVI file
	3.4.3.2	Overview of the Operation Controls
	3.4.3.3	Loop Mode

	3.4.3.4	Video Window and Full Screen Mode	
	3.4.4	uc480 Hotpixel Editor	
4	4 Programming (SDK)		
	4.1 First	t Steps to uc480 Programming	
	4.2 How	v to Proceed	
	4.2.1	Preparing Image Capture	
	4.2.1.1	Querying Information	
	4.2.1.2	2 Opening and Closing the Camera	
	4.2.1.3	8 Allocating Image Memory	
	4.2.1.4	Image Memory Sequences	
	4.2.2	Selecting the Display Mode	
	4.2.3	Capturing Images	
	4.2.3.1	Image Capture Modes	
	4.2.3.2	2 Event / Message Handling	
	4.2.4	Setting Camera Parameters	
	4.2.4.1	Setting and Getting Parameters	
	4.2.4.2	2 Automatic Image Control	
	4.2.4.3	3 Image Pre-processing	
	4.2.4.4	Get Camera Status	
	4.2.4.5	5 Using the Camera EEPROM	
	4.2.5	Saving Images and Videos	
	4.2.5.1	Saving and Loading Single Frames	
	4.2.5.2	2 Capturing AVIs	
	4.2.6	Using Inputs and Outputs	
	4.2.6.1	Input/Output Control	
	4.3 Fund	ction Descriptions	
	4.3.1	is_AddToSequence	
	4.3.2	is_AllocImageMem	
	4.3.3	is_AOI	
	4.3.4	is_AutoParameter	
	4.3.5	is_Blacklevel	
	4.3.6	is_CameraStatus	
	4.3.7	is_CaptureStatus	
	4.3.8	is_CaptureVideo	
	4.3.9	is_ClearSequence	
	4.3.10	is_ColorTemperature	
	4.3.11	is_Configuration	
	4.3.12	is_Convert	
	4.3.13	is_CopyImageMem	
	4.3.14	is_CopyImageMemLines	
	4.3.15	is_DeviceFeature	
	4.3.16	is_DeviceInfo	

4.3.17	is_DirectRenderer 1			
4.3.18	is_DisableEvent 2			
4.3.19	is_EdgeEnhancement 2			
4.3.20	is_EnableAutoExit 2			
4.3.21	is_EnableEvent 2			
4.3.22	is_EnableMessage 2			
4.3.23	is_ExitCamera 2			
4.3.24	is_ExitEvent 2			
4.3.25	is_ExitImageQueue 2			
4.3.26	is_Exposure 2			
4.3.27	is_ForceTrigger 2			
4.3.28	is_FreeImageMem 2			
4.3.29	is_FreezeVideo 2			
4.3.30	is_GetActiveImageMem 2			
4.3.31	is_GetActSeqBuf 2			
4.3.32	is_GetAutoInfo 2			
4.3.33	is_GetBusSpeed 2			
4.3.34	is_GetCameraInfo 2			
4.3.35	is_GetCameraList 2			
4.3.36	is_GetCameraLUT 2			
4.3.37	is_GetColorConverter 2			
4.3.38	is_GetColorDepth 2			
4.3.39	is_GetDLLVersion 2			
4.3.40	is_GetError 2			
4.3.41	is_GetFramesPerSecond 2			
4.3.42	is_GetFrameTimeRange 2			
4.3.43	is_GetImageHistogram 2			
4.3.44	is_GetImageInfo 2			
4.3.45	is_GetImageMem 2			
4.3.46	is_GetImageMemPitch 2			
4.3.47	is_GetNumberOfCameras 2			
4.3.48	is_GetOsVersion 2			
4.3.49	is_GetSensorInfo 2			
4.3.50	is_GetSensorScalerInfo 2			
4.3.51	is_GetSupportedTestImages 2			
4.3.52	is_GetTestImageValueRange 2			
4.3.53	is_GetTimeout 2			
4.3.54	is_GetUsedBandwidth 2			
4.3.55	is_GetVsyncCount 2			
4.3.56	is_HasVideoStarted 2			
4.3.57	is_HotPixel 2			
4.3.58	is_ImageFile 2			
4.3.59	is_ImageFormat 2			

4.3.60	is_InitCamera 27
4.3.61	is_InitEvent 27
4.3.62	is_InitImageQueue 27
4.3.63	is_InquireImageMem 27
4.3.64	is_IO 28
4.3.65	is_IsVideoFinish 28
4.3.66	is_LockSeqBuf 28
4.3.67	is_Measure 29
4.3.68	is_ParameterSet 29
4.3.69	is_PixelClock 29
4.3.70	is_ReadEEPROM 29
4.3.71	is_RenderBitmap 29
4.3.72	is_ResetToDefault 29
4.3.73	is_SetAllocatedImageMem 30
4.3.74	is_SetAutoParameter 30
4.3.75	is_SetBinning 37
4.3.76	is_SetCameralD 37
4.3.77	is_SetColorConverter 37
4.3.78	is_SetColorCorrection 37
4.3.79	is_SetColorMode 37
4.3.80	is_SetDisplayMode 32
4.3.81	is_SetDisplayPos 32
4.3.82	is_SetErrorReport 32
4.3.83	is_SetExternalTrigger 32
4.3.84	is_SetFrameRate 32
4.3.85	is_SetGainBoost 33
4.3.86	is_SetGamma 33
4.3.87	is_SetHardwareGain 33
4.3.88	is_SetHWGainFactor 33
4.3.89	is_SetImageMem 33
4.3.90	is_SetOptimalCameraTiming 33
4.3.91	is_SetRopEffect 34
4.3.92	is_SetSaturation 34
4.3.93	is_SetSensorScaler 34
4.3.94	is_SetSensorTestImage 34
4.3.95	is_SetSubSampling 34
4.3.96	is_SetTimeout 3
4.3.97	is_SetTriggerCounter 3
4.3.98	is_SetTriggerDelay 3
4.3.99	is_StopLiveVideo 3
4.3.100	is_UnlockSeqBuf 3
4.3.101	is_WaitEvent 3
4.3.102	is_WaitForNextImage 3

4.3.103 is_WriteEEPROM 358				
4.4 AVI Function Descriptions 359				
4.4.1 isavi_AddFrame				
4.4.2	isavi_CloseAVI	360		
4.4.3	isavi_DisableEvent	360		
4.4.4	isavi_EnableEvent	361		
4.4.5	isavi_ExitAVI	362		
4.4.6	isavi_ExitEvent	363		
4.4.7	isavi_GetAVIFileName	364		
4.4.8	isavi_GetAVIFileNameW	365		
4.4.9	isavi_GetAVISize	366		
4.4.10	isavi_GetnCompressedFrames	367		
4.4.11	isavi_GetnLostFrames	368		
4.4.12	isavi_InitAVI	369		
4.4.13	isavi_InitEvent	370		
4.4.14	isavi_OpenAVI	371		
4.4.15	isavi_OpenAVIW	372		
4.4.16	isavi_ResetFrameCounters	373		
4.4.17	isavi_SetFrameRate	374		
4.4.18	isavi_SetImageQuality	375		
4.4.19	isavi_SetImageSize	376		
4.4.20	isavi_StartAVI	377		
4.4.21 isavi_StopAVI				
4.5 Obs	solete Functions	379		
4.5.1	is_ConvertImage	382		
4.5.2	is_DisableDDOverlay	383		
4.5.3	is_EnableDDOverlay	384		
4.5.4	is_GetCameraType	385		
4.5.5	is_GetCaptureErrorInfo	386		
4.5.6	is_GetDC	388		
4.5.7	is_GetDDOvlSurface	389		
4.5.8	is_GetExposureRange	39(
4.5.9	is_GetGlobalFlashDelays	39´		
4.5.10	is_GetPixelClockRange	392		
4.5.11	is_HideDDOverlay	393		
4.5.12	is_LoadBadPixelCorrectionTable	394		
4.5.13	is_LoadImage	39		
4.5.14	is_LoadImageMem	390		
4.5.15	is_LoadParameters	398		
4.5.16	is_LockDDMem	40		
4.5.17	is_LockDDOverlayMem	40 ′		
4.5.18	is_PrepareStealVideo	402		
4.5.19	is_ReleaseDC	403		

4.5.20	is_ResetCaptureErrorInfo			
4.5.21	is_SaveBadPixelCorrectionTable			
4.5.22	is_SaveImage			
4.5.23	is_SaveImageEx			
4.5.24	is_SaveImageMem			
4.5.25	is_SaveImageMemEx			
4.5.26	is_SaveParameters			
4.5.27	is_SetAOI			
4.5.28	is_SetBadPixelCorrection			
4.5.29	is_SetBadPixelCorrectionTable			
4.5.30	is_SetBayerConversion			
4.5.31	is_SetBICompensation			
4.5.32	is_SetConvertParam			
4.5.33	is_SetDDUpdateTime			
4.5.34	is_SetEdgeEnhancement			
4.5.35	is_SetExposureTime			
4.5.36	is_SetFlashDelay			
4.5.37	is_SetFlashStrobe			
4.5.38	is_SetHwnd			
4.5.39	is_SetImageAOI			
4.5.40	is_SetImagePos			
4.5.41	is_SetImageSize			
4.5.42	is_SetIO			
4.5.43	is_SetIOMask			
4.5.44	is_SetKeyColor			
4.5.45	is_SetLED			
4.5.46	is_SetPixelClock			
4.5.47	is_ShowDDOverlay			
4.5.48	is_StealVideo			
4.5.49	is_UnlockDDMem			
4.5.50	is_UnlockDDOverlayMem			
4.5.51	is_UpdateDisplay			
4.6 Pro	gramming Notes			
4.6.1	Programming in C/C++			
4.6.2	Programming in C#			
4.6.3	Programming in VB.NET			
4.6.4	Programming in Delphi			
4.6.5	Programming with ActiveX			
4.6.6	Thread Programming			
4.7 List	S			
4.7.1	Complete List of All Return Values			
4.7.2	Error Codes of AVI Functions			
4.7.3	Linux: Not Supported Functions			

5	Specifications		
	5.1 N	Nodel Comparison	
	5.2 N	Nodel Naming Conventions	
	5.3 C	Camera and Sensor Data	
	5.3.	1 DCC1240x / DCC3240x	
	5.3.2	2 DCC1545M 4	
	5.3.3	3 DCC1645C 4	
	5.3.4	4 DCU223x 4	
	5.3.	5 DCU224x 4	
	5.4 Mechanical Specifications		
	5.4.′	1 DCU223x, DCU224x	
	5.4.2	2 DCC1240x 4	
	5.4.3	3 DCC3240x 4	
	5.4.4	4 DCC1545M, DCC1645C 4	
	5.4.	5 Flange Back Distance	
	5.4	.5.1 Calculating the Flange Back Distance	
	5.4	.5.2 Maximum Immersion Depth for Lenses	
	5.4.0	6 Position Accuracy of the Sensor	
	5.4.7	7 Filter Glasses	
	5.4	.7.1 Filter Types	
	5.4	.7.2 Mounting the Filter	
	5.4	.7.3 Cleaning the Filter Glasses	
	5.4.8	8 Ambient Conditions	
	5.5 C	Camera Interface	
	5.5. ⁻	1 DCU223x, DCU224x, DCC1240x	
	5.5	.1.1 I/O Connector - Pin Assignment	
	5.5	.1.2 Digital Input (Trigger) Circuit	
	5.5	.1.3 Digital Output (Flash) Circuit	
	5.5.2	2 DCC3240x	
	5.5	.2.1 I/O Connector Pin Assignment	
	5.5	.2.2 GPIO Interface	
	5.5	.2.3 Digital Input (Trigger) Circuit	
	5.5	.2.4 Digital Output (Flash) Circuit	
	5.5	.2.5 RS-232 Serial Interface	
	5.5.3	3 Camera EEPROM Specification	
	5.6 Accessories for DCx cameras		
	5.6.	1 Accessories for DCU22xX / DCC1240X	
	5.6.2	2 Accessories for DCC1x45X	
-	5.6.	3 Accessories for DCC3240x	
6	Арр	pendix 4	
	6.1 T	Froubleshooting/FAQ	
	6.1.	1 PCs with Energy Saving CPU Technology	

6.2	Status LED on USB DCx Cameras	
6.3	Color and Memory Formats	
6.4	uc480 Parameter File (ini file)	
6.5	Definition of IP Protection Classes	
6.6	History of uc480 Software Versions	
6.7	History of uc480 API Functions	
6.8	Thorlabs Worldwide Contacts	
6.9	Certifications and Compliances	
6.10	Thorlabs 'End of Life' Policy (WEEE)	
6.11	Warranty	
6.12 Exclusion of Liability and Copyright 522		

We aim to develop and produce the best solution for your application in the field of optical measurement technique. To help us to live up to your expectations and improve our products permanently we need your ideas and suggestions. Therefore, please let us know about possible criticism or ideas. We and our international partners are looking forward to hearing from you.

Thorlabs GmbH

Warning

Sections marked by this symbol explain dangers that might result in personal injury or death. Always read the associated information carefully, before performing the indicated procedure.

Attention

Paragraphs preceeded by this symbol explain hazards that could damage the instrument and the connected equipment or may cause loss of data.

Note

This manual also contains "NOTES" and "HINTS" written in this form.

Please read these advices carefully!

1 General Information

Thank you for purchasing a DCx camera!

You should first read the following chapters to get a quick overview on what is new in this software version and on getting started with your new camera.

Getting started

- DCx quick-start 54
- First steps to DCx Camera programming
- The <u>uc480 Viewer</u> 75 application

Further important information

- What is new in this version? 16
- <u>Contents</u> 15 of this Manual
- The DCx camera family 14
- Specifications 458

Enjoy your new DCx camera!

1.1 Safety

Attention

All statements regarding safety of operation and technical data in this instruction manual will only apply when the unit is operated correctly as it was designed for.

All modules must only be operated with proper shielded connection cables.

Only with written consent from Thorlabs may changes to single components be carried out or components not supplied by Thorlabs be used.

This precision device is only serviceable if properly packed into the complete original packaging including the plastic foam sleeves. If necessary, ask for a replacement package.

1.2 Ordering Codes and Accessories

DCU223M	CCD camera, monochrome, 1024x768 pixel, C mount
DCU223C	CCD camera, color, 1280x1024 pixel, C mount
DCU224M	CCD camera, monochrome, 1280x1024 pixel, C mount
DCU224C	CCD camera, color, 1280x1024 pixel, C mount
DCC1545M	CMOS camera, monochrome, 1280x1024 pixel, CS mount
DCC1645C	CMOS camera, color, 1280x1024 pixel, CS mount
DCC1240M	CMOS camera, monochrome, 1280x1024 pixel, C mount
DCC1240C	CMOS camera, color, 1280x1024 pixel, C mount
CAB-DCU-T1	Trigger cable for DCU22xX and DCC1240X cameras (Trigger In/Out)
CAB-DCU-T2	Trigger cable for DCU22xX and DCC1240X cameras (Trigger In only)
CAB-DCU-T3	I/O cable for DC3240 CMOS USB 3.0 cameras

Thorlabs C Mount Camera Lenses (objectives): See Thorlabs' website

1.3 Requirements

	Minimum ^{*1}	Recommended
CPU speed	600 MHz	2 x 2.4 GHz
Memory (RAM)	256 MB	2048 MByte
USB host controller	USB 2.0 high speed (480 Mbps) USB 3.0 (4000 Mbps) for DC3240x cameras	USB 2.0 high speed (480 Mbps) USB 3.0 (4000 Mbps) for DC3240x cameras Intel [®] or NVIDIA [®] nForce mainboard chipset
Graphics card	Onboard graphics chip	AGP/PCIe graphics card Latest version of Microsoft DirectX Runtime 9.0c
Operating system	Windows 7 32 or 64 bit Windows XP 32 bit (Service Pack 2) Linux (Kernel 2.6)	Windows 7 32 or 64 bit Windows Vista 32 or 64 bit (Service Pack 1) ^{*3} Windows XP 32 bit (Service Pack 3) Linux (Kernel 2.6)

For operating the DCx cameras, the following system requirements must be met:

*1 With the minimum system requirements the camera performance may be limited.

*3 DCC3240x USB 3.0 cameras are not supported under Windows Vista.

USB interface

- Onboard USB 2.0 ports usually provide significantly better performance than PCI and PCMCIA USB adapters.
- Current generation CPUs with energy saving technologies can cause bandwidth problems on the USB bus. See section <u>PCs with energy saving CPU technology</u> for hints and possible solutions.

Large multi camera systems

Connecting a large number of cameras to a single PC may require a large working memory (RAM). This is especially the case when many cameras with high sensor resolution are used.

If you want to set up such a system we recommend to use PCs with 64 bit operating systems and more than 4 GB of RAM.

Note

For DCx color cameras, the color conversion is done by software in the PC. When you use a color camera with a high frame rate, the conversion might lead to a high CPU load. Depending on the PC hardware used you might not be able to reach the camera's maximum frame rate.

Direct3D graphics functions

The uc480 driver can use Direct3D to display the camera image with overlay information (Microsoft DirectX

Runtime had to be installed). On Windows systems, you can use the supplied "DXDiag" diagnostic tool to check whether your graphics card supports Direct3D functions. To start the diagnostic tool, click "Run..." on the Windows start menu (shortcut: Windows+R) and enter "DXDiag" in the input box.

On the "Display" page of the diagnostic tool, click the button for testing the Direct3D functions.

OpenGL graphics functions

For OpenGL version 1.4 or higher must be installed. The OpenGL graphics functions do not work with QT under Linux.

Software Requirements under Linux

For operating the DCx camera under Linux the following components must be installed:

Component	Version
Linux-Kernel	2.6.9 up to 2.6.24
The standard C library libc/glibc	2.0 or higher
GNU Compiler Collection gcc	3.4 or higher
POSIX Thread Library (POSIX Threads Enabled libc)	-
bash or sh shell (for running the installation script)	-
Qt (for compiling the demo program)	-

1.4 DCx Camera Family

DCx cameras stand for a range of compact and cost-effective cameras for professional use in industrial, security and non-industrial applications. Equipped with the widely used USB 2.0 and particularly USB 3.0 ports, they can easily be interfaced with a vast variety of systems. The images are digitized in the camera and transmitted digitally to the PC. An additional frame grabber is not required.

DCU cameras have state-of-the-art CCD sensors while the DCC models are CMOS based. The CMOS models use either the global or the rolling shutter and method; the CCD models use only the global shutter method.

The DCx cameras are available as monochrome and color versions, DC3240 series has a NIR version as well. The <u>Model Comparison</u> 450 chapter shows the most important features of every series at a glance.

USB 3.0 DCC3240x CMOS Cameras

Compact, fast and lightweight. The new **DCC3240x.** The 29 x 29 x 29 mm small camera housing is not only ultra-compact, but due to its magnesium casing and a total camera weight of 43 g, it is also ultra-lightweight and robust. The powerful camera offers a bandwidth of 400 MByte/s via USB 3.0. Power is supplied via the USB bus, hence an extra power cable is obsolete.

With its lockable Micro USB connector the camera is perfectly suited even for rough environments. Offering trigger and flash as well as two GPIOs (General Purpose I/O), which can also be changed into a serial interface (RS232). Hence, peripheral devices can easily be triggered or controlled.

But also the camera's inner values are outstanding: brightness corrections are easily realized by a comfortable 12 bit lookup table and hardware gamma. 12 bit color depth offers a by factor 16 increased level of detail compared to the usual 8 bit. Hardware based data preprocessing saves additional CPU resources.

USB 2.0 DCC1240x (CMOS) and DCC22xX (CCD) Cameras

The **DCC1240X and DCC22xX** series feature a robust metal housing with a standard mini-B USB 2.0 connector. Connection is additionally possible via a lockable micro D-sub connector which also carries the opto-isolated I/O signals.

The USB 2.0 interface is meanwhile available in every standard PC and notebook/ laptop and provides a gross bandwidth of 480 Mbps. The camera is connected and powered through the USB port by just a single cable.

USB2.0 DCC1545M and DCC1645C Cameras

The **DCC1x45X** series features extremely compact cameras with high-speed CMOS sensors. The LE models are designed for professional use in non-industrial applications. Through the use of the widespread USB 2.0 technology, the cameras can easily be interfaced with a vast variety of systems. These cameras are available with a plastic housing with CS-mount lens adapter.

1.5 Contents

The DCx Camera Manual contains all the information you need for operating your DCx camera. It comprises the following parts:

Section A: Camera basics

• In this section you will find a lot of important information on the technical background of your USB camera. This section contains explanations on the DCx's <u>operating modes</u> 17), on <u>sensor technology</u> 23), important <u>camera</u> <u>parameters</u> 44), and the <u>USB</u> 51 interfaces. We recommend to read this chapter to become familiar with the general functionality of the DCx Cameras.

Section B: Operation

- Quick start 54 to using your DCxCamera
- Installing 56 and Using DCx Camera software 67 These sections show how to connect cameras and start operation using the software tools uc480 Camera Manager and uc480 Viewer.
- <u>Application notes by camera model</u> 63 This section explains special features and limitations of some camera models.

Section C: Programming

- First steps 127 to programming with your DCxCamera
- How to proceed 129

If you are not yet familiar with DCxCamera programming, we suggest that you first explore the basic functional flows in this chapter. The function blocks contain almost all the functions available for the uc480 API ordered by topics. The flowcharts help to easily find the appropriate API function for a certain task.

Description of functions 155/Description of AVI functions 359

These chapters cover all the functions of the uc480 API in alphabetic order.

The AVI functions for video recording are implemented by the uc480_tools.dll which is also included in the DCxCamera software package.

- <u>Obsolete functions</u> This chapter lists obsolote API functions and recommended alternatives.
- Lists and programming notes 454

In this chapter, you will find useful information on how to use the DCxCamera programming API. Programming environments, modes for DCxCamera color and image display as well as the automatic image control functions are discussed here.

Section D: Specifications

• <u>Specifications</u> 458 All information on the camera's <u>sensor and performance</u> 460, <u>mechanical</u> 472 as well as <u>electrical specifications</u>

All information on the camera's sensor and performance [460], <u>mechanical</u> [472] as well as <u>electrical specifications</u> [487] are contained in this section.

• <u>Accessories</u> [497] Here you will find a list of accessories for DCx Cameras sorted by model.

Appendix

- Information on <u>Troubleshooting</u> [499]
- Status LEDs on USB DCx 501 cameras
- <u>Color and memory formats</u>
- uc480 parameter file (ini file) 504
- Definition of IP protection classes

1.6 What's New in this Version?

Version 4.20 of the DCxCamera software package includes many new features and enhancements. The following table gives you an overview of the major new functions.

 $\label{eq:plass_make_sure to also read the file named {\tt WhatsNew.txt} which you will find in the C:\Program Files \Thorlabs\DCx Cameras\Help directory when the installation is completed. This file contains late-breaking information on new functions and fixed issues.$

New in Version 4.20

Cameras & functions	Described in chapter
CCD models with hardware revision 3:	Camera and sensor data 400
 Improved long time exposure function 	
 12 bit per pixel now also available for USB 2.0 cameras 	
More functions for the USB 3 DCC3240 camera series:	-
• Hot pixel corrections, color conversion, gamma and LUT are now integrated at the hardware level for DCC3240 models. This reduces PC load and further enhances color reproduction quality significantly.	
 An event/message indicates when the transfer speed changes from USB 2.0 to USB 3.0 and vice versa. 	
The is_Measure() function allows the measurement of the image sharpness in the current image. The sharpness is returned as a relative value. For this function a new camera demo is added.	is_Measure()
New color formats are added:	is_SetColorMode() 319
• IS_CM_RGB12_PACKED	Color and memory formats 502
• IS_CM_RGBA12_PACKED	
• IS_CM_BGR12_PACKED	
• IS_CM_BGRA12_PACKED	
• IS_CM_RGB8_PLANAR	
The following formats are renamed and the previous formats are moved to the uc480_deprecated.h header file:	
• IS_CM_BGR10V2_PACKED (new IS_CM_BGR10_PACKED)	
• IS_CM_RGB10V2_PACKED (new: IS_CM_RGB10_PACKED)	
 IS_CM_BGR555_PACKED (new: IS_CM_BGR5_PACKED) 	
The following formats are moved to the uc480_deprecated.h header file as they are identical to existing formats:	
• IS_CM_BAYER_RG8 (now: IS_CM_SENSOR_RAW8)	
• IS_CM_BAYER_RG12 (now: IS_CM_SENSOR_RAW12)	
• IS_CM_BAYER_RG16 (now: IS_CM_SENSOR_RAW16)	
New camera demos:	See separate manual for the uc480 samples
 Simultaneous opening of multiple cameras and sending a single software trigger (Multi-camera demo) 	
 Measuring of the image sharpness in an AOI of the current image (Measure sharpness demo) 	
In the is_AOI() function the IS_AOI_MULTI_MODE_AXES parameter was renamed to IS_AOI_MULTI_MODE_X_Y_AXES. The old parameter was moved to the uc480_deprecated.h header file.	<u>is_AOI()</u>

Older versions

See the <u>History of uc480 Software Versions</u> and <u>History of uc480 API functions</u> chapters.

2 Camera Basics

This chapter explains the basics of DCx Camera technology.

- Operating modes 17
- Image display modes 21
- Sensor 23
- Reading out partial images 34
- Digitizing images 39
- Camera parameters 44
- Firmware and camera start-up 46
- Digital inputs/outputs
- USB interface 5th

2.1 Operating Modes

DCx Cameras support the following operating modes:

- Freerun mode 17
- Trigger mode 19
- Standby 20

2.1.1 Freerun Mode

In freerun mode, the camera sensor captures one image after another at the set frame rate. Exposure and readout/ transfer of the image data are performed in parallel. This allows the maximum camera frame rate to be achieved. The frame rate and the exposure time can be set separately. The captured images can be transferred one by one or continuously to the PC. If trigger mode is active, you need to disable it before activating freerun mode.

Note

Note on the schematic diagrams: These illustrations show a schematic view of the image capture sequence. The sensor exposure and readout times and the transmission times depend on the camera model and settings. The pre-processing time depends on the API functions you are using (e.g. color conversion, edge enhancement).

For more information on flash timing see the Digital In-/Output (Trigger/Flash) 49 chapter.

Continuous mode (live mode)

Images are captured and transferred continuously. You can use the DCxCamera flash outputs.

* Flash function optional. See also Digital in-/output (trigger/flash) 49.

Note

In freerun mode the flash function starts with the second image as the setting of the flash timing depends on the finish of the first image. If you change the flash timing during operation, the freerun mode will restart. Therefore the first image after the change is black.

Single frame mode (snap mode)

The next image exposed by the sensor will be transferred. In this mode, flash is not making sense (only manually).

Freerun mode (snap mode)

See also:

- Basics: Shutter methods 30
- Basics: Trigger mode 19
- Basics: Applying new parameters 46

Programming:

Capture modes 134

2.1.2 Trigger Mode

In trigger mode, the sensor is on standby and starts exposing on receipt of a trigger signal. A trigger event can be initiated by a software command (software trigger) or by an electrical signal via the camera's digital input (hardware trigger).

This chapter describes the different trigger modes you can use with the DCx Cameras. To choose a mode, go to the <u>camera properties</u> 104 of the uc480 Viewer application or use the <u>API command</u>. 327

Note

Note on the schematic diagrams: These illustrations show a schematic view of the image capture sequence. The sensor exposure and readout times and the transmission times depend on the camera model and settings. The pre-processing time depends on the API functions you are using (e.g. color conversion, edge enhancement).

For more information on flash timing see the Digital In-/Output (Trigger/Flash) 47 chapter.

Software trigger mode

When this mode is enabled, calling the "Snap" function triggers the capture of an image, which is then transferred to the PC. If you call the "Live" function in this mode, the image capture is triggered continuously and images are transferred continuously.

Software trigger mode with continuous image capture

* Optional flash function. See also Digital input/output (trigger/flash) 47

Hardware trigger mode

When this mode is enabled, calling the <u>is_FreezeVideo()</u> (Snap) function makes the camera ready for triggering just once. When the camera receives an electrical trigger signal, one image is captured and transferred.

If you call the <u>is_CaptureVideo()</u> (Live) function, the camera is made ready for triggering continuously. An image is captured and transferred each time an electrical trigger signal is received; the camera is then ready for triggering again (recommended procedure).

Attention

When you use triggered image capture, the camera is only ready to process the next trigger signal after completion of the data transfer to the PC. Trigger events that occur during image exposure or data transfer are ignored. An internal counter records the number of ignored trigger events and can be read out from the PC.

DCx Cameras

* Optional flash function. See also Digital input/output (trigger/flash)

Frame rate in trigger mode

With many sensors, the maximum frame rate is lower in trigger mode than in freerun mode because these sensors expose and transfer sequentially. Which frame rate is possible in trigger mode therefore depends on the exposure time. The time required for capturing a frame in trigger mode can be approximated with the following formula:

 $t_{capture} = Current exposure time + (\frac{1}{max.frame rate})$

Example: At the maximum exposure time, the frame rate is about half as high as in freerun mode; at the minimum exposure time, the frame rate is about the same.

Freerun synchronization

This mode is currently not supported by DCx Cameras.

See also:

- Basics: Freerun mode 17
- Basics: Digital input/output (trigger/flash) 47
- uc480 Viewer: Trigger 103

Programming:

• Image capture modes: Trigger 134

2.1.3 Standby

DCx Cameras can be set to a power-saving standby mode. Standby mode switches off the sensor of CMOS cameras and the timing board of CCD cameras. The camera remains open in the software.

In standby mode, the camera cools down and the number of hot pixels visible when longer exposure times are used is reduced.

Standby is the default state when the camera is not open in the software. When you open the camera or switch to a different mode (freerun or trigger mode), the camera wakes up from standby mode.

Note

In standby mode, you can continue to use the camera's digital inputs or outputs.

2.2 Image Display Modes

The uc480 driver provides different modes for displaying the captured images on Windows systems. We recommend using the Bitmap mode or the Direct3D functions, depending on your specific application.

For a list of API functions for image display see <u>How to proceed: Image display</u> [13].

Attention

The "DirectDraw BackBuffer" and "DirectDraw Overlay Surface" display modes are obsolete. Please use the Direct3D functions instead (see also Obsolete functions 376).

1. Bitmap mode (Device Independent Bitmap, DIB)

In Bitmap mode, images captured by the DCxCamera are written to the random access memory of the PC. Programming the image display is up to the user. The application software uses the <u>is_RenderBitmap()</u> [297] function to initiate the image display by the graphics card. This may result in a slightly higher CPU load as compared to the Direct3D display.

The advantage of Bitmap mode is that it is compatible with all graphics cards and that image data in the memory is directly accessible. Programming of overlay functions is up to the user. Since the operating system controls the image display, the image may be completely or partly overlapped by other windows and dialog boxes.

2. Direct3D mode (only under Windows with DirectX)

In this mode, the uc480 driver writes the image data to the invisible area of the graphics card. This process runs automatically and does not have to be controlled by the application software. It requires an installed Direct3D driver, sufficient memory on the graphics card and Direct3D function support by the graphics card (see <u>System</u> requirements **56**). For this purpose, graphics cards generally provide better performance than graphics chips integrated on the mainboard. In Direct3D mode, the CPU load may be lower than in Bitmap mode. You can display overlay data and also scale the video image.

The Direct3D mode and the overlay functions can be configured using the <u>is_DirectRenderer()</u> API function.

OpenGL mode

OpenGL stands for Open Graphics Library and it is an interface specification for graphics hardware. Unlike Direct3D OpenGL is not only available under Windows but also under Linux and Mac OS, if OpenGL is supported by the graphics hardware. There are several implementations of OpenGL, such as e.g. NVIDIA[®] or AMD/ATI. The

implementations are always dependent on the graphics card manufacturer.

Comparison of the display modes

The following table illustrates the major differences between the display modes:

	Bitmap mode	Direct3D mode	OpenGL mode
Graphics card requirements	Low. No special graphics hardware required. Runs on all systems.	High. Graphics card has to support Direct3D. Does not run on all systems.	High. Graphics card has to support OpenGL.
Operating system	Windows, Linux	Only Windows with DirectX	Cross-platform
Programming effort	Greater. Memory management, event handling and display performed by the application.	Low. Memory management, event handling and display performed by DirectX.	High. OpenGL itself does not provide functions for opening windows or reading files. However, there are related libraries, e.g. GLUT.
CPU load	Slightly increased by copying of data.	Low. Display performed by graphics card.	Low. Display performed by graphics card.
Overlay functions	Not available. A simple overlay can be programmed by the user.	Integrated. Complex overlays can be displayed without flicker.	Integrated.
Access to image memory	Direct access possible. Image data already provided in user memory.	Possible using Steal Mode. Single images can be copied to the user memory.	Direct access to graphics card and image memory.

2.3 Sensor

- Sensor sizes 23
- <u>Micro lenses</u>
 ²⁴
- Color filter (Bayer filter) 26
- Hot pixels 28
- Shutter methods 30
- Line scan mode 33

2.3.1 Sensor Sizes

The size of a digital camera sensor is usually specified in inches. However, the specified value does not indicate the actual size of the active sensor area. The sensor size specifications date back to the formerly used tube systems: The curvature of the imaging surface of the camera tube caused distortions to the display, reducing the usable capture area of a 1" tube to a rectangle with a diagonal of 16 mm.

With the introduction of the semiconductor sensor technology, the dimensional specifications were taken over from tube systems. For this reason, a sensor whose active area diagonal measures 16 mm is specified as a 1-inch sensor. The following illustrations show the most common sensor sizes. The diameter in inch multiplied with 2/3 equals approximately the actual sensitiv area in millimeters.

Common sensor sizes (in inch)

Comparison of common sensor sizes and examples for different fields of view

The size of each single sensor cell (pixel) depends on the size of the active sensor area and the resolution. In general, less pixels over the same sensor area (or a larger sensor area with the same resolution) will result in

greater photo sensitivity of the sensor.

2.3.2 Micro Lenses

Micro lenses improve the fill factor

The fill factor is the percentage of the pixel area that is exposed to light during exposure. Ideally this would be 100 %. Since other elements are located on the sensor surface besides the light-sensitive photodiodes, this value may be reduced to approx. 30–50 %, depending on the sensor technology. The use of micro lenses compensates for this and increases the fill factor to 90 % or more. Micro lenses collect the light that falls onto a photocell, thus increasing the useable sensor area.

CMOS pixel design with Bayer filter (red) and micro lens

Micro lenses with CRA correction

Some sensors have micro lenses offset to the sensor edge. They compensate for shading created by obliquely incident light. The angle of incident light is called Chief Ray Angle (CRA), the micro lens offset is thus called CRA correction. The amount of micro lens shift is specified in degrees and refers to the micro lenses in the corners of the sensor.

Micro lenses without CRA correction

Image captured without CRA correction shows shading

Micro lenses with CRA correction

Image captured with CRA correction

Note

Using parallel light on sensors with CRA correction may cause slight color variations. These may occur, for example, if telecentric lenses are used. The following models are equipped with sensors with offset micro lenses:

- <u>DCC1240x/DCC3240x</u> 461
- <u>DCC1645C</u> 466

2.3.3 Color Filter (Bayer filter)

For technical reasons, digital image sensors can only detect brightness information, but no color information. To produce color sensors, a color filter is applied to each photocell (pixel). The arrangement of the color filters is illustrated in the following figure. Two out of every four pixels have a green filter, one pixel has a red filter and one has a blue filter. This color distribution corresponds to the color sensitivity of the human eye, and is called the Bayer filter pattern. With the help of the Bayer pattern the correct brightness and color information can be calculated for each pixel. Full sensor resolution is retained.

Bayer RGB filter pattern

Bayer conversion

A Bayer conversion, also referred to as de-Bayering, is carried out to determine the color information from the raw sensor data (raw Bayer). By default all DCx Cameras transmit the image data to the PC in raw Bayer format. The PC then uses the functions of the uc480 API to convert the image data to the color format you need for displaying or further processing the data.

To convert the colors, a filter mask moves over the image and calculates a color value for each pixel from the surrounding pixels. The uc480 API provides two filter masks that differ in image quality and CPU load.

- Normal Quality (Mode IS_CONV_MODE_SOFTWARE_3x3/IS_CONV_MODE_HARDWARE_3x3) A smaller filter mask is used for conversion. This algorithm has a low load on the CPU. The filter's averaging function may cause a slight blur. Noise is reduced. This filter is recommended for image processing tasks.
- High Quality (Mode IS_CONV_MODE_SOFTWARE_5x5) A large filter mask is used for conversion. This algorithm offers very accurate color positioning and an increased level of detail. The CPU load is higher than with the normal filter. This filter is recommended for visualization applications.

Note

Software conversion with high quality should only be used for sensors whose green pixels have the same sensitivity. This applies to the following sensors:

- DCU223C / DCU224C
- DCC1240C, DCC3240C

For all other sensors, we recommend using the standard filter mask.

Bayer conversion using the standard mask

See also:

- Color conversion: <u>is_SetColorConverter()</u> [317]
- uc480 Viewer: Format 99

2.3.4 Hot Pixels

Definition

Hot pixels (or in a broader sense, defective pixels) are pixels that do not react linearly to incident light – or do not react at all. They occur for various reasons, such as contamination during sensor production or sensor age, and with both CCD and CMOS sensors. CCD sensors generally have fewer hot pixels than CMOS sensors under the same operating conditions. With darkened sensors and prolonged exposure times, hot pixels are visible as individual bright dots in the image. The following factors promote the occurrence of hot pixels:

- Long exposure times
- · High gain settings
- High sensor operating temperature

Hot pixels detected in a monochrome camera

Hot pixels detected in a color camera

Hot pixel correction

During the manufacture of our cameras, all sensors that will be used in DCx Cameras are checked for hot pixels. In the process, images are taken with a darkened sensor and long exposure times. Pixels with a brightness higher than a specific value are classified as hot pixels. A list of the coordinates of each hot pixel is stored in the camera EEPROM. The hotpixel correction is done in the uc480 driver. However, some sensors also provide an internal hotpixel correction.

The maximum number of hot pixels stored in a DCx camera is:

DCx model	max. hot pixels stored
DCC1240x, DCC1545M, DCC1645C, DCC3240x (CMOS)	768
DCU223x, DCU224x (CCD)	20

How many hot pixels are on the camera's internal list depends above all on the defined threshold values. It is not an indication of the quality of the sensors used.

When you enable the "Hotpixel correction" function in the DCx software, the software automatically corrects the hot pixels in the captured image by calculating the average from the brightness value of two neighboring pixels. When using color sensors, the hot pixel is corrected with the appropriate color in raw Bayer format, i.e. before color conversion. The correction does not work with activated subsampling and binning factors greater than 2x.

Note

The sensors are tested during manufacturing also for cold pixel and dead pixels. Sensors with dead pixel clusters (more than two neighboring defective pixels of the same color) are rejected by our quality control. When the camera is operated in very warm ambient conditions, other defective pixels can occur, however.

Defining additional hot pixels

If additional hot pixels occur during use of the camera, you can add them to the camera's internal hot pixel list. To do this, use the API function given below.

See also:

- uc480 Viewer: <u>Hot pixel correction</u>
- uc480 Hotpixel Editor 123
- Programming: is_HotPixel() [260]

2.3.5 Shutter Methods

- Global shutter 30
- Rolling shutter 3
- Rolling shutter with global start 32

Note

Note on the schematic diagrams: These illustrations show a schematic view of the image capture sequence. The sensor exposure and readout times and the transmission times depend on the camera model and settings. For more information on flash timing see the Digital In-/Output (Trigger/Flash) (47) chapter.

General

The image is recorded in the sensor in four phases:

- · Reset pixels of the rows to be exposed
- Exposure of pixel rows
- Charge transfer to sensor
- Data readout

The sensor cells must not be exposed during the readout process. The sensors of the DCx Cameras have no mechanical shutters, but work with electronic shutter methods instead. Depending on the sensor type, either the rolling shutter method or the global shutter method is used.

Global shutter

On a global shutter sensor, all pixel rows are reset and then exposed simultaneously. At the end of the exposure, all rows are simultaneously moved to a darkened area of the sensor. The pixels are then read out row by row.

Exposing all pixels simultaneously has the advantage that fast-moving objects can be captured without geometric distortions. Sensors that use the global shutter system are more complex in design than rolling shutter sensors.

All CCD sensors as well as some CMOS sensors use the global shutter method.

Global shutter sensor in live mode

* Optional flash function. The start time and duration are defined by the flash delay and duration parameters (see also <u>Camera settings: I/O</u> [104]).

Rolling shutter

With the rolling shutter method, the pixel rows are reset and exposed one row after another. At the end of the exposure, the lines are read out sequentially. As this results in a time delay between the exposure of the first and the last sensor rows, captured images of moving objects are distorted.

Example for the rolling shutter effect with a moving car

To counteract this effect, the DCx Camera software provides a global flash window where you set the time by which flash activation is delayed. You can also specify the flash duration. This allows implementing a global flash functionality which exposes all rows of a rolling shutter sensor simultaneously.

Rolling shutter sensors offer a higher pixel density compared to global shutter CMOS sensors. The rolling shutter system is used in DCC Cameras with high-resolution CMOS sensors.

Note

Some CMOS senors with global shutter can be operated also with rolling shutter. The operation in the rolling shutter mode is used to reduce the image noise. This function is only supported from the camera models $\underline{DCC1240x/DCC3240x}$

Rolling shutter sensor in live mode

Rolling shutter sensor in live mode with global flash window

Rolling shutter sensor in triggered mode with global flash window

* Optional flash function. The start time and duration are defined by the flash delay and duration parameters (see also Camera settings: I/O (104)).

Rolling shutter with global start

Some rolling shutter sensors also provide a global start mode, which starts exposure of all rows simultaneously (see illustration). For best results, use a flash for this mode. No light is allowed to fall on the sensor outside the flash period because otherwise the image brightness will be distributed unevenly.

Rolling shutter sensor in trigger mode with global start function

* Optional flash function. The start time and duration are defined by the flash delay and duration parameters (see also <u>Camera settings: I/O</u> 104).

2.3.6 Line Scan Mode

Area scan sensor (matrix)

The sensors of area scan cameras have a matrix of many (usually between several hundred and several thousand) rows and columns of pixels. State-of-the-art area scan sensors use only square pixels with a consistent pixel pitch.

Area scan cameras are suitable for applications in which stationary or moving objects should be captured as completely as possible in one image capture.

Line scan mode

In some applications, however, it is necessary to read out and transfer only one sensor line instead of the entire sensor area. This applies, for example, to endless web inspection systems. These systems often use line scan cameras for this reason. Their sensors have only one pixel row, which they can read out at very high speeds in the kilohertz (kHz) range. Some DCxCamera models have area scan sensors that optionally also offer a line scan mode. This mode can read out any pixel row of the sensor at high speed.

There are two line scan modes to distinguish:

• Fast line scan

In this mode, the sensor achieves very high line scan rates. Several hundred to thousand lines are combined and transferred in one frame. The camera can be triggered on the beginning of a frame, but not on each individual line. You can choose any line of the area scan sensor for the line scan mode. Color images are not supported in this mode because Bayer color sensors 26 need at least two neighboring lines for color calculation.

• Triggered line scan

In this mode, the sensor achieves lower line scan rates than in fast line scan mode. The camera can be triggered on each individual line. Several hundred to thousand lines are combined and transferred in one frame. Color images are possible in this mode because Bayer color sensors can use two lines.

Note

The line scan mode is currently only supported by the monochrome <u>DCC1240M and DCC3240M,N</u> [46] models in form of the fast line scan mode. The triggered line scan mode is not supported by any camera model yet.

See also:

• uc480 Viewer: Properties > <u>Shutter</u>

Programming:

• Function: <u>is_DeviceFeature()</u> 192

2.4 Reading Out Partial Images

The camera sensors have defined resolutions which are given as the number of pixels (width x height). However, for some applications it may be necessary to read out only a selected part of the sensor area or to reduce the local resolution. For this purpose, the DCx Cameras provide various functions:

- Area of interest (AOI) 34
- Subsampling 37 (skipping) pixels
- Binning 38 (combining) pixels

These functions reduce the amount of data to be transferred and thus allow you to increase the frame rate considerably, depending on the camera model.

2.4.1 Area of Interest (AOI)

Using this function, you can set the size and position of an area of interest (AOI) within an image. In this case, only data included in this AOI will be read out and transferred to the computer. The smaller partial image enables the camera to use a higher frame rate.

For information on the AOI position grid and the frame rates that your camera model can achieve with AOI, see the model specifications in the Camera and sensor data achieve camera achieve camera and sensor data achieve camera achieve camera

AOI readout on monochrome sensors

AOI readout on color sensors

Note

Step widths for AOI definition (position grid): The available step widths for the position and size of image AOIs depend on the sensor. The values defining the position and size of an AOI have to be integer multiples of the allowed step widths.

For details on the AOI grids of the individual camera models, please see <u>Camera and sensor data</u> and click a camera model.

Please note that, after defining an AOI, the resulting image may be darker if the camera cannot maintain the originally set exposure time due to the increased frame rate.
Multi AOI

The Multi AOI function allows defining more than one AOI in an image and transferring these AOIs all at the same time. Only DCC1240x models support this feature. In the Multi AOI mode you can define two or four AOIs in one image and transfer them simultaneously. The AOIs are positioned side by side or one below the other, and share the same X or Y axis.

Sequence AOI mode

Apart from the multi AOI mode, DCC1240x and DCC3240x also support the <u>sequence AOI mode</u>. This mode allows to define up to four AOIs, which need to have the same size but may differ in position, exposure time or gain settings.

🗠 uc480Viewer - C1280G12C - ID: 1 - SerNo.: 4002800473	- • •
File Edit View uc480 Draw/Measure Profiles Help	
°F °F 💁 🗇 🕎 🌑 🗔 🎞 🗔 💽 🖳 🔩 🖾 📼 📼	🚺 🔩
ADI: 2, cycle: 35 uc480Viewer - C1280G12C - ID: 1 - SerNo.: 4002800473	Î
Info Camera Image Size Format Color Trigger Input / Output AES / AGC AWB Miscellaneous Multi AOI Sequence AOI Shutter	
A011	
124 Wiam 210	
Number of used AOIs 4 Current AOI AOI 3	
Automatic copying of the AOI 1 image parameters	
Snow AU Index in Image	
0 1064	
Y position 562 *	
Exposure time	
0.009 ms 23.048 ms	
A Master gain 0 v v	
Readout cycles 50 💭	
V 2.30	
BGRA8 (216 x 228) Frames: 23913 Display: 22775 Missed: 0 Failed: 0 Recon: 0 Transfer: OK	FPS: 32.02

uc480 Viewer - sequence AOI mode

See also:

- uc480 Viewer: <u>Size</u> 97
- uc480 Viewer: Multi AOI
- uc480 Viewer: <u>Sequence AOI</u>
- Programming: <u>is_AOI()</u>

2.4.2 Subsampling

Subsampling is a technique that skips multiple sensor pixels when reading out image data. This reduces the amount of data to be transferred and enables higher camera frame rates. The captured image has a lower resolution but still the same field of view compared to the full-resolution image. This mode can be used as a fast preview mode for high-resolution cameras.

Color subsampling as performed by most color sensors skips pixels while maintaining colors (see illustration). For some monochrome sensors, the camera also performs color subsampling, resulting in slight artifacts.

Monochrome sensors and some color sensors ignore the Bayer pattern and the color information gets lost (mono subsampling).

Depending on the model, DCx Cameras support different subsampling factors. Subsampling of horizontal and vertical pixels can be enabled independently.

The <u>Camera and sensor datas</u> the subsampling methods and factors supported by each camera model.

Subsampling on monochrome sensors

Subsampling on color sensors

2.4.3 Binning

Binning is a function that averages or adds multiple sensor pixels to obtain a single value. This reduces the amount of data to be transferred and enables higher camera frame rates. The captured image has a lower resolution but still the same field of view compared to the full-resolution image. This mode can be used as a fast preview mode for high-resolution cameras.

Color binning, as performed by most color sensors, combines only pixels of the same color (see also the <u>Color filter</u> (<u>Bayer filter</u>) as performs color binning, resulting in slight artifacts.

Most monochrome sensors and some color sensors combine neighboring Bayer pattern pixels; in this case, the color information gets lost (mono binning).

With CCD sensors, binning makes the images brighter because the pixel values are added up. With CMOS sensors, pixel values are usually averaged; this reduces image noise.

Depending on the model, DCx Cameras support different binning factors. Binning of horizontal and vertical pixels can be enabled independently.

The <u>Camera and sensor data</u> chapter lists the binning methods and factors the individual camera models support.

Binning on monochrome sensors

Binning on color sensors

2.5 Digitizing Images

- Characteristics and LUT 39
- Bit depth and digital contrast adjustment 41

2.5.1 Characteristics and LUT

When perceiving or imaging a scene, the form of the imaging characteristic is crucial for displaying the differences in brightness. With image processing (e.g. applications such as edge detection and character recognition), linear characteristics are generally required. The human eye, on the other hand, perceives differences in brightness based on a logarithmic characteristic, which often approximates a gamma characteristic in practice. All three forms will be shown in the following.

Linear characteristic

If a system (e.g. a camera with a conventional CCD sensor) yields double the output value for double the brightness, the system features a linear characteristic:

Gamma characteristic

Gamma characteristics (or gamma curves) are named after the Greek formula symbol $\$. Gamma curves are power functions of the form

 $y = x^{\frac{1}{\gamma}}$

and are often used in photography or image display on computer screens. A gamma value of 1 generates a linear characteristic again. A curve with the value = 2.2 used for computer screens is shown in the figure below.

Such a gamma characteristic brightens dark areas of an image, which corresponds more to the perception of the human eye. In light areas of an image, the differences in brightness are condensed for this.

Image with gamma characteristic

Logarithmic characteristic

The effect of the logarithmic characteristic is even stronger. Here, the characteristic follows the function

 $y = \lg(x)$

The following diagram illustrates how very large jumps in brightness in light areas of a scene only cause small changes in image brightness. This explains why image sensors with a logarithmic characteristic, in particular, are ideal for imaging scenes with very high dynamic range.

Lookup table (LUT)

With a lookup table (LUT) it is easy to apply characteristic curves to digital images. A LUT is a table which assigns an output value to every possible input value. The figure below shows a LUT which would binarize an image: For an 8 bit image, for example, this LUT would replace all pixels with gray values 0...127 with value 0 and all pixels with gray values 128...255 with value 255.

Using LUTs has the advantage that calculations can be done very fast. Typical applications of LUTs are enhancing image contrast, or gamma characteristics.

LUT characteristic for binarizing an image

2.5.2 Bit Depth and Digital Contrast Adjustment

Digitizing

Image sensor pixels first generate an analog voltage signal proportional to the amount of light that strikes them. The image is digitized for further processing, i.e. the stepless signal is converted to a digital numerical value. The following figure shows this using a gray gradient as an example

Various bit depths using a gray-scale gradient as an example

If the stepless gradient is imaged in a digital range in 2 bits, for example, the result is $2^2 = 4$ levels; for 4 bits, it is $2^4 = 16$ levels, and so on. The intermediate brightness values of the original gradient are irreversibly lost after digitization.

With around 200 levels or more, the jumps in brightness can no longer be discerned with the eye, which is why current monitors and digital cameras use 8 bits (256 levels) per color channel (fully adequate for visualization).

Bit depth in image processing

If digital image data undergoes further image processing, a bit depth greater than 8 may be necessary. The computer is able to differentiate between these very fine differences in brightness (no longer discernable by the eye) and process them. This is why industrial cameras often use 12 bits.

Bit depth	Brightness levels
8	2 ⁸ = 256
10	2 ¹⁰ = 1024
12	2 ¹² = 4096
14	2 ¹⁴ = 16.384

Note

Greater bit depths require extremely low-noise image sensors, however. As soon as the differences in brightness created by noise are greater than the digitization levels, no further data is gained.

Bit depth by sensors

Platform	USB 2.0	USB 3.0
CMOS sensors	8 bit	10 bit
CCD sensors	8 bit	-

Note

Color formats with a bit depth of more than 8 bits per channel are only supported by USB 3 DCC3240x camera models. Using color formats with higher bit depth increases the bandwidth used by a camera.

Histogram and contrast

The brightness distribution of digital images is represented in a histogram. If an image has optimum contrast, the histogram includes practically all brightness values between 0 and the highest value (255 in 8-bit images). If an image has low contrast, the histogram only includes a small number of the values; the image appears dull:

Image capture and histogram with minimal contrast (le.) and with optimum contrast after a contrast adjustment (ri.)

For improved display on the screen or when printed, the histogram can be spread to optimally utilize the possible brightness levels. For this purpose, the dark parts of the image are further darkened via an LUT characteristic and the light parts of the image are brightness. Thus the human eye can better differentiate between the different brightness levels; the image has more contrast.

It must be noted, however, that subsequent processing with a computer will not yield more data. Therefore, subsequent contrast adjustment via software is not necessary for use in image processing. The computer can differentiate between the differences in brightness without contrast adjustment.

Advantage of greater bit depth with contrast adjustment

The bit depth in the output image is crucial for contrast adjustment. The following figures illustrate this. In the first example the 8 bit output image contains fewer than 100 brightness levels, as there are no dark or very bright parts. The image is low-contrast.

With a contrast adjustment, the values of the histogram are spread in such a way as to create a contrast-rich image. The fewer than 100 brightness values are now distributed across levels 0 to 255; gaps arise in the histogram and are visible as jumps in brightness in the resulting image.

The second example shows the same output image with a 10 bit bit depth right at the time of capture. This image also has low contrast, as it features only average brightness values. The greater bit depth allows the brightness

values of the image to be imaged over 500 different digital levels, however. The entire histogram includes 1,024 values in the 10 bit image (in contrast to 256 values with 8 bits).

This means that a contrast adjustment can now be made for screen display without a reduction in quality. The 500 values of the output image are distributed over the 256 values of the 8-bit target image in such a way that optimum contrast is the result. The large number of output values means that there are no gaps in the histogram.

Note

This type of contrast adjustment can already be done in the camera when an image is digitized in 10 bits and transferred in 8 bit. In this case, optimum utilization of the 8 bit data is also important for image processing.

2.6 Camera Parameters

- Pixel clock, frame rate, exposure time 44
- Gain and offset
- Automatic image control 45
- Applying new parameters 46

2.6.1 Pixel Clock, Frame Rate, Exposure Time

Pixel clock

The basic parameter for camera timing is the pixel clock. It determines the speed at which the sensor cells can be read out.

Attention

We recommend not setting the pixel clock any higher than necessary to achieve the desired frame rate.

An excessive pixel clock can cause delays or transmission errors. If the data is read from the sensor at a higher speed (high pixel clock), you will also need a faster transmission over the data connection. Thus, by controlling the pixel clock, you can also influence the bandwidth required for a camera.

The pixel clock influences the connected load and consequently the temperature inside the camera.

Frame rate

The possible range of settings for the frame rate depends on the currently selected pixel clock. You can select a lower frame rate without changing the pixel clock. To set a higher frame rate, however, you need to increase the pixel clock.

Exposure time

The exposure time depends on the currently selected frame rate and is preset to its reciprocal value. You can select a shorter exposure time without changing the frame rate. To set a longer exposure time, however, you need to reduce the frame rate.

Note

The increments for setting the exposure time depend on the sensor's current timing settings (pixel clock, frame rate). The exposure time values are rounded down to the nearest valid value, if required. For this reason, the actual exposure time can deviate slightly from the exposure time you have selected.

See also:

- uc480 Viewer: Camera 93
- is_PixelClock() 294
- is_SetFrameRate() 329
- is_Exposure() 216

2.6.2 Gain and Offset

Gain

In digital imaging, a voltage proportional to the amount of incident light is output by the sensor. To increase image brightness and contrast, this signal can be amplified by an analog gain and offset before the digitizing process. The results of analog signal processing are usually better than the results of digital post-processing.

Analog amplification of the read-out pixel values increases overall image brightness and contrast. Depending on the sensor type, a global gain value for all pixels (master gain) or a separate gain value for each color (RGB gain) can be set.

Note

Using Sensor Gain: A signal gain will also result in a noise gain. High gain settings are therefore not recommended.

We suggest the following gain settings:

1. Enable the Gain boost [95] function (is_SetGainBoost() [33]).

2. If required, adjust the gain setting with the master gain control.

Note

Linearity of sensor gain: You can set the gain factor in increments from 0 to 100.

- For CCD sensors the gain increases usually not linear but disproportionate.
- For CMOS sensors the gain increases linear. Some sensors have only 32 or fewer levels, so not each step is assigned to a level.

The maximum gain factor settings also vary from sensor to sensor (see Camera- and sensor data 460).

Offset

Every digital image sensor has light-insensitive cells next to the active image area. These dark pixels are used to measure a reference voltage (black level) which is subtracted from the image signal. This compensates thermally generated voltages on the sensor which would otherwise falsify the signals.

Normally, the sensor adjusts the black level automatically. If the environment is very bright or if exposure times are very long, it may be necessary to adjust the black level manually.

2.6.3 Automatic Image Control

The uc480 driver provides various options to automatically adjust the image capture parameters to the lighting situation. These include:

- Auto exposure shutter (AES)
- Auto gain control (AGC)
- Auto white balance (AWB)
- Auto frame rate (AFR)

The auto functions are used to adjust the average brightness and color rendering of the camera image to their setpoint values, while trying to keep the frame rate at the highest possible value.

All controls are configured using the is SetAutoParameter() [303] SDK function.

Auto exposure shutter (AES)

The control of the average brightness is preferably achieved by adjusting the exposure, i.e. you set the highest possible exposure time before gain is controlled. The auto exposure feature always uses the current exposure range which results from the selected pixel clock frequency and the frame rate. You can set separate control range limits for exposure and gain.

Auto gain control (AGC)

The auto gain feature controls the camera master gain in a range from 0-100 %. You can set separate control range limits for exposure and gain.

Auto frame rate (AFR)

With the exposure control function enabled, you can still change the frame rate manually or automatically to maintain a dynamic exposure control range. A lower frame rate allows for longer exposure times, but then the live image display may exhibit jitter. The objective of the automatic frame rate control is to set the frame rate to an optimum value. This way, in all situations, the automatic exposure control can use the required control range at the highest possible frame rate.

Auto white balance (AWB)

Depending on the lighting source, light can have different color temperatures so that the images may have a color cast. At low color temperatures (e.g. light from incandescent lamps), the white content is offset towards a red hue. At high color temperatures (e.g. light from fluorescent lamps), the white content is offset towards a blue hue.

The white balance control feature uses the RGB gain settings of the camera to correct the white level. This is achieved by adjusting the gain controls within the 0-100 % range until the red or blue channel matches the average brightness of the green channel. In order to manually influence the color rendering, you can adjust the setpoint values for the red and blue channels relative to the green channel by using an offset value (see also <u>uc480 Viewer:</u> <u>Histogram</u> 86).

Automatically disabling the control function

You can disable the control functionality automatically once the target value has been reached (approximately) and after 3 regulations no improvement has been reached (API parameters IS_SET_AUTO_WB_ONCE and IS_SET_AUTO_BRIGHTNESS_ONCE). An event/a message notifies the system of this (see also is_InitEvent())

DCx Cameras

[276]). Alternatively, you can keep the control feature enabled so that it responds to deviations from the target value.

Control speed

You can set the auto function speeds in a 0–100 % range. This influences the control increments. High speed (100 %) causes a little attenuation of a fast-responding control and vice versa. The control functions for average brightness and for color rendering use separate speeds.

In trigger mode, every frame is evaluated for automatic control. The freerun mode skips a number of frames by default because in that mode, changes to the image parameters only become effective after one or more image captures (see also <u>Applying new parameters</u> 46). With the "Skip Frames" parameter (API parameter IS_SET_AUTO_SKIPFRAMES), you can select how many frames should be skipped in freerun mode (default: 4). This parameter strongly influences the control speed. Choosing small values can destabilize the automatic control.

Note

For higher frame rates select for the "Skip frames" parameter a bigger value. This reduces the number of automatic adjustments that must be done by the camera.

Hysteresis

The automatic control feature uses a hysteresis function for stabilization. Automatic control is stopped when the actual value lies in a range between (setpoint - hysteresis value) and (setpoint + hysteresis value). It is resumed when the actual value drops below (setpoint - hysteresis value) or exceeds (setpoint + hysteresis value). If the hysteresis value is increased, the control function will stop sooner. This can be useful in some situations.

See also:

• is_SetAutoParameter()

2.6.4 Applying New Parameters

New capture parameters (such as exposure time or gain settings) can be transferred to the camera via software at any time. Depending on the operating mode, these settings will not always be immediately effective for next image, however.

• Freerun mode

In freerun mode, the camera is internally busy with capturing the next image while new parameters are transmitted to the camera. Depending on the exact time of transmission, new parameters might only come into effect two or even three images later.

• Trigger mode

In this mode, the camera reverts to idle state between two images. When you change the camera parameters, the new settings will be applied immediately to the next image.

2.7 Firmware and Camera Start

Every DCx camera has its own firmware that handles internal processes in the camera. The camera firmware varies from model to model.

USB DCx Cameras have a two-tier firmware that is uploaded to the camera each to you connect it to a PC:

1. Common firmware (uc480 boot)

The general firmware identifies what camera model you have connected, and uploads the corresponding firmware.

- 2. Model-specific firmware (e.g.: uc480 DC1240x series)
- The model-specific firmware is named after the camera type and provides the functions of the relevant model.

Note

When you connect a USB DCxCamera with a Windows PC or a new USB port for the first time, it is detected as a new device. This is normal standard behavior of the operating system.

The USB DCx Cameras firmware is part of the driver. The automatic upload always loads the firmware that matches the driver installed in the camera.

2.8 Digital Inputs / Outputs

All DCx cameras (see <u>Model comparison</u> [459]), except DCC1545M and DCC1645C, come with opto-isolated inputs/ outputs that can be used for triggering the camera and for flash control. DC3240x cameras have in addition general purpose I/Os (GPIO). Use of the GPIOs for flash control is possible to a certain degree. External triggering via the GPIO is not supported.

See also:

- Basics: <u>Trigger mode</u> 19
- uc480 Viewer: Input/output
- Specification: Electrical specifications 487

Programming:

• <u>is_IO()</u> 280

2.8.1 Using Digital Inputs/Outputs

Digital input (trigger)

Models with optocoupler input can use the digital input for externally triggering the image capture, or query the applied signal level.

In trigger mode 19, a digital signal is applied to the camera's input. You can determine whether the camera will respond to the rising or falling edge of the digital signal. After an internal delay, the sensor is exposed for the defined exposure time. The captured image is then transferred to the PC.

On models with general purpose I/Os (GPIO), you can query a voltage level at these inputs (TTL compatible).

Digital output (flash)

The digital outputs can be used in both freerun mode and trigger mode. You can synchronize the output level to the exposure time or set it statically.

Models with optocoupler output allow control of a DC voltage applied to the output. This allows controlling a flash, either directly or via a separate flash controller unit. Models with general purpose I/Os (GPIO) can output a voltage at these outputs (TTL compatible).

Note

Please read the notes on I/O wiring for your camera model in the <u>Electrical specifications</u> 437 chapter.

Note

The settings specified for the digital output will be reset when the camera is disconnected from the PC or the PC is powered down.

2.8.2 Flash Timing (Trigger Mode)

When using the digital output for flash control, you can set the delay and the duration of the flash. The flash timing can be adjusted manually or automatically by the camera driver.

Note

Sensor latency and delay times The sensor latency is due to a number of technical factors, including sensor type, image geometry, pixels clock and, with CCD sensors, the exposure time. The latency is constant for a specific combination of parameters.

Trigger delay [352], flash delay and flash duration [429] are optional and can be set by software.

The following illustrations show a schematic view of the image capture sequence. The sensor exposure and readout times and the transmission times depend on the camera model and the current parameter settings.

Automatic flash

If flash delay = 0 and flash duration = 0, the flash signal is automatically synchronized to the exposure time. The automatic flash feature has the advantage that the flash is synchronized automatically if the settings for image geometry or camera timing are changed. The disadvantage is that the flash signal is active slightly longer than the exposure time. The flash duration with automatic flash is longer for rolling shutter sensors than for global shutter sensors.

Manual flash synchronization

If one of the flash delay or flash duration parameters is set to a value greater than 0, you can shift the flash signal to any point in the exposure time or change its duration. In this case, the flash delay will be calculated exactly from the start of the exposure time (after the sensor latency time). When manually synchronizing the flash signal to the exposure time, you can use the $is_{10}()$ function to query the data you need.

The advantage of manual flash synchronization is that the flash can be precisely controlled based on the start of exposure. This applies to both rolling and global shutter sensors. You can thus achieve a higher accuracy with the manual flash synchronization than with the automatic flash feature.

The disadvantage is that the flash signal has to be resynchronized whenever any settings for image geometry or camera timing change.

Note

With rolling shutter sensors, you can avoid the rolling shutter effect 3^{\uparrow} by selecting suitable delay and duration settings (global flash function). Using <u>is_IO()</u>, you can query the appropriate values.

Note

The flash output is reset with the start of the next image capture. This also applies if you have set a longer flash duration.

2.8.3 Flash Timing (Freerun Mode)

Automatic flash

In freerun mode, the automatic flash feature works in the same way as in trigger mode. As a result, the flash output is continuously or almost continuously active (see illustration below).

Manual flash synchronization

Note

It is recommended to synchronize the flash manually in freerun mode. This applies to both rolling and global shutter sensors.

In freerun mode, the manual flash synchronization works in the same way as in trigger mode.

Flash timing in freerun mode with global shutter sensor, manual flash

2.8.4 Serial Interface RS-232 (DC3240x only)

DC3240x cameras are equipped with a serial interface (RS-232). It provides functionality for communication with peripheral devices (e.g. lighting controller, lens controller or the serial port of a PC). Before you can send data through the camera's serial interface, one or more virtual COM ports have to be defined on the PC. Once defined, they can be used for data communication with appropriate software just like any physical COM port.

To set up and use the serial interface, the <u>"Additional functions"</u> dialog box is provided in the uc480 Camera Manager. For the serial interface specifications, please refer to the <u>DC3240x Serial Interface Wiring (RS-232)</u> (495) chapters.

2.9 USB Interface

- History and development 51
- Structure and topology 5
- USB 2.0 cabling and connection 52
- USB 3.0 cabling 52
- Data transmission and bandwidth 53

2.9.1 History and Development

The **Universal Serial Bus** (USB) is an interface which enables you to easily connect various devices to a PC. As all data exchange is controlled by the PC, no additional interface controller is needed. Further advantages of USB are:

- The PC does not have to be shut down when connecting USB devices (hot plugging).
- USB devices can be supplied with power from the PC.
- High bandwidth for data transmission.

The USB standard was developed by a group of companies including Compaq, IBM, Intel, and Microsoft. Version 1.0 was presented in 1995. The slightly faster USB 1.1 standard followed in 1998.

At first, the USB interface was designed to connect peripheral devices such as printers, mice, or keyboards. With the introduction of USB 2.0 in 2000, the transfer rate increased to 480 Mbit/s, making USB 2.0 suitable for connecting devices with higher data volumes (such as mass storage devices, scanners, or cameras).

In 2008, with USB 3.0 a new version of the interface has been published, which is significantly faster than USB 2.0 (400 MByte/s).

2.9.2 Structure and Topology

USB uses a tree topology and is host-controlled. That means that a PC with host functionality is mandatory for using USB. Therefore, it is not possible to directly connect two USB devices (with the exception of USB on-the-go compliant devices). Neither is it possible to connect a camera to a PDA device.

Theoretically, 127 devices can be connected to a host controller. Using external hubs or repeaters, even more devices can be connected, and from a greater distance. Provided that a maximum of 5 hubs/repeaters may be daisy-chained, USB devices can be connected in up to seven levels.

Note

The maximum bandwidth of 480 Mbit/s per USB 2.0 host or 400 MByte/s per USB 3.0 host cannot be exceeded. Therefore, the maximum possible frame rate will be reduced if image data from multiple USB cameras is transferred simultaneously.

The available bandwidth might also be decreased when you use hubs or repeaters. You can reduce the bandwidth

required for each camera by lowering the frame rate or the image size.

2.9.3 USB 2.0 Cabling and Connectors

In order to comply with the specifications, the maximum length of USB 2.0 cables is limited to 5 m. Longer cables may be connected if you use high-quality material. The USB bus provides power supply with 5 V and 500 mA max. Many USB devices use the bus power and do not need external power supply (bus-powered devices).

Cable design

The following illustration shows the basic design of a shielded USB cable:

- D+/D-: data transfer
- +5 V/GND: power supply

Connector types

On the PC side, USB 2.0 cables are equipped with a standard A type plug (four pins) and on the device side either with a standard B plug (four pins) or a mini-B plug (five pins).

2.9.4 USB 3.0 Cabling and Connectors

In order to comply with the specifications, the maximum length of USB 3.0 cables is limited to 3-8 m. With the use of repeaters cable lengths up to 20 m are possible. With signal conversion into optical signals cable lengths up to 100 m are possible. The USB bus provides power supply with 5 V and 900 mA max.

Cable design

The following illustration shows the basic design of a shielded USB cable:

- SSTX+/-: SuperSpeed Transmit (data transfer from host to the device)
- SSRX+/-: SuperSpeed Receive (data ransfer from device to the host)
- D+/D-: data transfer (USB 2.0)
- +5 V/GND: power supply

Connector types

On the PC side, USB 3.0 cables are equipped with a standard A type plug (8 pins) and on the device side either with a standard B plug or a micro-B plug.

While a USB 3.0 standard A plug and a USB 2.0 port can be used together (with the restriction that only USB 2.0 speed is possible), the standard B and micro B plug are no longer compatible with USB 2.0 ports.

2.9.5 Data Transmission and Bandwidth

USB 2.0

The USB 2.0 standard specifies an overall bandwidth of 480 Mbit/s shared between different transmission modes. DCx Cameras use the USB 2.0 bulk mode for transmitting images. This mode uses error correction to ensure correct delivery of the image data, but does not guarantee a fixed bandwidth. To ensure error-free communication with all connected devices at all times, the maximum bandwidth for payload data is limited to 416 Mbit/s.

Theoretically, up to 50 MByte/s of data can be transmitted in this mode, but in practice, this value is hardly ever reached. A high-performance desktop PC can transmit about 40 MByte/s, most notebooks or embedded PC systems even less than that.

The overall bandwidth can be increased by the use of USB 2.0 expansion cards. These cards are available for the PCI and PCIe buses and have their own host controller chip.

Note on hardware selection

To achieve optimum USB bandwidth, it is important to use a powerful mainboard chipset. The mainboard chipsets from e.g. Intel® or NVIDIA® provide very good results.

Note on image content and bandwidth usage

For USB cameras, you can use a white <u>test image</u> to check the camera's maximum load on the USB bus. Due to the transmission process, completely white camera images require a somewhat more bandwidth on the USB bus than completely black images.

USB 3.0

Compared to USB 2.0, USB 3.0 offers a tenfold increased bandwidth of 5 Gbit/s, i.e. images can be transmitted with a bandwidth of 400 Mbytes/s.

3 Operation

This chapter explains how to connect the DCx camera and how to use the applications contained in the uc480 software package.

- Quick start 54
- Installation and connection 56
- Installed uc480 programs
 - o <u>uc480 Camera Manager</u> 67: The central tool for managing all connected DCx Cameras.
 - o <u>uc480 Viewer</u> 75: A comprehensive viewer for exploring the camera functionality.
 - o <u>uc480 Player</u> [119]: A small program for playing AVI videos captured with the uc480 Viewer.
 - o <u>uc480 Hotpixel Editor</u> 123: A tool to edit the sensor hot pixel list stored in the camera.

3.1 uc480 Quick Start

This chapter show how to quickly get started with your DCx camera. You will learn how easy it is to connect the camera and explore important functions. For further steps of integrating the DCx camera into your own applications please also see the First steps to uc480 programming [127] chapter.

Connect the camera

Install the latest version of uc480 software. Then connect the DCx camera with the PC. USB cameras are automatically detected as new hardware under Windows. Check the status LEDs on your camera to see if the camera has been correctly identified.

- Installation and connection 56
- Troubleshooting 499
- Connection 61 Status LED 501

Configure the camera

USB DCx Cameras are ready for use right out of the box. You can assign a unique ID to your camera with the uc480 Camera Manager.

See also:

See also:

- uc480 Camera Manager 67
- Assigning a camera ID in the camera manager
- Firmware and camera start 46

Capture images

The uc480 software package includes many sample programs that you can use to try out the extensive functionality of your DCx camera. We recommend starting off with the uc480 Viewer application. To run the application, simply double-click the corresponding icon on your Windows desktop. When you select "uc480 > Initialize" on the menu bar, the connected DCx camera will immediately start control with the immediately start and other immediately start and other immediately.

capturing live images. The status bar at the bottom displays the frame rate and other important information.

If you are using a high-resolution camera, you can click "View > Render mode" on the menu bar to adjust the size of the rendered image to the application window.

- See also:
- <u>uc480 Viewer</u> 75
- <u>Camera basics: Operating modes</u> 17

Customize the key camera properties

Select "uc480 > Properties..." on the menu bar to open the dialog box for modifying the camera properties.

The "Camera" tab provides all the parameters for adjusting the camera's speed. You can increase the pixel clock to run the camera at a higher frame rate. Reduce the pixel clock if transmission errors occur too often. When you enable "Optimum", the optimum pixel clock will be set automatically.

On the "Image" tab, you find various sensor gain controllers. Use the "Master gain" controller to increase image brightness if no longer exposure time setting is possible. Switch to the "AES/AGC" tab to enable the Auto Exposure Shutter (AES) and Auto Gain Control (AGC) features.

Tip: Select a low sensor gain to minimize visible noise.

If you are using a color camera, you should activate sensor color correction on the "Color" tab in order to achieve rich vibrant colors for on-screen display. To adapt a color camera to the ambient light conditions, it is essential to carry out Auto White Balance (AWB). Aim the camera at a surface of a uniform gray color, then enable the "Image white balance: Enable" and "Run once" check boxes on the "AWB" tab.

See also:

- <u>uc480 Viewer: Camera properties</u>
- Camera basics: Camera parameters 44

Activate trigger and flash modes

DCx Cameras provide the possibility to trigger the image capture and to have the flash controlled by the camera. To switch the camera to trigger mode, go to the camera properties as described above, select the "Trigger" tab and enable the desired mode. To trigger on "falling edges" or "rising edges", a digital signal has to be applied to the camera. When you are finished with the trigger settings, select "uc480 > Trigger mode..." on the menu bar to start the triggered image capture.

If you have connected the digital output on your DCx camera to a flash controller, you can configure the flash function on "Input/Output" tab. Enable "Flash high active" and "Global exposure window". This way, the DCx camera automatically activates the flash during the exposure time.

See also:

- <u>uc480 Viewer: Camera properties</u> 92
- <u>Camera basics: Digital input/output</u>
- Specifications: Electrical specifications
 487
- Save the camera settings and images

With uc480 Viewer, saving single frames or videos is very easy to do. Just choose the relevant option on the "File" menu. If you have recorded AVI videos, you can play them using the supplied uc480 Player.

When you have made specific settings for a camera and want to save them so that you can use them again the next time you start the program – or any other uc480 program - select the "Save parameters" function to save all the camera's properties to an ini file or to the camera memory (parameter set 1/2). To load the saved settings, select the "Load parameters" option.

See also:

- <u>uc480 Viewer: Record dialog</u> 84
- <u>uc480 Player</u> 119

3.2 Installation and Connection

- System requirements 56
- Installing uc480 software under Windows 58
- Installing uc480 software under Linux 6
- Connecting a USB DCx camera 61

3.2.1 System Requirements

For operating the DCx cameras, the following system requirements must be met:

	Minimum ^{*1}	Recommended
CPU speed	600 MHz	2 x 2.4 GHz
Memory (RAM)	256 MB	2048 MByte
USB host controller	USB 2.0 high speed (480 Mbps) USB 3.0 (4000 Mbps) for DC3240x cameras	USB 2.0 high speed (480 Mbps) USB 3.0 (4000 Mbps) for DC3240x cameras Intel [®] or NVIDIA [®] nForce mainboard chipset
Graphics card	Onboard graphics chip	AGP/PCIe graphics card Latest version of Microsoft DirectX Runtime 9.0c
Operating system	Windows 7 32 or 64 bit Windows XP 32 bit (Service Pack 2) Linux (Kernel 2.6)	Windows 7 32 or 64 bit Windows Vista 32 or 64 bit (Service Pack 1) *3 Windows XP 32 bit (Service Pack 3) Linux (Kernel 2.6)

*1 With the minimum system requirements the camera performance may be limited.

*3 DCC3240x USB 3.0 cameras are not supported under Windows Vista.

USB interface

- Onboard USB 2.0 ports usually provide significantly better performance than PCI and PCMCIA USB adapters.
- Current generation CPUs with energy saving technologies can cause bandwidth problems on the USB bus. See section <u>PCs with energy saving CPU technology</u> for hints and possible solutions.

Large multi camera systems

Connecting a large number of cameras to a single PC may require a large working memory (RAM). This is especially the case when many cameras with high sensor resolution are used.

If you want to set up such a system we recommend to use PCs with 64 bit operating systems and more than 4 GB of RAM.

Note

For DCx color cameras, the color conversion is done by software in the PC. When you use a color camera with a high frame rate, the conversion might lead to a high CPU load. Depending on the PC hardware used you might not be able to reach the camera's maximum frame rate.

Direct3D graphics functions

The uc480 driver can use Direct3D to display the camera image with overlay information (Microsoft DirectX Runtime had to be installed). On Windows systems, you can use the supplied "DXDiag" diagnostic tool to check whether your graphics card supports Direct3D functions. To start the diagnostic tool, click "Run..." on the Windows start menu (shortcut: Windows+R) and enter "DXDiag" in the input box.

On the "Display" page of the diagnostic tool, click the button for testing the Direct3D functions.

OpenGL graphics functions

For OpenGL version 1.4 or higher must be installed. The OpenGL graphics functions do not work with QT under Linux.

Software Requirements under Linux

For operating the DCx camera under Linux the following components must be installed:

Component	Version
Linux-Kernel	2.6.9 up to 2.6.24
The standard C library libc/glibc	2.0 or higher
GNU Compiler Collection gcc	3.4 or higher
POSIX Thread Library (POSIX Threads Enabled libc)	-
bash or sh shell (for running the installation script)	-
Qt (for compiling the demo program)	-

3.2.2 DCx Driver Compatibility

Attention

Support of older DCC1545M cameras by driver versions 3.10 and higher

From driver version 3.10 onwards, only USB board revision 2.0 or higher are supported. To operate a camera with an earlier USB board revision, you will need the *uc480* driver version 2.40. Please contact Thorlabs 518

The LED on the back of the camera housing also indicates the USB board version (see <u>DCx Status LED</u> [507]). In addition, the *uc480 Camera Manager* version 3.10 or higher provides information about the compatibility (see <u>Camera Manager</u> [67]). An incompatible camera will be displayed as *free* and *not available*.

3.2.3 Installing the uc480 Software under Windows

Attention

1. You need administrator privileges to install the software.

2. Please install the software prior to connect a DCx Cameras!

The software for DCx Cameras is delivered on a CD. Alternatively, or if the CD is lost, the software can be downloaded from <u>Thorlabs' website</u>. Please insert the delivered with the DCx Cameras CD to the drive of your PC and start the software installation:

Click 'Next >' to continue.

🚽 Thorlabs DCx Cameras - InstallShiel	d Wizard		×
License Agreement Please read the following license agree	ement carefully.		
END-USER LICENSE AGREEMENT			*
NOTICE TO USER:			
THIS IS A CONTRACT. BY INDICATII ACCEPT ALL THE TERMS AND COM	NG YOUR ACCEPTAN NDITIONS OF THIS AC	ICE BELOW, Y REEMENT.	′OU
This Thorlabs End-user License Ag product and any related written mate also include any upgrades, modified to you by Thorlabs. This copy of the	reement accompanie: erials ("Software"). Th d versions or updates Software is licensed t	s a Thorlabs s e term "Softwa of the Softward o you as the E	oftware re*shall e provided nd-user. -
I accept the terms in the license agree	ment		Print
I do not accept the terms in the license	e agreement		
nstallShield			
	< Back	Next >	Cancel

Click 'I accept...' if you do so, then 'Next >' to continue.

Click 'Next >' to continue.

Click 'Install' to start the software installation.

Windows Security	×
Would you like to install this device software?	
Name: Thorlabs GmbH Universal Serial Bus contr Publisher: Thorlabs GmbH	
Always trust software from "Thorlabs GmbH".	stall
You should only install driver software from publishers you trust. <u>How can I decide which device software is safe to install?</u>	

Click 'Install' to allow the installation of the USB driver software. The following window appears:

DirectShow Device	Camera-ID	Model	SerNo
WAR	NING: wrong coun	t of cameras!	

This is a normal of the DirectShow driver, included in the installation package, because no camera is connected yet. Please click OK or Cancel to resume software installation.

Click 'Finish'. The uc480 camera software is now installed and ready for use. For detailed description of the installed uc480 software components please see section Installed uc480 programs 67

3.2.4 Installing the uc480 Software under Linux

The installation of the uc480 software on Linux systems is described in the Readme.txt file contained in the uc480 driver download (tab "Drivers") for Linux.

3.2.5 Connecting a DCx Camera

Please install the software first as described in the <u>Installing the uc480 software</u> section. Connect the DCx camera to the PC, using the USB cable. The camera will be recognized automatically and the necessary driver software is being installed:

Driver Software Installation		×
Your device is ready to use		
uc480 boot uc480 cmos, 1280x1024, gs, 1/2 cameras	Ready to use Ready to use	
		Close

When the camera has been correctly installed, the LED on the back of the camera lights up green.

Note

The first time you connect a USB DCx camera to a USB port under Windows, two driver files will be registered. The first file (uc480 boot) contains the generic driver, the second file the model-specific driver.

The model will be immediately recognized whenever you connect the camera to this port again. If you use a different port, the registration will be repeated. Under Windows the camera will show up in the <u>uc480 Camera</u> <u>Manager's</u> for camera list.

The DCx Cameras can be connected to a USB port either directly or via hubs and repeaters. A wide range of different hubs and repeaters are available commercially. The USB 2.0 hubs being used must be "full powered" hubs that are able to provide 500 mA per USB port. "Low Powered" hubs, in comparison, only supply 100 mA per port, which is not sufficient for DCx Cameras.

Note

To use maximum bandwidth, we recommend connecting the cameras directly to the USB ports on the mainboard. Many USB ports on PCI/PCIe cards and the USB ports on the front of the PC often supply lower bandwidth.

Attention

USB cables with non-standard connectors must be connected to the camera first and then to the PC. Otherwise the camera might not be recognized correctly.

3.3 Application Notes by Camera Model

Cameras with CMOS sensors

- DCC1240x / DCC3240x Application Notes
- DCC1545M Application Note
- DCC1645C Application Notes

Cameras with CCD sensors

- DC223x Application Notes
- DC224x Application Notes

3.3.1 DCC1240x / DCC3240x Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCC1240x / DCC3240x 461.

Shutter modes

The following table displays the four shutter modes and their advantages and disadvantages in different situations:

	Global shutter (default)	Global shutter (alternative timing)	Rolling shutter	Rolling shutter (global start)
Black level constancy	-	+	++	++
Capturing of moving objects	++	+	-	+
Hotpixels	-	-	+	+
Image quality with high gain	-	+	++	+

- The rolling shutter mode offers a better signal/noise ratio and a more consistent black level compared to the global shutter mode.
- If the sensor is used in global shutter mode at a low pixel clock frequency and a high gain, the bottom pixel rows might become brighter for technical reasons. Color distortion will occur for the color sensor with active white balance. In this case, use a higher pixel clock frequency, less gain or the rolling shutter mode.
- The <u>"Global shutter (alternative timing)</u>" mode offers a more consistent black level compared to the global shutter mode. This mode should not be used with a frame rate below 2 fps. This mode is also not suitable for bright, moving image contents in combination with long exposure times.
- The rolling shutter mode with global start is suitable for capturing moving objects with flash.
- When using flash in rolling shutter mode make sure to set the flash duration accordingly ((1/maxFramerate) + exposure) or that the global time window is available by a long exposure time (2 * (1/MaxFramerate) + FlashDuration). For flashing into this time window use the flash delay (1/MaxFramerate).
- The hardware sensor gamma curve is piecewise linear with three sections. This allows evaluating four times more details per pixel for lower gray level values and in 8 bit per pixel mode in dark image areas.
- In global shutter mode the shutter efficiency of 1:3000 have a negative impact with bright conditions and the usage of exposure times under 100 µs. In this case, set the pixel clock to the maximum possible value and close the aperture a little bit. Also enabling the Log mode with low values achieve huge improvements.

Black level

- The black level can also be set to negative values. Therefore, the factory setting of the offset control is nearly in the middle of the range.
- Use of the gain functions can lead to slight fluctuations of the black level. In global shutter mode the black level can also vary slightly.
- In global shutter mode the black level can also vary slightly between two image captures.
- When enabling the rolling or global shutter mode the black level is set to a fixed factory-provided value. Therefore, the black level can individually adjusted after switching the shutter mode.
- Depending on the internal black level and shutter mode the offset control shows no additional cumulative effect at the top.
- The factory setting of the offset control are so selected that the black level is always slightly increased to avoid losing image information by cutting underneath the origin. For linearity measurements the black level must be

DCx Cameras

adjusted to the origin with the offset control before the measurement is done.

Color sensor

- The color sensor's black level cannot be adjusted manually, as the RGB gains are downstreamed and an adjustment would cause color errors.
- Automatic black level correction is always enabled.
- The RGB gains work analog.
- The fast line scan 33 mode is disabled.

NIR sensor

- It is recommended to use a IR-coated and IR-corrected high-quality lens, especially for non-monochromatic light.
- In the high IR wavelength range picture blur can occur with strong contrasts. This reduced MTF (modulation transfer function) is a characteristic of the sensor pixels.
- The master gain of the NIR sensor is adapted in comparison to the monochrome sensor. If both sensors are compared directly, the gain of the NIR sensor must be set to the double factor of the monochrome sensor. This can be done via the master gain or the gain boost.
- In the Log mode the guaranteed dynamic range of the NIR sensor is reached with a gain value of at least 1. For the monochrome sensor you need at least a value of 3. With very short exposure times, lower values can result in even higher dynamics.

Gain, pixel clock

- Master gain uses a combination of coarsely scaled analog gain factors and finer digital scaling. To achieve optimum homogeneity of the gray level, use only the gain factors 0, 33, 66, and 100.
- The gain boost has the factor 2. When using the master gain a maximum factor of 8 is possible caused by the sensor.
- For global shutter mode the pixel clock should be set to the maximum possible value to increase the image quality.
- In the 10 bit mode the usage of the digital gain intermediate level produces missing pixel values as the sensor works internally with maximally 10 bit.

Hot pixel

- In the rolling shutter mode, there are less hot pixels, as the pixel charges are not buffered in the sensor.
- The sensor corrects hot pixels dynamically. Neighboured hot pixels in diagonal direction cannot be corrected effectively. These positions are covered by the factory-made hot pixel correction and are eliminated by the software hot pixel correction. Therefore, the hardware hot pixel correction is a prerequisite and should not be deactivated.
- On the color sensor the hot pixel correction works with the appropriate color neighbours.
- In the global shutter mode, increased hot pixels can become visible in the lower image area with log exposure time, a high gain and disabled hot pixel correction.
- Both hot pixel corrections should be disabled if extremely fine structures are captured with a high-quality lenses.
- For the measurements of noise characteristics both hot pixel corrections should be disabled.
- The activation of the factory-made hot pixel correction reduces the frame rate slightly. Here, the desired frame rate has to set **after** the activation or deactivation of the factory-made hot pixel correction.
- Increased hot pixels can occur In the entire image border area.

Binning

- 2x binning makes the image brighter by a factor of about two. It also reduces image noise.
- Binning does not result in a higher frame rate. Using binning allows higher pixel clock frequencies for USB DCx cameras with the USB 2.0 and GigE interface. To achieve the maximum frame rate, activate first the binning and then change the maximum pixel clock frequency.
- When using binning the frame is slightly shifted horizontally.
- Binning can only be enabled for both horizontal and vertical pixels. For this reason, the parameters of the <u>is_SetBinning()</u> function have to be passed together (IS_BINNING_2X_VERTICAL | IS_BINNING_2X_HORIZONTAL) to enable binning.

Scaling, AOI

- The digital scaling functions result in a higher possible frame rate. The maximum frame rate is increased approximately proportionally to the scaling factor. When using the scaling functions with USB 2.0 and GigE cameras, you can set higher pixel clock frequencies. To achieve the maximum frame rate, select first the scaling factor and then the maximum pixel clock frequency.
- For improved image quality without undersampling artifacts, the digital scaling feature permanently uses an antialiasing filter.
- On color sensors the scaler works in consideration the color information.
- Reducing the horizontal resolution does not result in a higher frame rate.
- The available step widths for the position and size of image AOIs depend on the sensor. The values defining the position and size of an AOI have to be integer multiples of the allowed step widths. For detailed information on the AOI grid see the DCC1240x / DCC3240x 46T chapter.

Multi AOI

- When the Multi AOI function is enabled, no changes can be made to the image size settings (e.g. binning, subsampling, scaling).
- If sensor hotpixel correction and Multi AOI are enabled, the sensor displays a four pixel wide black line between the AOIs.

Line scan mode

- <u>Fast line scan</u> mode: The exposure time is fixed to the readout time of one sensor line. Exposure time cannot be changed in this line scan mode.
- Fast line scan mode: The time stamp is generated for the complete image.
- Fast line scan mode: There is a time gap between two frames with the line scan information. This corresponds to the duration of 15 lines at a frame rate set to maximum.
- In the fast line scan mode color images are not possible as <u>Bayer color sensors</u> and needs at least two neighboring lines for color calculating. Therefore, only monochrome models support the line scan mode.

Log mode

- The Log mode shows visible effect only for short exposure times (< 5 ms)
- In global shutter mode the Log mode can help to increase the shutter efficiency for extremely short exposure time (< 100 μ s).
- To find the right operating point of the Log mode use the following procedure:
 - 1. Set the Log mode gain to the minimum value.
 - 2. Find the operating point via the Log mode value. The higher the value, the more bright image areas are damped and more details become visible.
 - 3. Set the image as bright as possible via the Log mode gain. A typical value is 2 or 3 for monochrome sensors and 0 or 1 for NIR sensors.
 - The line view 86 in the uc480 Viewer is very helpful for this.
- The master gain is disabled in Log mode.

Anti blooming

- Activation: With exposure times over 10 ms and no use of gain or gain boost it can occur that bright image areas do not reach saturation and so no white level which is caused by the sensor. A visible, firm pattern is formed in bright image areas. For color sensors with enabled white balancing bright image areas gets purple. In this case, disable the anti blooming mode (see Shutter: Log mode 116) or increase the master gain from 1x to 1.5x.
- The anti blooming mode should not be enabled for short exposure times (< 5 ms). Depending on the shutter mode a "Black Sun" effect or overexposure occurs.

Micro lenses

- The sensor has non-removable micro lenses on each pixel. These micro lenses focus the incoming light for the subjacent smaller photodiode. This lens has a directive efficiency.
- To the corners of the active image area the micro lenses are slightly shifted to the photodiode. So the unavoidable non-vertical light incidence of C mount lenses is compensated. The shift is constant from the center to the corner and has a maximum of 12 degrees. When using a telecentric lens or parallel light incidence the shift must be considered as little shading effects may occur.

3.3.2 DCC1545M Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCC1545M [464].

Sensor

- Sensor speed does not increase for AOI width <240 pixels.
- Extreme overexposure shifts the black level. Please deactivate the <u>Auto offset function</u> (95) in this case.
- At very long exposure times and minimum gain, the white level may not be reached. The gain should be increased by one step in this case.
- Monochrome version only: The sensor internally works like the color version. This might lead to artifacts when subsampling is used.
- The brightness of the first and last line might deviate due to the sensor.
- Gain values between 59 and 99 may lead to image inhomogeneity.
- When using very narrow AOIs, the sensor may not be able to calculate the correct black level. Use manual black level offset when problems with the black level occur.

Calibration

- Cameras with a <u>date of manufacture</u> 7 after Dec. 9, 2008: The offset control has been calibrated internally. The calibration corrects offset errors when gain is used. In calibrated cameras, automatic black level correction is disabled by default. The calibration can only be used with uc480 driver version 3.31 or higher.
- Cameras with a <u>date of manufacture</u> where Dec. 9, 2008: If manual offset control is used, fixed pattern noise and horizontal lines may become visible. High gain values may shift the black level and therefore should be avoided.

Offset increases the black level every 7th step. The steps in-between change the appearance of fixed pattern noise.

3.3.3 DCC1645C Application Notes

For the technical specifications of this model go to: Camera and sensor data > $\underline{DCC1645C}$ [46].

Sensor

- At very long exposure times and minimum gain, the white level may not be reached. The gain should be increased by one step in this case.
- The RGB gain controls have no effect for values >90.

3.3.4 DCU223x Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCU223x [46].

Sensor

- Long exposure times will increase the number of hotpixels.
- High temperatures will increase the black level of individual pixels.

3.3.5 DCU224x Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCU224x [470].

Sensor

- Long exposure times will increase the number of hotpixels.
- High temperatures will increase the black level of individual pixels.
- When vertical 4x binning is activated, the minimum image width increases to 640 pixels.

3.4 Installed uc480 Programs

- <u>uc480 Camera Manager</u> 67: The central tool for managing all connected DCx cameras.
- <u>uc480 Viewer</u> 75: A comprehensive viewer for exploring the camera functionality.
- <u>uc480 Player</u> 119: A small program for playing AVI videos captured with the uc480 Viewer.
- <u>uc480 Hotpixel Editor</u> A tool to edit the sensor hot pixel list stored in the camera.

3.4.1 uc480 Camera Manager

The uc480 Camera Manager is the central tool for managing all DCx cameras. It displays information on the connected USB DCx Cameras and provides options for configuring them.

On Windows systems the uc480 Camera Manager can be accessed as follows:

- Start > Programs >uc480 Camera Manager
- Program icon on the desktop or Quick Launch toolbar
- Start > Settings > Control Panel > uc480 Camera Manager

Click in the figure to get help on the functions.

Free	Avail.	Туре	Cam.ID	Dev.ID	Model	SerNo.
ි <mark>ද</mark> Yes	Yes	USB	1	1	C1280G12C	4002800473
Control o	enter					
Ex	pert mod	e				
	Genera	linforma	ation		Camera	information
Create support file ETH network service					vork service	
Additional functions Automatic ETH configuration						
	(C		Þ		u	c480
	English				C	lose

Camera list

The <u>camera list</u> 68 displays information on the connected DCx Cameras.

Attention

Under Windows XP (64 bit) and Windows Vista DC3240x Cameras are displayed in the uc480 Camera Manager, but they cannot be opened, because they are supported by Windows 7 and Windows XP (32 bit) only

Control center

In the <u>control center</u> [68], you can access the configuration and display detailed information on the connected DCx Cameras.

DCx Cameras

In the English drop down box, you can choose the language for the uc480 Camera Manager. This setting is saved and remains effective even after you close and reopen the program.

For proper display of Asian languages on Windows systems, the support package for East Asian languages has to be installed on your system (in "Control Panel > Regional and Language Options").

- Click Close to close the application; any settings you have made are saved.
- The status box at the bottom indicates the current status of the selected camera. If it is available, the status message is shown in black. Otherwise, the status message is shown in red.
- If an error has occurred in a camera, a black exclamation mark on a yellow background is shown next the camera. The status box then indicates the cause of the error and suggests remedies.

3.4.1.1 Camera List

When a camera is activated (switched on or connected to the PC), it appears in the camera list of the uc480 Camera Manager after a few seconds.

Free	Avail.	Туре	Cam.ID	Dev.ID	Model	SerNo.

The data shown in the camera list can be sorted in ascending or descending order by left-clicking on the respective column header.

• Free/Avail.

Free: indicates whether a camera is currently in use.

Avail. (Available): indicates whether a camera can be opened by this computer with the current setup (computer and camera).

Cameras shown with a red x are currently in use (Free = No) and are not available (Avail. = No).

Cameras shown with an exclamation mark are not in use, but are currently unavailable for various reasons, such as:

- o The camera is not compatible with the driver. Please update the uc480 driver.
- The driver has not properly detected (initialized) the camera. Please disconnect the camera from the PC and then reconnect it.
- $_{\odot}$ The camera is currently being removed from the Manager.

o The camera reports that it is "Not operational".

Type

This column indicates the USB camera type.

• Cam.ID

The <u>camera ID</u> 7^{h} assigned by the user.

Dev.ID

Unique device identifier sequentially assigned by the system. DCx cameras are assigned device IDs from 1 upwards. After deactivating a DCx camera (switching it off or disconnecting it from the network), the device ID is no longer valid and can be assigned again by the system.

- Model Model name of the camera
- SerNo.
 Serial number of the camera.

3.4.1.2 Control Center

• Expert mode

When you select the *Expert mode* check box, the uc480 Camera Manager additionally displays the <u>Parameters</u> 74 box on the right. There you will find detailed information on the DCx camera selected in the <u>camera list</u> 68.

Click in the figure to get help on the functions.

ree	Avail.	Туре	Cam.ID	Dev.ID	Model	SerNo.	Parameter	Value
€ Yes	Yes	USB	1	1	C1280G12C	4002800473		
							Sensor ID	81
							USB	
							1. Hub	USB Root Hub (Port 2)
							2. Controller	Intel(R) ICH9 Family US.
ontrol	enter -							4 20 06 01
				1	Automations	wanter seferal	000 version	4.20.00.01
V D	cpert mod	e			Automatic pa	arameter refresh		
General information Create support file				Camera information ETH network service				
	Additional functions			Automatic ETH configuration				
Upload starter firmware			Manual ETH configuration					
	6		D		u	c480		
	English		-		d	lose		
atus of	device N	r. 1: The	e camera is	configure	d correctly and o	can be opened.		

• Automatic parameter refresh

If you select the Automatic parameter refresh check box, the data shown in the tree structure is updated periodically. If the option is disabled, the data in the tree structure is only updated when a different camera is selected.

All other "Control Center" buttons are described in detail in the following sections:

- General information 70
- Camera information 71
- Creating a support file 71
- Additional functions (COM port)

3.4.1.3 General Information

This dialog box provides information on the installed uc480 drivers and the available USB controllers and network adapters.

ieneral Information				×					
	uc490	Camera Mapager version 4 20 0 0							
	de 100	Conversion (C) 2007 2012							
		Copyright (C) 2007 - 2012							
uc480 drivers and 3rd p	arty interfaces	OEM							
Driver designation	Description	Location	Version						
too line acaign a don									
uc480.sys	USB kernel driver	C: Windows (system 32)drivers	4.20.6.1						
uc480_eth.sys	Gigabit Ethernet kernel driver	C: Windows (system 32)drivers	4.20.6.1	_					
uc480_com.sys	Virtual COM port driver	C: Windows (system 32) drivers	4.20.0.0	E					
uc480.dll	USB/Gigabit Ethernet user mode DLL	C:\Windows\system32	4.20.6.1						
uc480_tools.dll	User mode DLL with additional functi	C:\Windows\system32	4.20.0.0						
uc480.ocx	ActiveX driver	C:\Windows\system32	4.20.0.0						
uc480capture.ax	DirectShow driver	C:\Windows\system32	4.20.0.0						
uc480.ds	Twain driver	C:\Windows\twain_32	4.20.0.0						
hAcquc480.dll	HALCON interface DLL	Not found	Not found	_					
parhAcquc480.dll	HALCON interface DLL	Not found	Not found	-					
Direct3D Dlls									
Driver designation	Description	Location	Version	*					
d3d9.dll	Direct3D9 Dll	C:\Windows\system32\d3d9.dll	6.01.7600.16385						
d3dx9_41.dll	Direct3D9 Extensions DI	C:\Windows\system32\d3dx9_41.dll	9.26.952.2844	-					
USB controller and netw	ork adapters								
	controller(s)								
HISB 2.0 host	□ 🖨 IISB 2.0 hostcontroller(s)								
Totel(R) IC	H9 Family USB2 Enhanced Host Controller - 2	934							
Lotel(P) IC	H9 Family USB2 Enhanced Host Controller	030		=					
man with the first controller - 2930									
	NetWhenes Chus Cinebit Controller								
H. Broadcom	NetAtreme 57XX Gigabit Controller			-					
USB 2.0 compatible	host controller found		Close	e					

• uc480 drivers

This list shows the location and version of the uc480 driver files installed on your system.

• 3rd party drivers

This list shows the location and version of the uc480 interface files that have been installed on your system for third-party software.

• USB controller and network adapters

All USB controllers and network adapters that are available in your system are shown in a tree structure.
3.4.1.4 Camera Information

In the "Camera information" dialog box, you can assign a unique ID to the selected camera and write to the user area of the EEPROM. The data you enter is retained in the camera memory even when the camera is disconnected from the PC or power supply.

nufacturer	Date of QC
MINC	18.04.2011
USER EEPROM	(max. of characters)

Camera ID

The camera ID identifies a camera in multi-camera operation. The ID can range from 1 to 254. The default value for the camera ID is 1. The same ID can be assigned to multiple cameras. You do not have to assign sequential ID numbers to all connected cameras.

• User EEPROM (max. 64 characters)

Every uc480 has a 64-byte user area in its EEPROM (Electrically Erasable and Programmable Read Only Memory) to which you can write text of your choice.

The "Camera information" dialog box displays two additional boxes that are for your information only and cannot be edited:

- Manufacturer (e.g.OEMINC)
- Date of QC (date of final camera quality test)

Notes

- 1. Setting a camera ID and writing to the EEPROM is possible only, if the camera is marked "Free" and "Available" in the Camera Manager (see also <u>Camera list</u> [68]).
- 2. If software accesses cameras through the uc480 DirectShow interface, the camera IDs must be in a range from 1 to 24.
- 3. If software accesses cameras through the uc480 Cognex VisionPro interface, the camera IDs must be assigned consecutively beginning with 1.

3.4.1.5 Creating a Support File

A uc480 support file is a binary file with the extension .bin. The file contains camera and driver details that are required for diagnostics by our <u>Technical Support</u> team. No personal computer data or user data is stored in this file.

The <u>Create support file</u> button opens the "Save as" dialog box, where you can save the displayed camera information and additional driver information to a file.

3.4.1.6 Additional Functions

CPU idle states

Windows only: Processor operating states (idle states/C-states)

Modern processors have various operating states, so-called C-states, that are characterized by different power requirements. When the operating system selects an operating state with low power consumption (unequal C0), the USB transmission efficiency may be affected (see also <u>is_Configuration()</u> and section troubleshooting [500]).

Camera parameters when camera is opened

Here, you can set whether to apply the parameters stored on the camera automatically when opening the camera. You must first store the camera parameters on the camera using the $\underline{is}_{ParameterSet}()$ function or via the corresponding function in the uc480 Viewer.

This setting applies to all connected cameras. If no parameters are stored on the camera, the standard parameters of this camera model are applied (see also is_Configuration()].

Boot boost

This mode is not related to DCx Cameras.

Bulk Transfer Size

Via "Bulk Transfer Size" the behavior of the USB sub-system can be set.

Warning

Contact our technical support 518 before changing the value under "Bulk Transfer Size".

COM Ports

The "Additional functions" dialog box allows installing virtual COM ports for communication through the serial interface of a DCC3240x camera. The following sections show you how to set up and use the serial interface [495].

Note

This feature is only available for DCC3240x cameras.

You need administrator privileges to install a virtual COM port.

The selected in the uc480 Camera Manager DCC3240x camera has to be marked "Free" and "Available".

Disable (batte	ry power)	J Disable (mains power)		
amera parameter	when camera is opened			
🗸 Default	🥅 Parameter set 1	🔲 Parameter set 2		
ot boost				
Enable	Set ID list	Clear ID list Add ID Remove ID		
Current has	h haad The			
tual COM part -				
rcual COM port				
OM port	COM99 (used)	1		
		-		
Install COM	port on the computer (COM99)	Save COM port in the camera (COM99)		
Del	ete COM port (COM99)	Send / Receive		
	ort is installed on the computer syste	m and connected to this camera. You can send and receiv		
he virtual COM p Jessages,				

Setting up the serial interface on the DCC3240x camera

Before using the serial interface on the camera, one or more virtual COM ports have to be installed on the PC. Most systems support up to 255 COM ports; COM1 to COM8 are often assigned operating system functions by default. You can check the current port assignment in the Device Manager on your computer. Some older systems may not have more than eight ports; in that case you will need to assign the camera to one of these ports.

· COM port

In the drop down box, select the number of the port you want to install (default: 100). COM ports in use are marked "(used)" in the list.

Install COM port on the computer (COM100)

Click this button to install the selected virtual COM port.

During the first installation of a virtual COM port, an additional broadcast port with number 255 is installed. Data sent to this port will be forwarded to all paired cameras.

You can install any number of virtual COM ports on a single system.

Delete COM port (COM100)

With this button, you can release a COM port that is marked "used." If the port number has been saved in that camera, it will be deleted in the camera, too. To release a COM port, select it in the drop down box and then click this button.

Save COM port in the camera (COM100)

Click this button to assign the selected port number to the camera. The port number is saved in the camera's non-volatile memory and retained even when the camera is switched off. You can look up the assigned port number in the Camera Manager's expert mode. A COM port number can also be saved in a camera without a virtual COM port installed on the PC.

Note

If you want to control more than one DCC3240x camera from a PC, each camera should be assigned a unique port number. If multiple cameras are assigned the same port number, only the port of the first camera that is opened will be used.

To send data via the serial interfaces of multiple cameras, you can use the broadcast port with number 255. Before connecting to the broadcast port, ensure that all the cameras that are to receive the broadcast have been opened.

Testing the serial interface on the DCC3240x camera

Note

To avoid transmission errors, please ensure that both the camera and the receiving end use the same communication parameters (baud rate, data bits, stop bits, parity). Further information on the communication parameters is provided in the <u>Serial interface DCC3240x</u> [495] chapter.

Send / Receive

Clicking this button opens a dialog box for transferring data through the COM port. The dialog box is provided as the uc480ComportDemo.exe sample program together with the C++ source code and is included in the uc480 SDK.

This program allows sending ASCII characters to the COM port assigned to a camera. The characters are output unchanged on the camera's serial port. To check the proper functionality, you can connect a PC to the camera's serial port and read the transmitted characters on the PC's COM port.

Virtual COM p	ort 🛛 🔀					
Virtual COM po	art (COM100)					
Broadcas	t COM port					
Conr	rect Baud 115200 V Data 8 V Stop 1 V Parity none V					
Ser	nd Append none v					
Cle	ar					
- Serial port (C)						
Copr						
Send Append none V						
Cle	ar 🖉					
Send file						
Source	C:\Dokumente und Einstellungen\mde\Desktop\Source.exe Browse					
Destination	C:\Dokumente und Einstellungen\mde\Desktop\Dest.exe Browse					
Direction	Source file -> COM1 -> COM100 -> Destination file V Send file					
Source:	2043904 Byte					
Destination:	360000 Byte					
	Close					

Baud

In this drop down box, you can change the data transfer rate of the serial interface.

Append

This drop down box allows appending the special characters "CR" (Carriage Return) and "LF" (Line Feed) to the ASCII text you want to transmit. Some devices with serial interface require ASCII strings to be terminated with CR/LF.

• Send file

Using these functions, you can send a file in either direction (output on the camera's virtual COM port or output on the PC's COM port).

Note

Since the sample program has to open the camera, please make sure the selected camera is not used by other applications at the same time.

3.4.1.7 Parameters

This box displays the parameters of the camera you have selected in the camera list. The parameters box is only shown when Expert mode at is active.

The parameters are organized in a tree structure. Only the information that applies to the selected camera is shown. The data displayed in the camera list is not repeated in the "Parameters" box. The data shown in the tree structure cannot be changed.

Parameter	Value		
E Device			
Sensor ID	81		
USB			
1. Hub	USB Root Hub (Port 2)		
2. Controller	Intel(R) ICH9 Family US		
E Local driver			
USB version	4.20.06.01		

- Device
 - \circ Sensor ID
- USB
 - \circ Hub

Indicates which hub and port a USB camera is connected to. In addition, the full path through all hubs to the USB controller on the computer is displayed.

o Controller

Indicates the USB controller to which the camera is connected.

- Local driver
 - $\circ\,$ Indicates the USB version of the camera driver

3.4.2 uc480 Viewer

The uc480 Viewer application demonstrates the functionality and performance of the DCx Cameras. The application is part of the uc480 software package.

In uc480 Viewer, you can access all important camera settings and functions of the uc480 programming library. Apart from controlling and configuring the camera, you can record images as AVI files and save them as BMP or JPEG files.

uc480 Viewer can be accessed as follows:

- Start > All Programs > uc480 > uc480 Viewer
- Program icon on the desktop or Quick Launch toolbar

Click in the figure to get help on the functions.

Note

uc480 Viewer is currently only available for Windows operating systems. For Linux a version with reduced functionality of uc480 Viewer is available named **uc480 Demo.**

Please note that uc480 Viewer does not guarantee completeness and operational reliability in all modes and all computing environments. uc480 Viewer is intended solely for demonstrating the uc480 software library and camera functionality.

3.4.2.1 Start Dialog

When you start the application, the start dialog shown below appears by default. In this dialog you can:

- choose a profile to adjust the camera parameters
- start uc480 Viewer in expert mode

uc480Viewer - choos	e mode			×
Please choose a pro	file to adjust the came	ra parameters:		
				U
Optimal colors	Monochrome	Live video	User profile	No profile
☑ Start uc480View □ Do not show this	er in expert mode dialog again			Cancel

Profiles for camera settings

Profiles are a very quick and useful way to adjust the camera parameters to different common situations in image capture. The profiles are independent of the DCx camera model you are currently using. When you choose a profile, key camera parameters are configured for that specific situation to achieve optimum results. After installing uc480 Viewer, the following profiles are available:

• Optimal colors

Choose this profile to optimize the image quality of a color camera. Parameters such as exposure, white balance and gain are set automatically. Color correction and gamma correction are enabled.

Monochrome

Choose this profile to optimize the image quality of a monochrome camera. Parameters such as exposure and gain are set automatically. Gamma correction and edge enhancement are enabled.

Live video

Choose this profile to record a smooth video. The frame rate is set to the maximum value. For high-resolution sensors, binning or subsampling is enabled to increase speed. Parameters such as exposure and gain are set automatically.

• User profile

This button displays the "Open" dialog box where you can load your own profiles. For details on creating your own profiles, see the <u>Creating profiles</u> [117] chapter.

No profile

uc480 Viewer starts with the default settings configured for this camera model. No profile is used.

Note

A selected profile is not automatically loaded when you restart the application. You need to choose a profile again from the start dialog or **Profiles menu** 83.

In the File menu add, you can choose if you want the start dialog displayed on program startup.

Start uc480 Viewer in expert mode

uc480 Viewer by default provides the basic icons and menus for operating the camera. If you select the "Start uc480 Viewer in expert mode" check box, additional functions, toolbars and menus are available in uc480 Viewer. This setting is recommended for advanced users.

See also:

- Creating profiles 117
- <u>"Profiles" menu</u> 83
- Customizing uc480 Viewer 85

3.4.2.2 Toolbars

The toolbars in uc480 Viewer provide the tools described below. Which of these tools are available depends on the mode you have selected (expert mode 76 on/off).

Top toolbar

	Open camera and start in live mode
	<u>Open camera</u> 79
	Close camera
	Start/stop live video (freerun mode 17)
	Snapshot in freerun mode
	Start/stop continuous triggered capture
	Snapshot in trigger mode
S	Open the dialog box for setting the camera parameters
	Select AOI (<u>Area of interest</u> 34)
	Delete selected AOI
	Automatic brightness control (AES/AGC) on/off
	Set reference area for automatic brightness control
	Delete reference area for automatic brightness control
6	Auto white balance (AWB) on/off
I	Set reference area for auto white balance
I	Delete reference area for auto white balance
	Measure sharpness in a defined AOI
	Save image as bitmap
8	Open the dialog box for AVI recording 84
لىللىد.	Open/close <u>Histogram</u> 86 window
	Open/close Horizontal Line View window
	Open/close Vertical Line View window
e.	Open/close <u>Zoom</u> ^B window

Left toolbar

4 <mark>4</mark> 4	Scale display to window size
1 :1	Display at original size
1:2	Scale display down to half size
1:4	Scale display down to quarter size
2:1	Scale display up to double size
	Show image at full screen size
	Deactivate display
2	Draw freehand in image
9	Draw line in image
Į	Measure distance in image
	Draw rectangle in image
	Draw circle in image
A	Add text to image
0	Choose colors for drawing functions
×	Clear all drawn elements
\bigtriangledown	Show/hide time

3.4.2.3 Status Bar

P (303, 73): (R:0, G:0, B:0) RGB3	32 (2048 × 1536) Frames: 22 [)isplay: 22 Missed: 0 Failed: 0 Recon: 0	Transfer: OK	FPS: 4.94
1	2	3	4	5

1	Current cursor position in the Zoom/Pixel Peek window and color values at the cursor position
2	Defined color mode and image resolution
3	Counters
	Frames: Transferred images
	Display: Displayed images
	 Missed: Hardware trigger events missed. This counter increments each time a hardware trigger is received in trigger mode, but the camera is not ready for image capture
	Failed: Transmission errors
	 Recon.: This counter increments each time the open camera is removed and reconnected during operation.
4	Status of the current image data transfer (OK/Error)
5	Current frame rate (fps) of the camera

3.4.2.4 Opening a Camera

Select the menu $\underline{uc480} > \underline{Initialize}$ and or click the corresponding icon on the $\underline{Toolbar}$ represented to select (open) a connected camera. If only one camera is available, this camera is selected automatically. If more than one camera is connected, the "Select Camera" dialog box is displayed.

Available	Type	Cam.ID	Dev.ID	Model	SerNo.
€ Yes	USB	1	1	C1280G12C	4002800473
Yes Yes	USB	1	2	C1280G12M	4002800846

You can use multiple cameras simultaneously by opening multiple instances of uc480 Viewer. DCx cameras that have already been opened or that have not been correctly configured are marked "No" in the "Available" column.

Available	Туре	Cam.ID	Dev.ID	Model	SerNo.
No No	USB	1	1	C1280G12C	4002800473
Yes	USB	1	2	C1280G12M	4002800846

3.4.2.5 Menus

Please choose a menu title:

- <u>File</u> 80
- <u>Edit</u> 80
- <u>View</u> 80
- <u>uc480</u> 81
- Draw/Measure 82
- Profiles 83
- <u>Help</u> 83

3.4.2.5.1 File

The "File" menu contains functions for handling image, video and parameter files and for customizing uc480 Viewer.

Load image	Load image from bitmap file (BMP)
Save image	Save image as BMP, JPEG or PNG file. You can save images with a bit depth of more than 8 bit in the PNG format.
Record video sequence	Opens the <u>Record dialog</u> 84 box
Load parameters	Load parameters from an .ini file or from one of the camera's parameter sets
Save parameters	Save parameters to an .ini file or to one of the camera's internal parameter sets
Language	Select a language for the program. When you change the language, you need to restart uc480 Viewer to apply the new setting.
Mode	Select the uc480 Viewer user mode:
	 Normal: The uc480 Viewer user interface shows the most important functions. Some advanced options are hidden.
	 Expert: The uc480 Viewer user interface shows all options. See also <u>Start</u> <u>dialog</u> 76.
Customize	Opens the Customize ⁸⁵ dialog box where you can make various settings for the startup behavior of uc480 Viewer
Show start dialog	If this option is selected, the profiles start dialog relation shows on every start of uc480 Viewer.
Exit	Exit the demo program

3.4.2.5.2 Edit

The "Edit" menu contains the clipboard functions.

• Copy Ctrl+C: Copy the displayed image content to the Clipboard. Overlay data created using the Draw B2 function is also copied automatically.

3.4.2.5.3 View

The "View" menu contains the options for setting the display mode and for opening the dialog boxes.

Render mode	Image display			
Disable	Deactivate display			
Normal	Display at original size			
Fit to window	Scale display to window size			
Quarter size	Scale display down to quarter size			
Half size	Scale display down to half size			
Double size	Scale display up to double size			
Mirror up/down Mirror display on horizontal axis				
Show only AOI	AOI is displayed without black border			

Line view (horizontal)	Opens the Line view and window (row view)
Line view (vertical)	Opens the Line view and window (column view)
Histogram	Opens the <u>Histogram</u> 86 window
Zoom window	Opens the Zoom 87 window
Pixel peek window	Opens the Pixel peek 88 window
Waterfall window	Opens the Waterfall set window
Log window	Opens the Log window 89
Image infos	Opens the Image infos a window

3.4.2.5.4 uc480

The "uc480" menu contains functions for image capture and camera configuration.

Initialize	Open camera and show live image			
Initialize and stop	Open camera			
Standby	The camera changes to standby mode			
Close	Close camera			
Reset to defaults	Resets all values set in the demo program to the defaults			
Start live video	Live video on/off			
Snapshot	Snapshot from live video			
Sync Trigger (Rising Edge)	Starts capture in <u>freerun synchronization mode</u> 20 on the specified edge of the trigger signal.			
Sync Trigger (Falling Edge)	The freerun synchronization mode is currently not supported by DCx camera models.			
Single trigger	Triggered snapshot (software trigger)			
Continuous trigger	Continuous triggered capture on/off Trigger source hardware/software can be set in the corresponding property page 103			
Properties	Opens the camera properties dialog 92			
Auto contrast	Activate automatic brightness control 106			
Set new AES/AGC AOI	Define active area for automatic brightness control			
Clear AES/AGC AOI	Clear active area defined for automatic brightness control			
Auto whitebalance	Activate automatic white balance			
Set new AWB AOI	Define active area for automatic white balance			
Clear AWB AOI	Clear active area defined for automatic white balance			
Sharpness measure AOI	Draw an AOI and measure sharpness within the AOI			
Set new AOI	After calling "Set new AOI", you can select an area of interest and with the mouse			
Clear AOI	Clears the area of interest (reset to full frame)			
User allocated image	The memory is allocated not via the SDK function $\underline{is_SetAllocatedImageMem()}$, but by the application			
Sound on transfer failed	Output an acoustic signal if a transmission error occurs			
Error report	Errors are displayed in a dialog box			
Clear counters	Reset the counters (see uc480 Viewer status bar)			

3.4.2.5.5 Draw/Measure

The "Draw" menu contains functions drawing annotations as overlay on the live image.

Note

Setting the measuring unit

You can take simple measurements in uc480 Viewer. Before you start measuring, the camera must be calibrated to a scale. The []/pixel unit indicates the actual distance that corresponds to one pixel. To set the measuring unit, do the following:

- 1. Mount the camera on a stand. Place an object of known size below the camera (e.g. a ruler).
- 2. Make sure that the measuring unit is set to 1 at first. Then draw a dimension line over a known distance. The longer you make the dimension line, the higher the measurement accuracy will be.
- 3. The dimension line will show the length in pixels. Divide the actual distance by the number of pixels measured. Enter this value in the "Set measuring unit" field of the dialog box.

Example: Actual distance = 10 cm. Measured length in pixels = 200. Measuring unit = 10 cm/200 or 100 mm/200

Select Color	Select color for drawings and text
Geometry	
Select line width	Set line width
Circle	
Show circles	Show/hide circles
New circle	Draw new circle
Delete circles	Delete circles
Freehand	
Show freehand lines	Show/hide freehand drawings
New freehand line	Draw new freehand
Delete freehand lines	Delete freehand drawing
Line	
Show lines	Show/hide lines
New line	Draw new line
Delete lines	Delete lines
Rectangle	
Show rectangles	Show/hide rectangles
New rectangle	Draw new rectangle
Delete rectangles	Delete rectangles
Measure	
Set measuring unit	Set scale
Show measures	Show/hide dimension lines
New measure	Draw new dimension line
Delete measures	Delete all dimension lines
Text	
Select font	Select font
Show texts	Show/hide texts
New text	Write new text
Delete text	Delete text
Time stamp	
Set time stamp position	Time stamp position (top left, top right, bottom left, bottom right)
Show time stamp	Show/hide time stamp

Save image + drawings	Opens the "Save As" dialog box. The image is stored with all drawings, texts, measures and dimension lines
Load drawings	Loads saved drawings from a *.bin file.
Save drawings	Saves current drawings to *.bin file.
Delete all	Delete all drawings, texts, measures and dimension lines

3.4.2.5.6 Profiles

The "Profiles" menu provides functions for managing profiles. When you start uc480 Viewer, the application searches the C:\Program Files\Thorlabs\DCx Cameras\Profile\ folder for profile files and lists them in the Profiles menu [8]. The profile names shown in the menu are named after the files.

No profile	Disables the profile feature. The current settings remain unchanged.
Save current settings as profile	Opens the "Save as" dialog box to save a profile (*.ucp file)
<profile names=""></profile>	List of profiles available in the program directory

Attention

Do not remove or rename the profile files created in the C:\Program Files\Thorlabs\DCx Cameras \Profile\ folder when you install the application. Otherwise program functions in uc480 Viewer may not work correctly.

See also:

- "Choose mode" start dialog 76
- <u>Creating profiles</u>

3.4.2.5.7 Help

Hotkeys	Opens a window with a list of keyboard shortcuts available in uc480 Viewer.
Info about uc480 Viewer	Opens a window showing version information about uc480 Viewer and related files.

3.4.2.6 Dialog Boxes

Please choose a dialog box:

- Record dialog
 ⁸⁴
- Customize 85
- Histogram window 86
- Horizontal/vertical line view 87
- Zoom window 87
- Pixel peek window 88
- Waterfall window
 8
- Log window 89
- Image infos 90

3.4.2.6.1 Recording a Video Sequence

Select the menu File > Record video sequence... Rol to open the uc480 record dialog box. This dialog box provides all the functions you need to create a video file (.avi) from a sequence of images captured with the DCx Camera.

file		C:\Users\[username]\Vi	deos\test.avi
Mau Casasa	1	Becoived	
max. Frames	1	Received	U
Maximal [MB]	4096	Dropped	0
Current [MB]	0.00	Saved	0
Calc. Framerate	0]	
IPEG Quality			75
1		100	

Note

Video resolution: If the width or height of the video resolution is greater than 2048 pixels, some media players may not be able to play the video.

Video compression: To reduce the file size, the single frames are stored in the AVI container using an adjustable JPEG compression. It is possible to extract single frames from the AVI file.

AVI capture workflow

Once the AVI file has been created, images transferred from the DCx Camera are placed in a buffer. Then, the images are compressed and added to the AVI file which is stored on the hard disk. These operations are not performed in the same thread as the capturing process. If you capture more images while a compression or write operation is in progress, the new images will be discarded.

Supported color formats

The supported input color formats are RGB32, RGB24, Y8 and raw Bayer. The output file will always be in RGB24 format, regardless of the input data format. Once the AVI file has been created, the following parameters of the input image can no longer be changed:

- Color format
- AOI, binning and subsampling
- Show only AOI

Note

AVI recording is only possible in the "Device Independent Bitmap (DIB)" display mode 21.

Record dialog box

• File

Name of the AVI file opened for recording.

• Max. Frames

If you select this check box, you can set the number of frames after which recording should stop.

Maximal [MB]

Sets the maximum size for the AVI file. Recording stops when the AVI file reaches the size limit. You can edit the entry in this box (default: 1998).

Current [MB]

Indicates the current size of the AVI file.

Received

Indicates the number of images transferred by the camera.

• Dropped

Indicates the number of images discarded during compression. A image is dropped if it arrives while compression is in progress.

Saved

Indicates the number of images saved to the AVI file.

• Calc. Framerate

If you select this check box, the frame rate of the AVI file is determined automatically during recording. It can also be set manually. The frame rate value is stored in the AVI file and evaluated by the movie player. The usual value is 25 or 30 frames per second.

The recording speed of the video depends on the selected color format, the image size and the compression level of the AVI file as well as the PC performance.

• JPEG Quality

This slider sets the JPEG compression level (1 = lowest quality/highest compression, 100 = highest quality/ lowest compression, default = 75).

• Create.../Close

Click this button to create a new AVI file for recording, and to close the file again when you are done. If you select an existing AVI file, the file contents will be overwritten during recording.

- Record/Stop Starts/stops AVI recording.
- Exit

Closes the Record dialog box. A recording in progress is stopped.

See also:

• AVI function descriptions 359

3.4.2.6.2 Customize

Select the menu $\underline{File > Customize...}$ b) to open the "Customize" dialog box. This dialog box provides options to define the behaviour of uc480 Viewer at program start.

Customize	-x-
Restore uc480Viewer parameters when camera is opened	
Restore window position and size	
Show image info window	
Show log window	
	ок

The following options are available:

- Restore uc480 Viewer parameters when camera is opened
- If you select this check box, the currently set camera parameters will be restored when the same DCxCamera

model is opened the next time.

- Restore window position and size
 If you select this check box, the size and position of the program window will be restored when uc480 Viewer is
 launched the next time.
- Show image info window If you select this check box, the <u>Image infos</u> window will be opened on program start.
- Show log window
 If you select this check box, the Log window 89 will be opened on program start.

3.4.2.6.3 Histogram

Select the menu <u>View > Histogram</u> to open the "Histogram" window. This window graphically displays the frequency distribution of the color values in the image captured by the camera.

For more information on histograms see the Bit depth and digital contrast adjustment and chapter.

The histogram always displays 256 values per channel. For color modes with a bit depth of more than 8 bits, the function evaluates the 8 most significant bits (MSBs).

The following options are available:

• Channel

With the "Red", "Green", and "Blue" check boxes, you can enable or disable the display for each color channel. Avg. displays the average of each color value.

For monochrome images, the average grayscale value is displayed.

Outlined

The "Outlined" check box enables you to toggle the color value display between an area diagram and a line diagram.

Logarithmic

If you select this check box, the values are displayed with logarithmic scaling.

Show Bayer RGB

This function is only available when a color camera is running in "Direct raw Bayer" mode. If you select this check box, the histogram represents the individual Bayer color components as red, green and blue channels.

3.4.2.6.4 Horizontal / Vertical Line View

Select the menu <u>View > Line view (horizontal/vertical)</u> at to open the "Line View" windows, which show the color values of a pixel row or pixel column.

The line view always displays 256 values per channel. For color modes with a bit depth of more than 8 bits, the function evaluates the 8 most significant bits (MSBs).

3.4.2.6.5 Zoom

Select the menu $\frac{\text{View} > \text{Zoom window}}{80}$ to open the "Zoom" window. This window shows an enlarged view of the image area at the selected cursor position.

If you enable the "Pixel Peek" check box at the top of the zoom window, the color values at the cursor position are displayed (see <u>Pixel peek window</u> s). Using the slider at the top of the window, you can set the zoom factor in the range between 0.25 and 20.00. The size of the image area depends on the selected size of the zoom window.

To set the cursor position you want to display in the window, place the cursor at that position in the image, hold the CTRL key and right-click. Alternatively, you can set the image position using the context menu.

3.4.2.6.6 Pixel Peek

Select the menu <u>View > Pixel peek window</u> to open the pixel peek window. This window displays the color values at the selected cursor position and those of the neighboring pixels.

Zoom Window - C1280G12C - ID: 1 - SerNo: 4002800473 🛛 🛛 🛛												
Pixe	✓ Pixel peek											
		846			847			848	;	1102202	849	
528	85	42	52	81	39	53	57	23	40	58	25	44
529	80	38	50	78	37	53	58	25	42	61	30	48
530	68	30	43	75	39	53	53	25	40	54	30	46
531	87	45	55	66	30	42	46	22	38	43	25	41
532	107	54	60	65	25	34	29	8	23	36	23	41
533	147	88	90	95	52	59	28	7	22	31	22	39
534	151	89	90	102	55	61	36	14	27	32	23	40
535	112	56	59	74	31	38	36	16	28	34	25	42
536	94	51	61	50	18	29	37	20	36	32	23	40
537	88	52	66	49	21	36	38	21	37	30	22	37
538	75	36	55	58	25	42	42	21	38	35	22	39
539	76	32	49	76	32	47	56	20	32	59	33	44
540	79	26	36	97	36	43	97	37	37	123	75	75
541	84	25	31	143	72	70	173	95	85	167	100	92
542	99	35	36	161	81	74	172	83	65	171	94	78
543	78	19	23	104	29	24	154	68	55	171	95	82

The color values at the cursor position are surrounded by a yellow rectangle. For monochrome images, the grayscale value is displayed. The window always displays 256 values per channel. For color modes with a bit depth of more than 8 bits, the function evaluates the 8 most significant bits (MSBs).

If you disable the Pixel Peek check box at the top of the window, the Zoom window is displayed (see Zoom Window 87).

To set the cursor position you want to display in the window, place the cursor at that position in the image, hold the Ctrl key and right-click. Alternatively, you can set the image position using the context menu.

3.4.2.6.7 Waterfall

Select the menu $\underline{\text{View} > \text{Waterfall window}}$ so to display the waterfall window. This window shows how a selected image line changes over time. For this purpose, the line at the selected cursor position is copied to the new window. With each new frame, all lines in the Waterfall window are moved one pixel down, and the new line is added at the top. This results in an image that flows from top to bottom and is useful for observing short-term image changes.

To set the cursor position you want to monitor in the Waterfall window, place the cursor at that position in the image, hold the Ctrl key and right-click. Alternatively, you can set the image position using the context menu.

3.4.2.6.8 Log

Select the menu $\underline{\text{View} > \text{Log window}}$ to display the logged data. In this window events and messages are logged.

Count	Time	Print	*	
11	09:02:07.378	Set ColorCorrection mode: 4.		C Low
12	09:02:07.378	Livevideo stopped.		Medium
13	09:02:07.398	Image aoi changed to x: 0 - y: 0 - width: 1280 - height: 1024.		C High
14	09:02:07.408	Binning mode set to: 0.		0.030
15	09:02:07.428	Starting Live Video.		Auto Scroll
16	09:02:07.558	Livevideo stopped.		
17	09:02:07.848	Image aoi changed to x: 0 - y: 0 - width: 1280 - height: 1024.		Log Transfer Failed
18	09:02:07.848	Subsampling mode set to: 0.		
19	09:02:07.878	Starting Live Video.	-	Clear Window
20	09:02:07.978	PixelClock changed to: 30	=	Clear Window
21	09:02:07.978	Livevideo stopped.		Save
22	09:02:07.988	Starting Live Video.		Javeni
23	09:02:08.178	Event thread started.	-	
	00.00.00 170	OLIVER I STORE		

The following options are available:

Level

With these radio buttons, you choose the logging level (Off, Low, Medium, High). The last level used is saved when you close the window. The next time you open the log window, logging is performed at that level.

Auto Scroll

When you select the Auto Scroll check box, the display automatically scrolls up when new entries arrive so that the new entries can be read.

Log Transfer Failed

Select the Log Transfer Failed check box if you want to log transfer errors.

Clear Window

The Clear Window button deletes the current messages.

· Save

The "Save" button opens the Windows "Save as" dialog box, allowing you to save the messages displayed in the log window in ASCII format (.txt file).

3.4.2.6.9 Image Infos

Select the menu <u>View > Image infos</u> to display a dialog box containing information on the image capture.

Ir	nage infos	×
	Capture errors	
	API no destination memory:	0
	API conversion failed:	0
	API image locked:	0
	DRV out of buffers:	0
	DRV device not ready:	0
	USB transfer failed:	0
	DEV timeout:	0
	ETH buffer overrun:	0
	ETH missed images:	0
	Total errors:	0
		Reset
	Camera image buffers	
	Number of image buffers	0
	Used image buffers	0
	0%	100%
	Resent packets	
	Number of packets	0
		Close

Capture errors

This group box provides detail information on errors that occurred during an image capture process:

Error	Description	#
API no destination memory	There is no destination memory for copying the finished image.	1
API conversion failed	The current image could not be processed correctly.	2
API image locked	The destination buffers are locked and could not be written to.	3
DRV out of buffers	No free internal image memory is available to the driver. The image was discarded.	4
DRV device not ready	The camera is no longer available. It is not possible to access images that have already been transferred.	5
USB transfer failed	The image was not transferred over the USB bus.	6
DEV timeout	The maximum allowable time for image capturing in the camera was exceeded.	7
ETH buffer overrun	Not applicable to DCx Cameras	8
ETH missed images		9

#	Possible cause	Remedy
1	Not enough destination memory allocated or all destination buffers locked by the application	 Reduce the frame rate so that there is more time to process the filled destination memory
2	Internal error during internal processing of the image	-
3	All destination buffers locked by the application	 Reduce the frame rate so that there is more time to process the filled destination memory
4	The computer takes too long to process the images in the uc480 API (e.g. color conversion)	 Reduce the frame rate so that there is more time to process the filled image memory of the driver Disable resource-intensive API image pre-processing functions (e.g. edge enhancement, color correction, choose smaller filter mask for software color conversion)
5	The camera has been disconnected or closed	-
6	Not enough free bandwidth on the USB bus for transferring the image	 Reduce the pixel clock frequency Operate fewer cameras simultaneously on a USB bus Check the quality of the USB cabling and components
7	The selected timeout value is too low for image capture	Reduce the exposure timeIncrease the timeout

Camera image buffers, Resent packets

Not applicable to DCx Cameras.

See also:

- Troubleshooting 499
- Programming: <u>is_GetImageInfo()</u>

3.4.2.7 Properties

When you select <u>uc480 > Properties</u> if from the main menu, a dialog box opens where you can set the DCx camera parameters. Changes made to camera and image settings here will take effect immediately.

When you close a camera in uc480 Viewer, the current settings are written to the Windows Registry. They will be loaded the next time you open a camera of the same type (see also the <u>Customize</u> settings to the camera or to an ini file, select <u>File > Save parameters</u> from the main menu. To load settings, select the "Load parameters" option.

Note

Depending on the camera model opened and the <u>user mode</u> set not all of the property pages might be available.

- <u>Camera</u> 93
- <u>Image</u> 95
- <u>Size</u> 97
- Format 99
- <u>Color</u> 102
- Trigger 103
- Input/output 104
- AES/AGC (automatic brightness control) 106
- AWB (auto white balance) 108
- Miscellaneous 110
- <u>Multi AOI</u> 112
- <u>Sequence AOI</u> 113
- Shutter 115

3.4.2.7.1 Camera

This tab provides parameters for settings the pixel clock frequency, frame rate and exposure time for your DCx camera (see also <u>Pixel clock</u>, frame rate and exposure time 4).

0001ewei - C1200	512C - 1D:	I - Sell	NO.: 4002800473		a a	
put / Output AE:	era	AWVB	Cizo	Format	Color	Trigger
T :		inage	JIZE	Tonnat	Color	nigger
Timing						
Camera peak ban	dwidth:		34.8 MB/s			
Camera average b	andwidth:		31.2 MB/s			
Sensor (max. band	dwidth):		30.0 MP/s			
Pixel clock					30	
Optimum				U .	50	
C optimon	/ MHz				35 MHz	
			Auto pixel	clock test p	eriod (s) 5	-
Hold Max Auto	0.50 fps			2	1.53 fps	
Exposure time					27.1	69 🌲
Hold	0.009 ms			46.	406 ms	
Max						
Auto						
Long-term						
Fine increment						
				Default		ose

Timing

- Camera peak bandwidth Maximum required bandwidth in MByte/s (peak load).
- Camera average bandwidth Required average bandwidth in MByte/s. The average bandwidth is calculated from the following data: Image size, image format, frame rate, and interface-related protocol overhead.
- Sensor (max. bandwidth) Maximum data volume in MPixel/s created by the sensor.

With USB 2.0 cameras, the upper limit depends on the USB chipset on the mainboard/USB card and on the number of USB devices connected. If transfer errors occur, reduce the pixel clock frequency.

Pixel Clock

Sets the clock rate at which the image data is read from the sensor. Changes to this parameter affect the frame rate and the exposure time.

Many CMOS sensors allow higher pixel clock frequencies in binning/subsampling mode.

o Optimum

When you select this check box, the highest possible pixel clock is determined and set automatically. The optimum pixel clock is the clock rate at which no transfer errors occur during the time (in seconds) set in the "Auto pixel clock test period" box. The longer you set the test period, the more reliable the determined pixel clock becomes. The total time it takes to automatically set the pixel clock is a bit longer than the test period setting.

Note

If the "Exposure (AES)" (automatic exposure) option is enabled in the <u>AES/AGC</u> tab the pixel clock cannot be set manually.

• Frame rate (Freerun)

Sets the frame rate in freerun mode. The available frame rate range depends on the pixel clock setting.

 \circ Hold

When you select this check box, the frame rate will remain constant if the pixel clock changes. If the frame rate cannot be maintained, it is set to the nearest possible value.

∘ Max

The camera is operated at the maximum frame rate that is possible at the current pixel clock setting.

o Auto

Select this check box to activate the auto frame rate function. This function is only available when <u>auto</u> exposure shutter 100 is enabled.

• Exposure time

Sets the exposure time. The available exposure time range depends on the pixel clock setting and the frame rate. A low frame rate setting allows long exposure times. A high frame rate setting reduces the maximum possible exposure time. In combination with flash an exposure time of 1 ms has been proven.

o Hold

When you select this check box, the exposure time will remain constant if the frame rate changes. If the exposure time cannot be maintained, it is set to the nearest possible value.

o Max

The camera is operated at the maximum exposure time that is possible at the current frame rate.

o Auto

Select this check box to activate the <u>auto exposure shutter</u> function. If the "Auto" check box is selected, the exposure time and pixel clock can no longer be adjusted manually. Selecting the "Hold" or "Max" check box deselects the "Auto" check box.

o Long-term

If you select this check box, you can set an exposure time of up to 10 minutes on CCD cameras.

o Fine increment

Select this check box to set the exposure time in fine increments. This option is not supported by all camera models.

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.7.2 Image

On this tab you can set the sensor gain parameters for your DCx camera (see also Gain and offset 44).

Input / Output	AES / AGO Camera	AWB Image	Miscellaneous Size	Multi AOI Format	Sequer	or AOI	Shutter Trigger
Master gain							
Gain 1.00x						0	
Auto	0				100		
🔲 Gain bo	ost						
Black level (Offset)						116	A. V
🗸 Auto	0				255		
Color gain							
White bala	nce Manu	al	•	Presets 🚺	None		*
Temperatu (kelvins)	re []				0	0	A. V
Red gain 1.20x						7	*
Green gain 1.00x						0	×
Blue gain 1.65x	0				100	22	×
Gamma							
On Factor	1.0				2.2	1.6	×
Hardwa	re sensor gam	ma					

Master gain

The following functions control the analog image signal gain and the black level. The analog adjustments are made directly in the sensor, which achieves better results than image adjustments via software.

• Gain [0 ... 100]

Gain for overall image brightness. Some camera models have no master gain.

Master gain = 100 means maximum gain; the actual factor is displayed. A gain factor of 1x disables master gain. The maximum possible gain factor depends on the model you are using.

o Auto

Select this check box to activate the <u>automatic gain control</u> function. Manually changing the master gain setting disables the "Auto" function.

o Gain boost

Additional analog camera hardware gain. The gain factor ranges between 1.5x and 2x, depending on the camera model.

• Black level (offset) [0 ... 255]

Offset for the black level of the sensor signal. The sensor adjusts the black level of the pixels automatically by default. If the environment is very bright, it can be necessary to adjust the black level manually. High gain may offset the black level. Only an additive offset is possible (increase of the black level).

o Auto

The black level is automatically corrected by the sensor (recommended).

Note

With cameras featuring both master gain and RGB gain, the two gain factors are multiplied. Very high gain values can be achieved in this way. If you want to use the RGB sliders for color adjustment, we recommend setting green gain to 0 and using only red and blue gain.

Color gain

You can fix a setting (in kelvins) for the <u>color temperature</u> from of an image when you are using a color camera. The function will use the sensor's hardware gain controls for the setting, as far as possible. In addition, you can choose

between different color spaces. A specific color temperature will result in slightly differing RGB values, depending on the selected color space.

- White balance
 - o Manual

Set the RGB gains manually.

o Auto

Enable the <u>AWB (auto white balance)</u> function.

o Default gains

Default gain values for this camera model.

o sRGB D50

sRGB (standard RGB) color space with a white point of 5000 kelvins (warm light)

- o sRGB D65
 - sRGB (standard RGB) color space with a white point of 6500 kelvins (mid daylight)
- o CIE RGB E

CIE-RGB color space with standard illumination E

o ECI RGB D50

ECI-RGB color space with a white point of 5000 kelvins (warm light)

o Adobe RGB D65

Adobe RGB color space with a white point of 6500 kelvins (mid daylight). The Adobe RGB color space is larger than the sRGB color space, but not all devices can render it.

Presets

This selection box offers several presets for common illumination types.

- Temperature (Kelvin)
 - Here, you can set a color temperature value directly.

For color cameras, the following functions control the analog gain for the RGB color channels. The analog control is performed in the sensor and achieve better results than software based image correction.

- Red gain [0 ... 100] Amplifies the red color values
- Green gain [0 ... 100] Amplifies the green color values
- Blue gain [0 ... 100] Amplifies the blue color values

Gamma

This function activates the gamma function and sets the factor for the gamma curve. The gamma function emphasizes dark image areas according to a non-linear curve.

• Hardware sensor gamma This option enables gamma correction by the hardware, using a fixed factor.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

• Characteristics and LUT: Gamma 39

Programming:

• Color Temperature: <u>is_ColorTemperature()</u> [180]

3.4.2.7.3 Size

On this tab, you can set the image size parameters for your DCx camera (see also <u>Reading out partial images</u> 34).

put / Output A	ES / AGC	AWB Miscel	laneous	Multi AOI	Sequen	ce AOI	Shutte
Info Ca	mera	Image	Size	Format	Colo	or	Trigger
AOI							
Show only A	01		Profile (1280 x 1024	(1.3M S	XGA)	•
Width					-0	1280	* *
	16				1280		
Height					-	1024	
	4				1024		
Left	<u> </u>					0	
Center	0				0		v
Тор	Π					0	
Center	0				0		Y
Format							
Binning		Horizontal	1x ▼		Vertical	1x	•
Subsampling		Horizontal	1x v		Vertical	1x	*
Mirror		Left/right			Up/d	own	
Scaler							
V Enable						1.000	*
Factor	1				4		
Anti aliasing	Nati	ve AOI: 0, 0, 1280	, 1024	Max	c. pixel cl	ock: 35	MHz

AOI

These parameters allow selecting the size and position of the area of interest 34.

Profile

With this selection box, you can set several common image formats on CMOS sensors. The driver then sets the selected format using either AOI, binning / subsampling, or scaler, so that it achieves the best image quality.

· Show only AOI

The AOI is displayed without a black border. Internally, the image is managed at the AOI resolution and not the full sensor resolution. This function saves memory and computing time when rendering the image.

o Width

Sets the AOI width.

o Height

Sets the AOI height.

o Left

Sets the left-hand position of the AOI.

Center

Select this check box to center the AOI horizontally.

о Тор

Sets the top position of the AOI.

Center

Select this check box to center the AOI vertically.

Horizontal format / vertical format

With these options, you can select the binning and subsampling strings for the image.

• Binning Horizontal/Vertical

These radio buttons allow setting the binning <u>factor</u>. 460 The image resolution is then reduced by the selected factor. You can use binning to increase the frame rate.

- Subsampling Horizontal/Vertical These radio buttons allow setting the subsampling factor. The image resolution is then reduced by the selected factor. You can use subsampling to increase the frame rate.
- Mirror Left/right | Up/down Select this check box to flip the image horizontally/vertically.

Scaler

With these options, you can configure the image scaling settings provided by specific DCxCamera sensors. These options are not available for all camera models.

- Enable Enables the sensor's image scaling feature.
- Factor With this slider, you can set the scaling factor. 460
- Anti aliasing The anti aliasing function smoothes the image edges during scaling.
- Native AOI Shows the native image size without the effect of the scaler.
- Max. pixel clock
 - Shows the maximum possible pixel clock with scaler.

Note

Binning and subsampling in color and monochrome cameras: Some color cameras perform only mono binning/subsampling due to the sensors they use. If mono binning or subsampling is used in a color camera, the color information will be lost.

Some monochrome cameras perform only color binning/subsampling due to the sensors they use. If color binning or subsampling is used in a monochrome camera, image artifacts might become visible.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

• Basics: Reading out partial images 34

Programming:

- Area of interest: <u>is_AOI()</u>
- Binning: is_SetBinning() 310
- Subsampling: is_SetSubSampling() 347
- Profiles/image formats: <u>is_ImageFormat()</u> 267

3.4.2.7.4 Format

On this tab you can set parameters for the color format and display mode of your DCx camera.

put / Output AES / AGC AWE Info Camera Imag	3 Miscella ge Si	aneous ze	Multi AOI Format	Seque	olor	Shutte Trigger
Pixel format						
Camera: 21.7 MB/s	Softv	vare	Open	CL	Hardware	
Debayering quality:	Normal	High	Normal	High	Normal	
Sensor raw 8					0	
Sensor raw 12					0	
Sensor raw 16					0	
Mono 8	0	0			0	
Mono 12	0	0			0	
Mono 16	0	0			0	
RGB15 (B5 G5 R5)	0	0			0	
RGB24 (B8 G8 R8)	\odot	\odot	0	0	0	
RGB32 (B8 G8 R8)	۲	\odot	0	0	0	
RGBY (B8 G8 R8 Y8)	0	0			0	
RGB30 (B10 G10 R10)	0	0			0	
RGB36 (B12 G12 R12)	0	0			0	
RGB8 Planar 🔹	\odot	\odot			0	
UYVY (YUV422)	0	0			0	
CBYCRY	0	0			0	
Display mode						
Oevice independent (DIB)	Direct	t3D	Op(enGL		

Pixel format

With these settings you define the target format to which you want to convert the sensor's raw data (raw Bayer). The <u>Color formats</u> color formats and their representation in the memory.

• Debayering quality

With this setting you select the conversion algorithm.

- o Software
 - Normal

The conversion is performed by software in the PC. The standard filter mask is used for the conversion.

High

The conversion is performed by software in the PC. A large filter mask is used for the conversion.

- o Open CL
 - Normal

The conversion is performed on the graphic card's processing unit. The standard filter mask is used for the conversion.

High

The conversion is performed on the graphic card's processing unit. A large filter mask is used for the conversion.

o Hardware Normal

The conversion is performed in the camera. The standard filter mask is used for the conversion. This radio button is not available for DCx cameras.

Note

- Color conversion with Open CL is not supported by all graphic cards.
- Open CL is not supported by mono cameras.

With the format radio buttons you specify the format in which the image data are written to the memory. The following formats are available:

Sensor raw 8

Direct output of the sensor's raw data (8 bits per pixel). If you are using a color camera, the pattern of the Bayer color filter is visible. With monochrome cameras, raw Bayer corresponds to the grayscale format with the exception of the LUT/gamma curves.

Sensor raw 12

Direct output of the sensor's raw data (12 bits per pixel, starting from the least significant bit (LSB)).

Sensor raw 16

Direct output of the sensor's raw data (12 bits per pixel, starting from the most significant bit (MSB)).

Mono 8

Output of a grayscale image to which the LUT/gamma curve has been applied (8 bits per pixel).

• Mono 12

Output of a grayscale image to which the LUT/gamma curve has been applied (12 bits per pixel, starting from least significant bit (LSB)).

• Mono 16

Output of a grayscale image to which the LUT/gamma curve has been applied (12 bits per pixel, starting from most significant bit (MSB)).

• RGB5 (5 5 5)

Output of an image converted according to RGB 15 (5 bits per pixel for R, G and B)

• RGB565 (5 6 5)

Output of an image converted according to RGB 16 (5 bits per pixel for R and G, 6 bits per pixel for B)

- BGR8 (8 8 8) Output of an image converted according to RGB 24 (8 bits per pixel for R, G and B)
- BGRA8 (8 8 8)

Output of an image converted according to RGB 32 (8 bits per pixel for R, G and B, 8 bit padding)

• BGRY8 (8 8 8 8)

Output of an image converted according to RGB 24 (8 bits per pixel for R, G and B) and an additional gray channel (8 bits per pixel)

- BGR10 (10 10 10)
 Output of an image converted according to RGB 30 (10 bits per pixel for R, G and B, 2 bit padding (MSB = 0))
- BGR12 (12 12 12)

Output an image converted according to RGB 36 (12 bit per pixel for R, G and B, 4 bit padding)

• BGRA12 (12 12 12)

Output an image converted according to RGB 48 (12 bit per pixel for R, G, B and alpha channel, 4 bit padding)

RGB8 Planar

Output an image converted according to planar RGB 8.

- RGB8 Planar (red) Output the red color component of an image converted to planar RGB 8
- RGB8 Planar (green) Output the green color component of an image converted to planar RGB 8
- RGB8 Planar (blue)
 Output the blue color component of an image converted to planar RGB 8
- UYVY (YUV422) Output of an image converted according to YUV (8 bits per pixel for U, Y, V and Y)
- CBYCRY Output of an image converted according to YUV (8 bits per pixel for Cb, Y, Cr and Y)

Note

We recommend 32 bit RGB mode for TrueColor applications. Y8 mode is usually used for monochrome applications.

Note

Images with a bit depths of more than 8 bits can be saved in the PNG format. 12 bit formats are converted in 16 bits.

Display mode

With these radio buttons you select the display mode for the image.

• Device independent (DIB)

The processor actively renders the image. This color format is supported by all graphics hardware and is recommended for applications that will be used on different PCs.

• Direct3D (Desktop color)

In this mode the images are written directly to an invisible area of the graphics card, mixed with optional overlay image data and displayed by the card without load on the CPU. The mode also allows scaling the images in real time.

Note

The display mode Direct3D is only supported by graphics cards with DirectX functionality.

• OpenGL

OpenGL is a cross-platform and cross-language programming interface for developing 2D and 3D computer graphics. Similar to Direct3D the capabilities of the graphics card are used to increase the performance.

Open MP

• Use OpenMP

OpenMP (Open Multi-Processing) is a programming interface that supports distributed computing on multi-core processors. When you activate OpenMP support, intensive computing operations, such as the Bayer conversion 26, are distributed across several processor cores to accelerate execution. The use of OpenMP, however, increases CPU load.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

- Basics: Color filter (Bayer filter) 26
- Basics: Display modes 21
- Basics: Bit depth and digital contrast adjustment 4
- Basics: Characteristics and LUT 39
- Programming: is_SetColorMode() [319]
- Programming (Open MP): <u>is_Configuration()</u> [183]
- Color formats in memory: Appendix: Color formats 502
- Graphics card: System requirements 56

3.4.2.7.5 Color

This tab provides color rendering settings for your DCx camera (see also Color filter 26).

Note

This tab is only available if a color camera is opened in the uc480 Viewer.

1.6		AND	wiscellaneous	Multi AOI	Sequen	ce AOI	Shutt
into	Camera	Image	Size	Format	Col	Dr	Trigge
Color satura	ation						
🔽 Enable							
Saturation	U					1	* *
Combin	e.000				2.00		
Saturation	v					1	×
	0.00				2.00		
BG40HQ							
Aut	0						
🔲 On							
Factor	-				—U	1	×.
	0.00				1.00		

Color saturation

This function enables and configures color saturation control.

In the YUV format, color information (i.e. the color difference signals) is provided by the U and V channels. In the U channel they result from the difference between the proportion of blue and Y (luminance), in the V channel from the difference between the proportion of red and Y. For the use in other color formats than YUV, U and V are converted using a driver matrix.

• Combine

Selecting this check box synchronizes the two "Saturation U" and "Saturation V" sliders.

IR color filter correction matrix

When using color cameras with IR filter glass, you need to set the appropriate color correction matrix to ensure correct color rendering. The driver detects the IR filter type and sets this value automatically ("Auto" button). You can also select the correction matrix manually.

Sensor color correction

This function corrects the color values of a pixel. The colors are rendered more accurately after the color crosstalk of the individual <u>Bayer pattern</u> filters has been eliminated by the color correction. The color correction factor is stepless adjustable between 0 (no correction) and 1 (full correction).

Activating the sensor color correction may increase CPU load.

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.7.6 Trigger

This tab provides the settings for triggered image capture with your DCx camera (see also $\underline{\text{Digital in-/output (trigger/flash})}$

put / Output	AES / AGC	AWB	Miscellaneous	Multi AOI	Sequence AO	Shutte
Info	Camera	Image	Size	Format	Color	Trigger
Input						
Status						
Trigger delay	/ n				0	
(Framerate)	U				Ľ	w.
Enable	15 με		4	.000000 µs (4.00 s)	
Mode						
Software				Bur	st size 1	*
Falling ed	lae					hanned
Distance of the second se						
	ige					
Trigger timed	out 🛛 🚽				2000	×
	100 ms		36	00000 ms (6	0 min)	
Debounce						
	Off		•			
Mode					0	
Mode Delau time					-	v
Delay time	0				U	
Delay time	0					
Delay time	0					
Delay time Camera	0 art (Trigger Mo	ode)				

Input

Status

If you select this check box, the signal level applied at the camera's trigger input is polled and displayed.

 Trigger delay (frame rate) Select this check box to set a delay between the arrival of a software or hardware trigger signal and the start of exposure.

Mode

With these radio buttons, you choose which trigger mode you want to activate in the camera:

Software

The camera is running in software trigger mode without a signal applied. The images are captured continuously.

Falling edge

The camera captures an image on the falling edge of the signal applied to the trigger input.

• Rising edge

The camera captures an image on the rising edge of the signal applied to the trigger input.

 Trigger timeout [ms] Specifies a timeout for the trigger mode. If the camera does not receive a trigger signal within this time, a timeout message is transmitted and the transmission error counter is incremented.

Debounce

This function is not relevant for DCx cameras.

Camera

· Global start (trigger mode)

If you select this check box, all rows of a rolling shutter sensor are exposed simultaneously. Activating <u>Global</u> <u>start</u> and only makes sense when using a flash. This function is not supported by all models.

Note

Frame rates in trigger mode: Please note that the frame rate in trigger mode is always lower than in freerun mode. This is due to the sequential transmission. First the exposure takes place, then the transfer. A new exposure can only be performed after the transmission is completed. Therefore, the freerun mode is faster.

High trigger rates are achieved only with short exposure times and a high pixel clock setting.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

• Basics: Shutter methods: Global start 32

Programming:

• Trigger: is_SetExternalTrigger() [327]

3.4.2.7.7 Input / Output

On this tab, you can set the parameters for the flash output and the GPIOs on your DCx camera (see also <u>Digital</u> <u>in-/output (trigger/flash)</u>.

Info Ca	mera	Image	Size	Format	Color	Trigger
nput / Output A	ES / AGC	AWB	Miscellaneou	s Multi AOI	Sequence AOI	Shutte
Flash output						
Off		Consta	ant high	🔘 Fla	ish high active	
O PWM		Consta	ant low	🔘 Fla	sh low active	
Glob	al exposure	e window				
Flash delay	n				0	* *
	-69 µs			66675.79 µs ((0.07 s)	
Duration	0-				0	
(U = Auto)	0 μs			66675.79 μs (C).07 s)	
Pulse-width mod	ulation					
Frequency						* *
	0				0	
Duty cycle	<u>n</u> —					A
	0				0	Lange
GPIO 1	GP	10 2	GPI	0 3	GPIO 4	
Status	Sta	tus	Stat	us	Status	
🔘 Input	0	nput	O Ir	nput	Input	
Output low	0	Output low	00	output low	Output	ow
Output high	0	Output high	00	output high	Output	high
Flash	0	Flash	O F	lash	Flash	
O PWM		PWM	🔘 F	MW	O PWM	
			_			

Attention

When you are using the DCx Camera's flash function, you need to re-enable the flash (i.e. disable and then activate it again) whenever you change the pixel clock setting or horizontal image geometry. This is necessary to newly synchronize the internal timing settings of the flash output with the start of sensor exposure.

Flash output

With these radio buttons, you choose which digital output function you want to activate on the camera:

- Off
- The digital output is disabled.
- Constant high

The digital output is set to "High" regardless of the exposure.

- Constant low The digital output is set to "Low" regardless of the exposure.
- Flash high active
 - The digital output is set to "High" during the exposure.
- Flash low active The digital output is set to "Low" during the exposure.
- Global exposure window

The values for flash delay and duration are calculated to trigger the flash when all sensor rows are exposed simultaneously for sensors with rolling shutters. If you are using the "Global start" function, the flash delay has to be set to 0 (see also Shutter methods 3.).

· Flash delay

Sets the delay for the digital output. After an exposure has started, activating the digital output is delayed by the time set in flash delay.

• Duration (0 = Auto)

Sets the switching time of the digital output. The digital output is activated for the time set in "Duration". The value 0 means that the signal is active over the entire exposure time (default). Requirement in freerun mode: The "Global exposure window" must be enabled.

Pulse-width modulation (only DC320x Cameras)

The pulse-width modulation (PWM) can be controlled by two parameters (frequency and duty cycle) and can be set on the flash output and the additional GPIOs respectively (see also $\underline{is}_{10}()$ [280]).

- Frequency (in Hz) Frequency of the pulse-width modulation (PWM)
- Duty cycle (in %)
 Duty cycle of the pulse-width modulation (PWM width)

GPIO

The GPIOs (General Purpose I/O) of the DCx Cameras can be used as inputs or outputs. See the <u>Model</u> <u>comparison</u> <u>set for the camera models which support GPIO.</u>

- Status
 - Polls the signal level applied to the GPIO.
- Input Sets the GPIO as trigger input.
- Output low
 - Sets the GPIO as output. The output signal is statically set to "low".
- Output high

Sets the GPIO as output. The output signal is statically set to "high".

• Flash

Sets the GPIO as flash output. The settings you made in the "Flash output" box are used.

Note

Detailed information on wiring the DCxCamera inputs and outputs is provided in the "Electrical Specifications" section of the <u>Specifications</u> chapter.

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.7.8 AES/AGC (Automatic Brightness Control)

On this tab, you can set parameters for automatically adjusting the exposure time and sensor gain of your DCx camera (see also Automatic image control 45).

c480Viewer - C	L280G12C - II	D: 1 - Serl	No.: 400280047	3			×
Info	Camera	Image	Size	Format	Col	or	Trigger
Input / Output	AES / AGC	AWB	Miscellaneous	Multi AOI	Sequer	nce AOI	Shutter
Image contras	st (AES) [: C) [or's auto featur	20.625 ms MIN]] F	irame rate (Al Run once	FR)	[15.00	fps]
Brightness reference	0				255	128	 T
Exposure limi	t ,	IS		66	.621 ms	66.621	* *
Gain <mark>l</mark> imit	0				100	100	·
Speed	0				100	50	×
Hysteresis	0	-0			10	2	
Skip frames	0				1000	4	* *
Histogram are	a						
Mean [129]							
				Default		Close	•

Notes

- Auto Exposure Shutter (AES) automatically adjusts image brightness based on the exposure shutter setting. Long exposure times may cause motion blur.
- Auto Gain Control (AGC) automatically adjusts image brightness based on the <u>hardware gain control</u> 4 setting of the camera sensor. You can activate this function in addition to AES if ambient light conditions are poor. High gain settings may cause artefacting.
- Auto Frame Rate (AFR) adjusts the frame rate to allow longer exposure times (see also <u>Pixel clock</u>, frame rate and <u>exposure time</u> 44). Selecting this check box might decrease the frame rate substantially. This function is only available when AES is active.

Image contrast

Use the following settings to configure automatic brightness control:

• Exposure (AES)

Enables automatic adjustment of image brightness, i.e. the exposure time is automatically adjusted to achieve the preset brightness reference value.

Note

If AES is enabled together with AGC and AFR, AES has the highest priority, i.e. AES is set first and then AGC and AFR.

Framerate (AFR)

Enables the framerate control. This option is only available when AES is active.

If the maximum exposure time is not sufficient for a brighter image, you can use AFR to reduce the frame rate and so extend the exposure time.

Gain (AGC)

Enables the automatic gain, 4 i.e. the control automatically adjusts the gain to achieve the set brightness reference value.
• Run once

The control is switched off automatically if the specified target value is reached or nearly reached, and the set value does not change after three measurements.

- Use sensor's auto features This option enables on some sensors the internal brightness adjustment.
- Brightness reference Defines the target value which should be set. Under normal conditions, a reference value of 128 is sufficient.
- Exposure limit

Sets the upper limit for the exposure time. This upper limit is not exceeded if AES is enabled. If AES and AFR is enabled then the upper limit is ignored.

Gain limit

Sets the maximum gain limit. This upper limit is not exceeded when AGC is enabled.

Speed

Sets the adjustment speed. The higher the speed control is set, the faster the adjustment is. Setting the speed control to 0 disables the adjustment functionality. If the value is set to high the adjustment starts to oscillate. In this case you have to reduce the adjustment speed.

• Hysteresis

Defines the difference by which the actual value can differ from the target value. If the target value is set e.g. to 128 and the hysteresis is set to 2, so there will be no regulation as long as the actual value is between 126 and 130 (see also <u>Automatic image control: Hysteresis</u> 46).

If the value for hysteresis is too small, the adjustment starts to oscillate. It is recommended to keep the standard value of 2.

Skip frames

Number of frames that will be skipped during automatic image control when freerun mode is active (see also <u>Automatic image control: Control speed</u> 4^c). The higher the frame rate, the higher the value should be. If the value is too small, the adjustment may starts to oscillate, or there is an overload of the system. In this case increase the value.

Histogram area

The histogram area specifies which area of the image will be used for calculating the average grayscale value of the image. You can set the size of the histogram area by using the tools on the toolbar.

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.7.9 AWB (Automatic White Balance)

On this tab, you can set parameters for automatically adjusting the white balance of your DCx camera (see also <u>Automatic image control</u> 45).

Note

This tab is only available if a color camera is opened in the uc480 Viewer.

To carry out <u>white balancing</u>, 45 aim the camera at a surface of a uniform gray color. You can perform white balancing either manually with the RGB gain control or by using the "Auto White Balance (AWB)" function.

Info Input / Output	Camera AES / AGC	Image AWB	Size Miscellaneous	Format Multi AOI	Colo	r ce AOI	Trigger Shutter
Image white	balance						
Auto (Kelvir	n) 🔻	sRGE	B D50 ▼	📃 Run o	nce		
Use sens	sor's <mark>au</mark> to featu	ires		Gain [4,	0,15]		
Bed offset						0	A
ricd onset	-50				ا 50		
Blue offset						0	
	-50				50		
Gain min						0	×.
	0				100	100	A
Gain max	0				100	100	v
Sneed	,				[50	A
opeed	0				100		×
Hysteresis		_0				2	*
	0				10		
Skip frames	<u> </u>				1000	4	×
1	0				1000		
Histogram an	ea						
Mean [0, 0,	0]						

Image white balance

• Drop down list for AWB mode

o Off

The automatic white balance is disabled.

• Auto (Gray World)

If this option is enabled, the RGB gains are so controlled that the three colors have the same average.

o Auto (Kelvin)

If this option is enabled, the RGB gains are controlled by predefined color temperatures.

• Drop down list for color spaces This drop down list is only available if AWB mode "Auto (Kelvin)" is selected. Here, you can select the color

space e.g. sRGB D50 or CIE RGB E.

Run once

The control is switched off automatically if the specified target value is reached or nearly reached, and the set value does not change after three measurements.

- Use sensor's auto features This option enables on some sensors the internal white balance.
- Red offset/Blue offset Shifts the respective color intensity relative to green Example: If the Gray World algorithm controls to an average value of 65 and a blue offset is set of -40, the blue gain so is adjusted that blue has an average value of 25.

Gain min

Sets the minimum gain. This limit is not exceeded, i.e. a base gain is set for the white balance control. Via this minimal gain color cameras without master gain s can reproduce the gain.

Gain max

Sets the upper adjustment limit. This limit is not exceeded.

Speed

Sets the adjustment speed. The higher the speed control is set, the faster the adjustment is. Setting the speed control to 0 disables the adjustment functionality. If the value is set to high the adjustment starts to oscillate. In this case you have to reduce the adjustment speed.

• Hysteresis

Defines the difference by which the actual value can differ from the target value. If the target value is set e.g. to 128 and the hysteresis is set to 2, so there will be no regulation as long as the actual value is between 126 and 130 (see also <u>Automatic image control: Hysteresis</u> 46).

If the value for hysteresis is too small, the adjustment starts to oscillate. It is recommended to keep the standard value of 2.

• Skip frames

Number of frames that will be skipped during automatic image control when freerun mode is active (see also <u>Automatic image control: Control speed</u> 46). The higher the frame rate, the higher the value should be. If the value is too small, the adjustment may starts to oscillate, or there is an overload of the system. In this case increase the value.

Histogram area

The histogram area specifies which area of the image will be used for calculating the average value of the image. You can set the size of the histogram area by using the tools on the toolbar. \overrightarrow{rr}

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.7.10 Miscellaneous

This tab provides parameters for setting miscellaneous functions for your DCx camera.

110 00	mera	Image	Size	Format	Color	Trigger
nput / Output A	ES / AGC	AWB	Miscellaneous	Multi AOI	Sequence AOI	Shutte
Hotpixel Mark hotpixe Hotpixel corr	el rection ixel correctio	n				
Test image						
Selection	None			•		
Parameter value	e []				0	4
Edge enhancem	ent					
🔲 On						
Factor	1				0 9	A V
-12C						
V Hexadecima	al			📃 16 bit	data	
Device address	(8 bit)	0x		Rea	d	
Register addres	s (8 / 16 bit)	0x		Writ	e Ox	

Note

Sensor hotpixel correction and DCC1240x / DCC3240x: If sensor hot pixel correction and Multi AOI are enabled, the sensor displays a four pixel wide black line between the AOIs.

Hotpixel

This function corrects the sensor hotpixels specified in the camera EEPROM.

- Mark hotpixel If you select this check box, the hotpixel positions stored in the camera are graphically represented in the image.
- Hotpixel correction
 Select this check box if you want to enable a software-based hotpixel correction.
- Sensor hotpixel correction Enables the sensor's internal hotpixel correction for some models.

Test image

The camera transmits a selectable test image that you can use for testing the data transmission. You can choose from different types of test images, depending on the camera type.

Selection

None
White image
Gray wedge (sensor)
Animated gray wedge (sensor)
Ramping pattern

Parameter value

You can adjust the appearance of some of the test images with the "Parameter value" slider.

Note

- Manually changing the pixel clock will disable the test image mode.
- · Animated test images are ideal for testing recorded sequences.
- With some sensors, the sensor gain setting has an influence on the test image.
- A white test image is recommended to check the camera's maximum load on the USB bus. Due to the transmission process, completely white camera images require somewhat more bandwidth on the USB bus than completely black images.
- To turn on hotpixel correction does not make sense for a test image.
- The test images are transferred with a bit depth of 8 bit.

Edge enhancement

• This function activates a software filter that emphasizes the edges in the image. Enabling the edge enhancement function increases the CPU load during image capture.

I2C

This function is not relevant for DCx Cameras.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

Basics: <u>Hot pixels</u> 28

Programming:

- Hotpixel: is_HotPixel()
- Edge enhancement: is_EdgeEnhancement()
- Test image: is_SetSensorTestImage() [345]

3.4.2.7.11 Multi AOI

This tab provides settings for configuring the Multi AOI feature provided by specific DCxCamera sensors. The Multi AOI function allows defining more than one AOI in an image and transferring these AOIs all at the same time (see <u>Area of interest (AOI)</u> (35) in the "Basics" chapter).

Note

This tab is only available when a DCC1240x or DCC3240x Camera has been opened in uc480 Viewer.

Notes

- When the Multi AOI function is enabled, no changes can be made to the image size settings (e.g. binning, subsampling, scaling). Disable Multi AOI to change the size of an image and then re-enable the function.
- If sensor hotpixel correction and Multi AOI are enabled, the sensor displays a four pixel wide black line between the AOIs.
- The available step widths for the position and size of image AOIs depend on the sensor. The values defining the position and size of an AOI have to be integer multiples of the allowed step widths. For detailed information on the AOI grid see the <u>DCC1240x / DCC3240x 461</u> chapter.
- It is possible to switch the AOI in the horizontal direction.
- X-axes/Y-axes

Select one of the two check boxes to create two AOIs along the X or Y axis. Select both check boxes to create four AOIs.

- Sensor hotpixel correction This check box enables the sensor's internal hotpixel correction function.
- Refresh preview Refreshes the preview image shown at the bottom of the tab.
- X1...X4/Y1...Y4 Defines the X and Y values in pixels for the individual AOIs.
- Preview window

Displays a preview image and allows graphically setting the individual AOIs by moving the colored boxes that are displayed at the end of each axis.

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.7.12 Sequence AOI

On the "Sequence AOI" tab you do the settings for the sequence AOI mode of some DCx Cameras. In this mode you can capture e.g. the same AOI with different parameter sets – exposure, gain, etc. (see Basics: Area of interest (AOI) 35).

Note

- The sequence AOI mode is only supported by DCC1240x and DCC3240x camera models.
- Note that the sequence AOI mode cannot be used in combination with scaler, subsampling or binning.

In contrast to the Multi AOI 112 the different AOIs are captured one after another in sequence AOI mode. The sensor readouts all AOIs sequentially and transfers the images as e.g. the same AOI is readout four times. The frame rates are identical, but you can define different settings. For every AOI exposure time and master gain can be set individually. For example you can capture the same AOI at first with a short exposure time and after this with a long exposure time. An advantage of the sequence AOI mode is that you need no time for moves of the position and it is not necessary to reprogram the AOI.

Beside the normal AOI (AOI 1) you can define up to three additional AOI 2-4. These additional AOI have the same size as AOI 1, but you can set different parameters for:

- Position of AOI
- Exposure time
- Gain
- Readout cycles (number of images)

uc480Viewer - C1280G12C - ID: 1 - SerNo.: 4002800473	
File Edit View uc480 Draw/Measure Profiles Help	
🍽 🍕 🤏 🧇 🌍 💭 🎞 🗔 💽 🗵 🕵 🖾 🖾 🗾 😕 🎥	. 🕳 💵 🔩
AOI: 2, cycle: 35 uc480Viewer - C1280G12C - ID: 1 - SerNo.: 4002800473	E E E E E E E E E E E E E E E E E E E
Info Camera Image Size Format Color T Input / Output AFS / AGC AWB Miscellaneous Multi AQL Sequence AQL	Trigger
1:4 × 1/2 Width 216	
AOL 3	
Number of used AOIs 4 Current AOI AOI3	•
Automatic copying of the AOI 1 image parameters	
∑ Snow AUI index in image 280	
0 1064	
Y position 562	
Exposure time 15.568	
0.009 ms 23.048 ms	
A Mastergain 0 100	
Readout cycles 50	
	· · ·
BGRA8 (216 x 228) Frames: 23913 Display: 22775 Missed: 0 Failed: 0 Recon: 0 Transfer: O	K FPS: 32.02

After you have defined an AOI, open the "Sequence AOI" tab. In the upper area you see the position and size of AOI 1. In the area below you define the further AOIs.

- Number of used AOIs
 - Here, you define the numbers of additional AOI. If you select further AOIs, the parameters of AOI 1 are copied for

DCx Cameras

the new AOI initially.

Current AOI

Here, you select the AOI which parameters you want to edit. You can only change the parameters of AOI 2, 3 or 4.

- Automatic copying of the AOI 1 image parameters If you change AOI 1, e.g. set a new exposure time, these changes are copied to AOI 2 etc. if this option is activated. Otherwise the changes of AOI 1 have no influence on the further AOIs.
- Show AOI index in image Activate this option see in the left upper corner the number of the AOI. By default the font has the color black.
- X position/Y position Moves the current AOI in vertical or horizontal direction respectively. An overlapping of the different AOIs is possible.
- Exposure time Changes the exposure time of the current AOI.
- Master gain Setting the gain for the current AOI.
- Readout cycles Here, you can define for AOI 2-4 how often they are readout and the images are transferred. AOI 1 is always readout once.

Hint

If capturing the same AOI with different exposure times, you can create via software a HDR image from the single images.

3.4.2.7.13 Shutter

Note

This tab is only available when a DCC1240x or DCC3240x Camera has been opened in uc480 Viewer and provides parameters for setting the readout modes provided these camera's sensors (see also <u>Shutter methods</u> and <u>Line scan mode</u> 33 in the "Basics" chapter).

Info	Camera	Image	Size	Format	Color	Trigger
Input / Outpu	It AES / AGC	AWB	Miscellaneous	Multi AOI	Sequence AO	I Shutte
Area						
Global	shutter					
Global	shutter (alternati	ve timing)				
Rolling	shutter					
Rolling	g shutter (global s	tart)				
Line						
🔵 Fast lir	nescan					
Trigge	red linescan					
Line numl	ber 🛛 🗕				120	A V
	120				347	
Log mode						
Factor	y default with An	tiblooming				
Off (Ne	o Antiblooming)					
Manua	al Log Mode					
					0	
Log Mode	e value					v
	U				12	
Log Mode	e gain					v
	0				4	

Area

· Global shutter

The camera is operated in <u>global shutter mode</u>. This mode allows capturing fast-moving objects without geometric distortions.

• Global shutter (alternative timing)

When using the camera in global shutter mode there can be in some cases problems with the black level. In the mode "Global shutter (alternative timing)" the sensor holds the black level as in rolling shutter mode. This mode should not be used with a frame rate below 2 fps.

Rolling shutter

The camera is operated in <u>rolling shutter mode</u>. This mode reduces image noise in image capture. To capture fast-moving objects in rolling shutter mode, you might need a flash.

Note that the flash timing can conflict with the sensor exposure if you use flash in rolling shutter mode without global start.

• Rolling shutter (global start)

The camera is operated in rolling shutter mode but with <u>global start.</u> As in this mode the exposure of all lines is started at the same time, this mode is especially suitable for flash.

For further information see "Basics": Shutter methods 30.

Line

Note

Currently, only the monochrome DCC1240M and DCC3240M/N camera models support the "fast line scan" mode.

• Fast linescan Enables the sensor's fast line scan mode. Line number

Defines the line to be scanned

For further information see "Basics": Line scan mode 33.

Log mode

The Log mode is a special mode of the DCC1240x and DCC3240x camera models. It defines the threshold defines at which the linear sensitivity changes into a logarithmic characteristic.

At very short exposure times (less than 0.1 ms) there may occur e.g. so-called crosstalk effects in the global shutter mode, which have the effect that the image content appears brighter in the vertical from top to bottom. This effect can be avoided by the Log mode.

- Factory-default with anti-blooming Recommended setting
- Off (no anti-blooming)

At longer exposure times without gain, it may happen that the sensor does not achieved white. This is because of the sensor automatism to prevent overexposure (blooming). Remedy offers the use of a gain factor of 1.4x or the mode "Off (no anti-blooming)."

For short exposure times this mode should not be used, otherwise the image (particularly in global shutter mode) can be extremely overexposed.

Manual Log mode

In this mode it is possible to display the information in the overexposed image areas. This mode is effective for exposure times below 5 ms.

LogMode value

Using a slide control with 13 levels you can adjust the threshold at which the linear sensitivity pass over into a logarithmic characteristic. Here, the value "0" represents the lowest active level and "12" corresponds to the highest level.

o LogMode gain

When using the manual Log mode no master gain is possible. The gain can be adjusted with the LogMode gain. The gain can be adjusted in 5 levels. The level "3" corresponds to a gain factor of 1 for monochrome or color sensors. For the NIR sensor the level "1" corresponds to a gain factor of 1.

Example: A low level results in a low gain and may display more details in the overexposed image areas. A higher level gives a higher gain, thereby a darker image can be brightened (see also DCC1240x / DCC3240x Application Notes ⁶³).

Default

Click this button to reset all parameters to the model-specific defaults.

3.4.2.8 Creating profiles

Profiles for setting camera parameters in uc480 Viewer

Profile files for uc480 Viewer are text files with the file name extension *.ucp. As opposed to $\underline{uc480 \text{ parameter files}}$ (ini files), profiles are not tied to a specific camera model and do not contain all the camera settings. Some parameters in profiles are relative settings (e.g. exposure 0-100 %) to ensure compatibility with all camera models.

You can create new profiles and load them from the <u>start dialog</u> 761. When you start uc480 Viewer, the application searches the C:\Program Files\IDS\uc480\Program folder for profile files and lists them in the <u>Profiles</u> <u>menu</u> 831. The profile names shown in the menu are named after the files.

Attention

Do not remove or rename the profile files created in the C:\Program Files\Thorlabs\DCx Cameras $\Profile\$ folder when you install the application. Otherwise program functions in uc480 Viewer may not work correctly.

Note

The profiles are a feature of uc480 Viewer. They cannot be used through the uc480 API.

Structure of a profile file for setting camera parameters

Profile files have the structure described below. They do not have to contain all the parameters listed here.

Parameter	Description		
[DISPLAY]			
PIXEL_FORMAT	Color format see also <u>is_SetColorMode()</u> เมษา		
RENDER_MODE	Render mode (DIB, Direct3D, OpenGL) see also Image display modes and is_SetDisplayMode() [322]		
FIT_TO_WINDOW	Fits the image to the window		
[TIMING]			
PIXELCLOCK	Pixel clock in MHz see also Pixel clock, frame rate, exposure time 44 and <u>is_PixelClock()</u> [294]		
FRAMERATE	Frame rate 0-100 % see also <u>is_SetFrameRate()</u>		
EXPOSURE	Exposure time 0-100 % see also <u>Is_Exposure()</u>		
[COLOR]			
CORRECTION_FACTOR	Color correction factor 0-100 % see also <u>is_SetColorCorrection()</u>		
SATURATION_U	Color saturation 0-2x see also <u>is_SetSaturation()</u> [34 ²]		
SATURATION_V	Color saturation 0-2x see also <u>is_SetSaturation()</u> [342]		
[IMAGE_PARAMETERS]			
EDGE_ENHANCEMENT	Edge enhancement see also <u>is_EdgeEnhancement()</u> 200		
GAMMA	Gamma correction see also <u>is_SetGamma()</u> 332		
[AES_AGC_AFR]			
EXPOSURE	Auto exposure shutter see also <u>is_SetAutoParameter()</u> 303		
GAIN	Auto gain control see also <u>is_SetAutoParameter()</u> 303		
FRAMERATE	Auto frame rate setting for auto exposure shutter see also <u>is_SetAutoParameter()</u>		

DCx Cameras

Parameter [AWB] WHITEBALANCE		Description	
		Auto white balance see also <u>is_SetAutoParameter()</u>	
Example of a profil	e file		
[DISPLAY] PIXEL_FORMAT RENDER_MODE FIT_TO_WINDOW	= 0 = 1 = 1	<pre>// 0 = RGB32, see uc480.h for defined formats // 1 = IS_SET_DM_DIB, 4 = IS_SET_DM_DIRECT3D, see uc480.h for defined render m // 0 = No scaling, 1 = Scale image to window</pre>	nodes
[TIMING] PIXELCLOCK FRAMERATE EXPOSURE	= 30 = 100 = 50	// MHZ // 0 = min, 100 = max // 0 = min, 100 = max	
[COLOR] CORRECTION_FACTOR SATURATION_U SATURATION_V	= 100 = 120 = 120	// 0 = 0.0, 100 = 1.0 // 0 = 0.0, 200 = 2.0 // 0 = 0.0, 200 = 2.0	
[IMAGE_PARAMETERS] EDGE_ENHANCEMENT GAMMA	= 0 = 160	// 0 = disable, 1 = weak, 2 = strong // 100 = 1.0, 220 = 2.2	
[AES_AGC_AFR] EXPOSURE GAIN FRAMERATE SPEED SKIPFRAMES	= 1 = 1 = 0 = 50 = 0	<pre>// 1 = on, 0 = off // 1 = on, 0 = off // 1 = on, 0 = off // 0 = min, 100 = max // 0 = min, 100 = max</pre>	
[AWB] WHITEBALANCE SPEED SKIPFRAMES	= 1 = 50 = 0	// 1 = on, 0 = off // 0 = min, 100 = max // 0 = min, 100 = max	

See also:

- <u>"Choose mode" start dialog</u>
- <u>"Profiles" menu</u> 83

3.4.3 uc480 Player

Using the uc480 Player, you can open and play back AVI files, e.g. created with the <u>uc480 Viewer</u> reprogram, in MJPEG format. Images stored in JPG/BMP format can also be displayed.

The uc480 Player can be accessed as follows: Start > All Programs > uc480 > uc480 Player

Note

Only one instance of the uc480 Player can be opened at a time.

After program start, the uc480 Player will display the following dialog box:

The user interface of the uc480 Player adjusts to the language of the operating system. After the player has started, only the button for loading a video file is active. How to load a video file will be explained in the following section.

3.4.3.1 Loading an AVI file

After clicking the 🚰 button, the "Open File" dialog box opens where you can select one or more files to be opened. If you select multiple files, they will be played back one after the other in alphabetical order.

Alternatively, AVI files can also be opened and played back simply by drag and drop. To do this, drag the files with the left mouse button pressed into the uc480 Player dialog box; then, release the mouse button.

# Open	My Videos 👻 🍕 Search	My Videos
Organize 🔻 New folder		E • 🗌 🔞
 Recovery RECYCLER System Volume Information Temp Users [username] AppData Documents Downloads My Pictures Administrator 	test.avi	
File name: test.avi	▼ [uc480®	video file (*.igd;*.avi) 🔻
	Up	

Once the required file has been opened, another window for the video film appears on top of the uc480 Player. You can move this window freely around the screen, independently of the player window.

When you place the mouse pointer inside the video window, its display changes to a small magnifying glass and the zoom function of the uc480 Player is enabled. Using the left mouse button, you can now select an area within the video image that will be resized to fill the window (Zoom In), even during playback. Double-clicking the left mouse button inside the window will revert the display to its original size (Zoom Out).

3.4.3.2 Overview of the Operation Controls

The buttons in the uc480 Player user interface are for the most part self-explanatory and are based on the keys and symbols of a standard video recorder.

◀	Reverse: play video backwards
	Play: play video forwards
	Stop: stop playing the video (symbol appears after you click the Play button). The last frame will be frozen.
I	Jump to start of video
€	Fast rewind
	One frame back
	One frame forward
▶	Fast forward
₩	Jump to end of video
K	Go to specific frame. When you click this button, a small dialog box will open where you can enter the frame number.
@	Start Loop mode (blue text)

3 Operation

()	Stop Loop mode (red text)
K	Start of playback loop
	End of playback loop
	Save current frame as BMP file or JPEG file
Š	Print current frame
X	Sound on/off
F	Open video file
	Close video file

1	Position markers for the defined playback loop
2	Current position in video file
3	Size of the video display window in pixels
4	Current frame number
5	Number of frames in video file
6	Volume control
7	Frame display parameter settings. Each slider can be reset to its default setting by clicking it with the right mouse button. The settings are also applied to the subsequent files.
8	Current playback speed setting
9	Playback speed in relation to the recording speed from 0.1 to 200 fps. The values are set in increments.

Using the H button, you can jump directly to a specific frame. To do so, enter a numerical value between 1 and the total number of frames in the video sequence.

Frame position	×
Jump to position : 164	[1391]
ок	Cancel

3.4.3.3 Loop Mode

When using the uc480 Player, you can select specific periods of time within the video sequence and play them back in an endless loop. To do this, click the button. This enables the two icons for marking the start and end of the playback loop. To select the start position, use the mouse to drag the position marker to the desired start position in the endless loop and then click the $\fbox{}$ button. Then, set the position marker to the desired end position using the same method. Click the $\vcenter{}$ button to complete defining markers.

3.4.3.4 Video Window and Full Screen Mode

The video window is displayed dynamically. The possible display sizes are determined based on the capture resolution and the screen resolution.

Note

The video is played back at the same aspect ratio that was used for the capture.

The full screen mode is activated by pressing the keys CTRL+F. In the full screen mode you can control the playback via the keyboard. You leave the full screen mode by pressing ESC or CTRL+F.

Key combinations in full screen mode

CTRL + F	Start/stop full screen mode
ESC	Quit full screen mode
CTRL + O	Open video file
<- (Arrow key left)	One frame back
-> (Arrow key right)	One frame forward
Space	Start/stop video playback

3.4.4 uc480 Hotpixel Editor

During manufacturing, each DCx camera is tested and calibrated for hot pixels (aka bad pixels), which are caused by technical reasons (see also <u>Camera basics: Sensor: Hot pixels</u> 28). In some cases, users may wish o extend this factory calibration. Using the uc480 Hotpixel Editor, you can now edit the sensor hot pixel list stored in the camera.

The uc480 Hotpixel Editor can be accessed as follows:

• Start > All programs > uc480 > uc480 Hotpixel Editor

After program start, the uc480 Hotpixel Editor shows the following window:

×= uc	:480 Hot	pixelEditor							
File	View	Help							
Ope	an camera	Close camera	Badpixel correction	Detect badpixel	🎲 Write badpixel	Add badpixel	Delete badpixel	Highlight 1:1	
Badpix	el list		₽×						
x	у	cla	ss 🔺				0		
955	302	ignore							
547	630	ignore							0
582	717	ignore	-						
Cam	era list	Badpixel list							
Magnif	ier		₽×						
		-							
Bayer	r Color: (G Value:	108						
Camera	a propert	ies	₽×						
Fram	erate		1.92 🜩	0					
Expo	sure 🗁		520.01						
Maste	ergain 🦟		50 🜲	0					
			•						

In the toolbar on the top the following functions are provided:

- Open camera Opens the camera that is marked in the camera list.
- Close camera
 Closes the camera that is marked in the camera list.
- Badpixel correction Turns the hot pixel correction on/off.
- <u>Detect Badpixel</u> Detect Badpixel Detection Dependent of the automatic hot pixel detection.
- Write Badpixel Writes the list of the hot pixel to the EEPROM.
- Add Badpixel Writes the marked hot pixel in the hot pixel list of the program.
- Delete Badpixel
 Deletes a hot pixel from the hot pixel list of the program.

DCx Cameras

• Highlight

Mark bad pixel with a circle in order to improve localization. Yellow marker stands for a factory calibrated bad pixel, green marker - for user defined bad pixel.

• 1:1

Zoom factor of the shown image.

Camera and bad pixel list

Tab Camera List:

Recognized cameras are shown with status in the camera list. Via the context menu (right click to the appropriate camera), a camera can be opened and closed. Cameras with the status "in use" cannot be opened.

Tab Badpixel List:

In the bad pixel list the coordinates and the class of bad pixels are displayed.

Class "user": added by the user

Class "ignore": factory calibrated hot pixels

Magnifier function

The magnifier allows to exactly mark hot pixels. "Value" displays the relative pixel intensity.

Camera properties

Camera properties	X
Framerate	1.92
Exposure	520.01
Mastergain	50 💌

Here, the camera settings can be changed for a better hot pixels visualization. By default, exposure time is set to max. and master gain to 50. Note that the frame rate is limited to lower values.

Detecting hot pixel automatically

Badpixel detection	×
Cover the sensor completely during capturing!	
Preferences	
Threshold	40 🌲
Clear old badpixel list	
Detection	
Hotpixel detected: 0	
Start	Close

-

Detect hotpixel opens the "Badpixel detection" dialog. Bad pixels are detected and can be added to the "user" class list.

- "Threshold": Any pixel with an intensity exceeding that threshold will be recognized as a bad (hot) pixel, where the threshold is is the minimum intensity difference to the reference intensity. The reference is the averaged over the most recent 10 frames total pixel intensities. Threshold can be set between 5 and 255.
- The "Clear old badpixel list" option removes the old user list before the search.

Note

The number of bad pixels, stored to the EEPROM, is limited. If the number of detected bad pixels exceeds the memory capacity, please increase the bad pixel detection threshold and repeat the detection procedure.

4 Programming (SDK)

In addition to the drivers, the uc480 software Development Kit (SDK) includes the <u>uc480 Camera Manager</u> (a), the <u>uc480 Viewer</u> (b) and the uc480 API programming interface for creating your own DCx programs under Windows and Linux. Numerous demo applications make it easy for you to get started with programming. The uc480 API offers you over 150 commands with which you can access all the parameters and functions of your DCx camera. This chapter contains all the information you need to integrate the DCx camera in your own applications using the uc480 API.

Note

Older Functions

We are continuously extending and enhancing the uc480 API. The resulting product upgrades sometimes require replacing obsolete functions with new ones. If it is necessary to continue working with the older functions, it is possible to add the uc480_deprecated.h header file additionally to the ueye.h header file. The uc480_deprecated.h header file contains all obsolete function definitions and constants which are no longer part of the ueye.h header file.

See also:

- First steps to uc480 programming
- How to proceed [129]
- Function descriptions
- AVI function descriptions 359
- Obsolete functions 379
- Programming notes 451
- <u>Lists</u> 454

4.1 First Steps to uc480 Programming

This chapter shows the most important functions of the uc480 API for integrating your camera into your own applications. You will find comprehensive lists of the API functions, sorted by task, in the How to proceed task chapter.

The uc480 SimpleLive and uc480 SimpleAcquire C++ programming samples included in the SDK illustrate the steps described below.

For information on required include files (uc480 API and header) see Programming notes 451 chapter.

Select a display mode

The uc480 API provides different modes you can use to display the camera's images on the PC. To quickly show a live image under Windows, it is easiest to use the Direct3D mode 2. Under Linux the OpenGL mode 2. Compared to the used.

This mode has the advantage that no image memory has to be allocated, and that image capture is handled by the driver. Call <u>is_SetDisplayMode()</u> [32] to select the display mode. You can then customize the Direct3D mode by using is_DirectRenderer() [198].

For advanced users:

You can also access the image data directly by selecting the Bitmap (DIB) mode. To use DIB mode, you first have to allocate one or more memories by using <u>is_AllocImageMem()</u> [157], add them to a <u>memory sequence</u> [132], if required, and then activate a memory with <u>is_SetImageMem()</u> [337] before each image capture. To show the image on-screen, call the <u>is_RenderBitmap()</u> [297] function after each completed image capture. From the <u>events or messages</u> [141] you can see when an image is available for display.

See also:

• How to proceed: Display mode selection [133]

Capture images

Recording live images with the DCxCamera is very simple. Just call the <u>is_CaptureVideo()</u> [17] function and the camera captures the live images at the default frame rate. To capture single frames, use the <u>is_FreezeVideo()</u> [22] function. Every DCx camera of course also provides different trigger modes for image capture. Use <u>is_SetExternalTrigger()</u> [32] to activate the desired mode before starting the image capture.

See also:

• How to proceed: <u>Image capture</u> [134]

Adjust the frame rate, brightness and colors

To change the frame rate, for example, you call <u>is_SetFrameRate()</u> with <u>is_SetColorMode</u> () [319] you set the color mode. Image brightness is adjusted through the exposure time set with <u>is_Exposure()</u> [216]. You can also implement <u>automatic control</u> [147] of image brightness and other parameters by using <u>is_SetAutoParameter()</u> [303].

If you are using a color camera, you should activate color correction in order to achieve rich vibrant colors for on-screen display ($\underline{is_SetColorCorrection()}$). To adapt a color camera to the ambient light conditions, it is essential to carry out white balancing. This is also done using the $\underline{is_SetAutoParameter()}$ and function.

See also:

• How to proceed: <u>Setting camera parameters</u> [144]

Save an image

Use the <u>is_ImageFile()</u> function to save the current image as a BMP or JPEG file. To save a specific image, it is better to use the Snap function (single frame mode) than the Live function (continuous mode).

See also:

• How to proceed: Saving images and videos 149

Close the camera

When you want to exit your application, close the camera with <u>is_ExitCamera()</u>. The camera and the allocated memory are automatically released. All previously set camera parameters will be lost,

however. So, if you want to save specific settings, use the $\underline{\texttt{is}_ParameterSet}()$ function before closing the camera. The next time you start the application, you can simply load the settings again by using the same function.

4.2 How to Proceed

This chapter shows function blocks and workflows for important camera functions. The charts are structured as follows:

Hint

Click the function names in the flowcharts to open the corresponding function description!

4.2.1 Preparing Image Capture

- <u>Querying information</u> [129]: Before you open one or more DCx Cameras, we recommend querying some key information.
- Opening and closing a camera
- <u>Allocating an image memory</u> Table: This is necessary if you want to access image memory contents or if you are not using Direct3D or OpenGL for image display.
- Creating an image memory sequence [132] is required when capturing live images.

4.2.1.1 Querying Information

It is recommended to query the following important information before opening one or more DCx Cameras.

is_GetNumberOfCameras()	Determines the number of cameras connected to the system.
is_GetCameraList()	Returns information on all connected cameras.

It is also very useful to have the message boxes for error output enabled during the programming process

With the following functions, you can read out additional information on cameras and software.

is_CameraStatus()	Returns the event counters and other information. Enables standby mode.
is_GetCameraInfo()	Returns the camera information of an opened camera.
is_GetDLLVersion()	Returns the version of the uc480_api.dll.
is_GetOsVersion()	Returns the operating system version.

4.2.1.2 Opening and Closing the Camera

The following functions are required to open and close a DCx camera.

	•		
is_InitCamera() 273	Hardware initialization		
is_ExitCamera() ^[213]	Closes the camera and releases the created image memory.		
When multiple cameras are used on one system you should assign every camera a unique camera ID.			
is_SetCameraID() 313	Sets a new camera ID.		

4.2.1.3 Allocating Image Memory

When you are programming an application that

- · requires direct access to the image data in stored in memory, or
- uses Bitmap mode (DIB) for display

use the following functions to allocate and manage image memories (see also Quick start: Image display 127).

is_AllocImageMem()	Allocates an image memory.
is_SetAllocatedImageMem	The user provides pre-allocated memory for image capturing.
is_FreeImageMem() ²²²	Releases an allocated image memory.

An image memory has to be activated before each image capture:

is_SetImageMem() 337 Makes an image memory active.

To query image memory information and access the data in the image memories, you can use these functions:

is_CopyImageMem()	Copies the image to the user-defined memory.
is_CopyImageMemLines()	Copies selected image lines to the user-defined memory.
is_GetActiveImageMem() 225	Returns the number and address of the active image memory.
is_GetImageMem() 247	Returns the pointer to the starting address of the image memory.
is_GetImageMemPitch() 248	Returns the line offset used in the image memory.
is_InquireImageMem() ²⁷⁹	Returns the properties of an image memory.

Note

Image memory sequences 132 should be used for frame sequence capture.

Flowchart: Allocating memory

Click in the figure to get help on the functions.

4.2.1.4 Image Memory Sequences

When you are capturing and displaying frame sequences (e.g. live display), it is advisable to provide appropriate image memory sequences. The uc480 driver offers a set of easy-to-use features for this purpose. For example, the system automatically cycles through the specified sequence of image memories and can generate an event when it reaches the end of a sequence cycle.

Before you can use a memory sequence, you have to allocate the relevant image memories (see <u>Allocating image</u> <u>memory</u> [130]).

is_AddToSequence()	Adds image memory to the sequence list.
is_ClearSequence()	Deletes the entire sequence list.
is_GetActSeqBuf() 220	Determines the image memory currently used for the sequence.
is_SetImageMem() 337	Makes the indicated image memory the active memory.
is_LockSeqBuf()	Protects the sequence image memory from being overwritten.
is_UnlockSeqBuf() 354	Releases the sequence image memory for overwriting.

4.2.2 Selecting the Display Mode

Note

The uc480 driver provides different modes for displaying the captured images. We recommend using the Bitmap mode or the Direct3D functions (only Windows) or OpenGL functions, depending on your specific application. For further information on the different display modes, see <u>Basics: Image display modes</u> 2th.

Select the desired mode. The display mode has to be set before you start image capture.

is_SetDisplayMode()	Selection of the display mode.		
When Bitmap mode (DIB) is active, image display has to be called explicitly for each image.			
is_RenderBitmap()	Outputs the contents of the active image memory to a window.		
is_SetDisplayPos() 325	Enables offsetting the image output inside the window.		

Flowchart: Image display in DIB mode

Click in the figure to get help on the functions.

4.2.3 Capturing Images

- DCx Cameras support the capture of single frames (snap) and frame sequences (live) in trigger mode and untriggered (freerun) mode. Select the <u>image capture mode</u> [134] that best meets your application requirements.
- Using <u>events or messages</u> 141, the uc480 driver can provide information to an application, e.g. about the completion of image capture. You will need events and messages, for example, when you are using <u>image</u> <u>memory sequences</u>. 132

4.2.3.1 Image Capture Modes

For more information on the capture modes of the DCx Cameras see also <u>Camera basics: Freerun</u> and <u>Camera basics: Trigger</u> 19.

Freerun mode

In freerun mode, the camera sensor captures one image after another at the set frame rate. Exposure of the current image and readout/transfer of the previous image data are performed simultaneously. This allows the maximum camera frame rate to be achieved. The frame rate and the exposure time can be set separately. The captured images can be transferred one by one or continuously to the PC.

If trigger mode is active, you need to disable it with <u>is_SetExternalTrigger()</u> before activating freerun mode.

- Single frame mode (snap mode) When <u>is_FreezeVideo()</u> [223] is called, the next image exposed by the sensor is transferred. You cannot use the DCxCamera flash outputs in this mode.
- Continuous mode (live mode) When <u>is_CaptureVideo()</u> is called, images are captured and transferred continuously. You can use the DCxCamera flash outputs.

Trigger mode

In trigger mode, the sensor is on standby and starts exposing on receipt of a trigger signal. A trigger event can be initiated by a software command (software trigger) or by an electrical signal via the camera's digital input (hardware trigger). For the specifications of the electrical trigger signals, see the <u>Specifications: Electrical specifications</u> [487] chapter.

The trigger mode is selected using is_SetExternalTrigger() 327.

• Software trigger mode

When this mode is enabled, calling <u>is_FreezeVideo()</u> [223] immediately triggers the capture of an image and then transfers the image to the PC. If <u>is_CaptureVideo()</u> [177] is called, the triggering of image capture and the transfer of images are performed continuously.

• Hardware trigger mode

When this mode is enabled, calling $\underline{is}_{FreezeVideo(223)}$ makes the camera ready for triggering just once. When the camera receives an electrical trigger signal, one image is captured and transferred.

If you call <u>is_CaptureVideo()</u> [177], the camera is made ready for triggering continuously. An image is captured and transferred each time an electrical trigger signal is received; the camera is then ready for triggering again (recommended procedure).

• Freerun synchronization

In this mode, cameras running in freerun mode (live mode, see above) can be synchronized with an external trigger signal. The cameras still remain in freerun mode. The trigger signal stops and restarts the current image capture process. You can use this mode to synchronize multiple cameras that you are operating in the fast live mode. Not all camera models support this mode (see is_SetExternalTrigger() [327]).

Notes

- The freerun synchronization mode is currently not supported by DCx Cameras.
- In trigger mode, the maximum frame rate is lower than in freerun mode because the sensors expose and transfer sequentially. The possible frame rate in trigger mode depends on the exposure time.

Example: At the maximum exposure time, the frame rate is about half as high as in freerun mode; at the minimum exposure time, the frame rate is about the same.

Overview on image capture modes

Image	Trigger	Function calls	Allowed flash modes		From a rada
capture			Standard	Global Start	Frame rate
Continuous	Off	is_SetExternalTrigger 327 (OFF) is_CaptureVideo() 177	х		Freely selectable
	Software	is_SetExternalTrigger 327 (SOFTWARE) is_CaptureVideo() 177	х	x	Depending on exposure time and trigger delay
	Hardware	is_SetExternalTrigger 327 (e.g. HI_LO) is_CaptureVideo() 177	x	x	Depending on exposure time and trigger delay
	Freerun sync.	is_SetExternalTrigger 327 (e.g. HI_LO_SYNC) is_CaptureVideo() [177]	х		Freely selectable
Single frame	Off	is_SetExternalTrigger 327 (OFF) is_FreezeVideo() 223			Freely selectable
	Software	<pre>is_SetExternalTrigger³²⁷ (SOFTWARE) is_FreezeVideo()²²³</pre>	x	x	Depending on exposure time and trigger delay
	Hardware	is_SetExternalTrigger 327 (e.g. HI_LO) is_FreezeVideo() 223	x	x	Depending on exposure time and trigger delay

Timeout values for image capture

When you call <u>is_FreezeVideo()</u> [223] or <u>is_CaptureVideo()</u> [177], the timeout value for the image capture is determined from the Wait parameter. If no image arrives within this timeout period, a timeout error message is issued. Under Windows, a dialog box is displayed if you have enabled error reports (see <u>is_SetErrorReport()</u>] [326].

DCx Cameras

The following table shows the effect of the Wait parameter depending on the image capture mode:

Parameter Wait	Image capture mode	Function returns	Timeout for 1st image	Timeout for subsequent images*1
IS_DONT_WAIT	HW trigger	Immediately	API default or user-defined value*3	API default or user-defined value*3
IS_WAIT	HW trigger	When 1st image in memory	API default or user-defined value*3	API default or user-defined value*3
Time t Value range [4429496729]	HW trigger	When 1st image in memory	Time t in steps of 10 ms (40 ms to approx. 1193 h)	API default or user-defined value ^{*3}
IS_DONT_WAIT	Freerun/SW trigger	Immediately	Calculated internally by API*2	Calculated internally by API*2
IS_WAIT	Freerun/SW trigger	When 1st image in memory	Calculated internally by API*2	Calculated internally by API*2
Time t Value range [4429496729]	Freerun/SW trigger	When 1st image in memory	Time t in steps of 10 ms (40 ms to approx. 1193 h)	Calculated internally by API*2

*1 Only with continuous image capture using is_CaptureVideo()

*2 The timeout is calculated from the exposure time setting, the image transfer time (depending on the pixel clock) and the optional trigger delay (see <u>is_SetTriggerDelay()</u> [352); it is at least 40 ms.

*3 The default value of the uc480 API is 60 s. User-defined values can be set using the $\underline{is_SetTimeout()}$ function.

Function list

is_CaptureVideo()	Captures a live video.
is_FreezeVideo() 223	Captures an image and writes it to the active image memory.
is_ForceTrigger()	Forces image capture in hardware trigger mode.
is_HasVideoStarted()	Returns whether the capture process has been started or not.
is_IsVideoFinish()	Returns whether the capture process has been terminated or not.
<pre>is_SetSensorTestImage() 345</pre>	Enables test image output from sensor (all cameras).
is_StopLiveVideo()	Terminates the capturing process (live video or single frame).

Flowchart: Single Capture

Click in the figure to get help on the functions.

Flowchart - Single Capture (1 of 2)

Flowchart: Sequence Capture

Flowchart - Capturing a frame sequence (1 of 2)

Flowchart - Capturing a frame sequence (2 of 2)

4.2.3.2 Event / Message Handling

Triggering events for single frame capture

The following figure shows the time sequence when triggering the IS_SET_EVENT_EXTTRIG and IS SET EVENT FRAME events. The camera is prepared for triggered capture using the is_SetExternalTrigger() 327 command. An incoming trigger signal at the camera starts the exposure and the subsequent image transfer. Upon completion of the data transfer, the IS_SET_EVENT_EXTTRIG event signals that the camera is ready for the next capture. The IS_SET_EVENT_FRAME event is set once pre-processing (e.g. color conversion) is complete and the finished image is available in the user memory.

Note

The following illustrations show a schematic view of the image capture sequence. The sensor exposure and readout times and the transmission times depend on the camera settings. The pre-processing time depends on the API functions you are using (e.g. color conversion, edge enhancement).

* Optional function. The start time and duration of the flash signal are defined by the "Flash delay" and "Duration" parameters (see $is_{10}()$ [280]).

Events in live mode (image sequence)

The following figure shows the time sequence when triggering the $is_set_event_FRAME$ and $is_set_event_seq$ events. The camera is set to live mode using $is_CaptureVideo()$ as that it continuously captures frames. The $is_set_event_FRAME$ event is set once pre-processing (e.g. color conversion) is complete and a finished image is available in the user memory. The $is_set_event_seq$ event is set after one cycle of a storing sequence has been completed (see also $is_AddToSequence()$ and $is_set_event_event]$.

* Optional function. The start time and duration of the flash signal are defined by the "Flash delay" and "Duration" parameters (see $is_{10}()$ [280]).

DCx Cameras

Function List

is_DisableEvent()	Disables a single event object.
is_EnableEvent()	Enables a single event object.
is_EnableMessage() ²¹¹	Turns the Windows messages on/off.
is_ExitEvent() 214	Closes the event handler (Windows only)
is_InitEvent() 276	Initializes the event handler (Windows only)
is_EnableAutoExit()	Automatically releases the camera resources when the camera is disconnected from the PC.
is_WaitEvent() 355	Waits for DCxCamera events (Linux only)

Flowchart: Enable events

Click in the figure to get help on the functions.

Flowchart: Enabling Messages

4.2.4 Setting Camera Parameters

- <u>Setting and getting parameters</u> Using these functions, you can make settings for the camera and for image capture and preprocessing.
- The DCxCamera's <u>automatic image control</u> [147] features allow automatically adjusting image brightness and image color to changing ambient conditions.
- <u>Image preprocessing</u> 148: These functions specify e.g. how color images are processed after image capture.
- <u>Querying the camera status</u> With these functions, you can query additional useful information on the camera status.
- Using the camera EEPROM 148: All DCx Cameras have a non-volatile EEPROM where you can save the camera settings or any other information.

4.2.4.1 Setting and Getting Parameters

Capture parameters

This set of functions specifies the camera's image capture parameters, such as exposure, pixel clock and frame rate:

is_ColorTemperature() 180	Sets the color temperature
is_Exposure() 216	Returns the adjustable exposure range.
is_GetFramesPerSecond()	Returns the current frame rate in live mode.
is_GetFrameTimeRange()	Returns the adjustable frame rate range.
is_PixelClock()	Returns the adjustable pixel clock range.
is_SetAutoParameter()	Enables/disables automatic imaging functions.
is_Blacklevel()	Turns black level correction on / off.
is_Exposure() 216	Sets the exposure time.
is_SetFrameRate()	Sets the frame rate.
is_SetGainBoost() 331	Sets additional sensor hardware gain boost.
is_SetGamma() 332	Sets the gamma value (digital post-processing).
is_SetHardwareGain()	Enables the sensor hardware gain.
is_SetHWGainFactor()	Sets the sensor hardware gain factor.
is_PixelClock()	Sets the pixel clock frequency.
is_ResetToDefault() [299]	Resets the camera parameters to its default values.

Image geometry

This set of functions lets you influence the image geometry for image capture, e.g. the area of interest:

is_ImageFormat() 267	Sets a predefined image size
<u>is_AOI()</u> [159]	Sets the size and position of an area of interest (AOI) or of a reference AOI for auto imaging functions.
is_SetBinning() 310	Sets the binning modes.
is_SetRopEffect() 340	Makes real-time geometry changes to an image (Rop = raster operation)
is_SetSensorScaler() 343	Scales the image in the camera
is_SetSubSampling() 347	Sets the subsampling modes.

Processing image data

The following set of functions refers to the further processing of image data in the PC:

is_GetColorDepth()	Determines the desktop color mode set in the graphics card.
is_GetTimeout()	Returns the user-defined timeout values.

is_HotPixel() 260	Enables and configures the hot pixel correction.
is_SetColorConverter() 315	Selects Bayer conversion mode.
is_SetColorCorrection()	Sets color correction.
is_SetColorMode()	Selects a color mode.
is_Convert() ^[188]	Conversion parameters for raw Bayer conversion.
is_EdgeEnhancement()	Sets edge enhancement.
is_SetSaturation() 342	Sets the image saturation (digital post-processing).
is_SetSensorTestImage() 345	Enables test image output from sensor.
is_SetTimeout() 350	Sets user-defined timeout values.

Flowchart: Changing camera timing

Click in the figure to get help on the functions.

Recommended order of function calls for timing changes.

Return the possible range for the pixel clock.

The pixel clock determines the range of frame rate settings.

Return the possible range of the frame rate.

The frame rate defines the range for the exposure time.

Return the possible exposure range and set the exposure time.

4.2.4.2 Automatic Image Control

The uc480 driver provides various options to automatically adjust the image capture parameters to the lighting situation. All controls are configured using the <u>is_SetAutoParameter()</u> $\$ SDK function.

For more information on the automatic image control see Camera basics: Automatic image control 45.

Flowchart: Enable Auto Brightness

Click in the figure to get help on the functions.

4.2.4.3 Image Pre-processing

Bayer conversion

The following functions enable and adjust the Bayer conversion (see <u>Color filter (Bayer filter)</u> [26]).

is_Convert() 188	Converts a Bayer raw image into the desired output format
is_GetColorConverter() ²³⁶	Returns the currently set Bayer conversion mode
<pre>is_SetBayerConversion() 420</pre>	Sets the algorithm for Bayer conversion
is_SetColorConverter() 315	Sets the algorithm for Bayer conversion in the camera (not applicable for DCx Cameras)

Lookup table

Using lookup table (LUT) functions, you can e. g. adjust brightness or contrast after the acquisition.

is_GetCameraLUT() ²³⁵	Read out current hardware LUT
is_GetImageHistogram() ²⁴²	Computes a histogram for the image buffer passed to the function

4.2.4.4 Get Camera Status

Using these functions, you can read out additional useful information on the camera status.

is_CameraStatus()	Returns the event counters and other information. Enables standby mode.
is_GetAutoInfo() 227	Returns status information on the auto features.
is_GetCameraList()	Returns information on all connected cameras.
is_GetCameraType()	Returns the camera type.
is_CaptureStatus()	Displays information on errors that have occurred.
is_GetError()	Displays errors that have occurred.
is_GetUsedbandwidth()	Returns the bus bandwidth (in Mbyte/s) currently used by all initialized or selected cameras.
is_GetVsyncCount()	Returns the VSYNC counter. It will be incremented by 1 each time the sensor starts capturing an image.
is_SetErrorReport()	Enables/disables dialog messages for error output.

4.2.4.5 Using the Camera EEPROM

The non-volatile EEPROM of every DCx camera can hold user data or camera settings.

is_GetCameraInfo()	Returns the factory-set information (e.g. revision information for the individual DCxCamera components).
is_GetSensorInfo()	Returns the sensor information.
is_ReadEEPROM() 296	Reads out the writable data area of the EEPROM.
is_WriteEEPROM() 358	Writes user data to the EEPROM.

4.2.5 Saving Images and Videos

Using the uc480 API, you can

- Save and load single frames 149
- Capture an AVI frame sequence 149

4.2.5.1 Saving and Loading Single Frames

With the <u>is_ImageFile()</u> function you can save the image data of the current image memory to a BMP, PNG or JPG file, and load saved image data into an image memory.

4.2.5.2 Capturing AVIs

The functions of the uc480_tools.dll enable you to save images captured with the DCxCamera as sequences to an AVI file. In order to reduce the file size, the single frames are stored in the AVI container using an adjustable JPEG compression. It is possible to extract single frames from the AVI file.

AVI Capture Workflow

First initialize the AVI interface and then create a empty AVI file.

isavi_InitAVI()	Initializes the AVI interface.
isavi_ExitAVI()	Terminates and closes the AVI interface.
isavi_OpenAVI()	Opens an AVI file for capturing.
isavi_CloseAVI()	Closes an AVI file.
isavi_GetAVIFileName()	Returns the name of the current AVI file.

The following settings should also be done prior to starting the recording.

isavi_SetFrameRate() 374	Sets the frame rate of the AVI video.
isavi_SetImageQuality() 375	Sets the compression level/image quality of the AVI video.
isavi_SetImageSize()	Sets the size and offset of the input image memory.

Once the AVI file has been created, captured images are placed in a buffer. Then, the images are compressed and added to the AVI file which is stored on the hard disk. These operations are not performed in the same thread as the capturing process. If you capture more images while a compression or write operation is in progress, the new images will be discarded.

isavi_StartAVI()	Starts AVI recording.
isavi_AddFrame()	Adds a compressed image to the AVI file.
isavi_StopAVI()	Stops AVI recording.

With these functions, you can query additional information on the ongoing recording.

isavi_GetAVISize()	Returns the size of the current AVI file.
<pre>isavi_GetnCompressedFrames() 367</pre>	Returns the number of frames in the current AVI file.
isavi_GetnLostFrames()	Returns the number of frames that have been discarded so far.
isavi_ResetFrameCounters()	Resets the counters for discarded and saved frames to 0.

Events can be used to get signalled when a frame was added.

isavi_DisableEvent()	Disables a AVI event.
isavi_EnableEvent()	Enables a AVI-Event.
isavi_ExitEvent()	Turns off AVI event handling.
isavi_InitEvent()	Turns on AVI event handling.

Supported color formats

The supported input color formats are RGB32, RGB24, Y8 and raw Bayer. The output file will always be in RGB24 format, regardless of the input data format. You can adjust the size of the images to be stored by defining a freely selectable area of interest (AOI).

Capture speed

The possible speed of capture depends on the selected color format, the image size and the compression level of the AVI file as well as the PC performance.

Playback in external applications

AVI files you have captured using the uc480_tools.dll can also be played back in external applications, such as Windows Media Player. To do this, you need to install the uc480 MJPEG codec on your system:

- Open the uc480 installation directory (default: C:\Program Files\Thorlabs\DCx Cameras\Tools32 or C:\Program Files\Thorlabs\DCx Cameras\Tools64).
- Right-click the uc480Mjpeg.inf (uc480Mjpeg_64.inf) file.
- Select "Install". The codec is installed automatically.

In player or recording software, the codec will show up as "Intermedia-X MJPEG Codec".

Flowchart: AVI capture

Click in the figure to get help on the functions.

4.2.6 Using Inputs and Outputs

Depending on the model, DCx Cameras have one or more digital inputs and outputs designed for different purposes.

• <u>Input/output control</u> [152]: Here, you will find functions for setting the DCxCamera's I/Os and for using the trigger and flash modes.

4.2.6.1 Input/Output Control

With these functions you can use the camera's digital in-/outputs for trigger and flash control.

is_SetExternalTrigger()	Enables the digital input for trigger operation or returns the applied signal level.
<u>is_IO()</u> [280]	Sets the digital output for flash control or a static output level.
<u>is_IO()</u> 280	Sets the delay and power-on time of the flash output.
is_SetTriggerDelay()	Sets the trigger signal delay time.
	Determines the delay and power-on times of the flash output to obtain a global shutter effect when using rolling shutter sensors.
is_ForceTrigger()	Simulates a trigger signal in hardware trigger mode.

With these commands you can activate additional functions or use GPIOs on some DCx Cameras.

<u>is_IO()</u> 280	Sets the additional digital outputs (GPIO).
<u>is_IO()</u> 280	Defines each port as a digital input or output (GPIO).
	Toggles the color of the status LED for DCU22x and DCC1240x cameras.

Flowchart: Digital input

Click in the figure to get help on the functions.

Flowchart: Digital output

4.3 Function Descriptions

To integrate the DCx Cameras into your own programs, you can use the functions and parameters provided by the uc480 SDK. These are described in this chapter. The descriptions are listed alphabetically by function and are structured as follows:

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

This table shows the availability of the function. For both Windows and Linux the table shows which DCx camera series supports the function.

Syntax

Prototype of the function from the uc480.h header file.

Description

Description of the function with cross-references to related functions.

Input parameters

Description of the function parameters including their value ranges.

Return value

Description and value range of the return value. If a function returns the $IS_NO_SUCCESS$ (-1) value, you can get information on the error from the <u>is_GetError()</u> [239] function.

Related functions

List with similar or related SDK functions.

Example

For some functions, C++ programming samples are have been added.

Sample programs

Some descriptions include references to uc480 SDK sample programs. When you install the uc480 software, the demo applications are copied to the C:\Program Files\Thorlabs\DCx Cameras\Samples directory. The associated source code can be found under C:\Program Files\Thorlabs\DCx Cameras\Develop \Source.

All sample programs are described in the uc480 Samples Manual.

4.3.1 is_AddToSequence

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_AddToSequence (HIDS hCam, char* pcImgMem, INT nID)

Description

 $is_AddToSequence()$ adds an image memory to the list of image memories used for ring buffering. The image memory must have been previously requested using $is_AllocImageMem()$ [157]. Using the $is_SetAllocatedImageMem()$ [301] function, you can set a memory that has been allocated before as image memory. Image memories that are used for ring buffering must all have been allocated with the same color depth (bits per pixel).

Input parameters

hCam	Camera handle
pcMem	Pointer to image memory
nID	Image memory ID

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_AllocImageMem()
- is_InitImageQueue() 278
- is_SetImageMem() 337
- is_SetAllocatedImageMem() 301

Sample programs

• uc480Sequence (C++)

4.3.2 is_AllocImageMem

Ħ	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_AllocImageMem (HIDS hCam, INT width, INT height, INT bitspixel, char** ppcImgMem, INT* pid)

Description

is_AllocImageMem() allocates an image memory for an image having its dimensions defined by width and height and its color depth defined by bitspixel. The memory size is at least:

size = [width * int((bitspixel + 7) / 8) + adjust] * height (for details on adjust, see below)

The line increment is calculated as:

line = width * int[(bitspixel + 7) / 8]

lineinc = line + adjust

adjust = 0, if line can be divided by 4 without remainder

adjust = 4 - rest(line / 4), if line cannot be divided by 4 without remainder

To read out the line increment, you can use the <u>is_GetImgMemPitch()</u> [248] function.

The starting address of the memory area is returned in ${\tt ppcImgMem}$.

pid returns an ID for the allocated memory. A newly allocated memory is not directly active, i.e. digitised images will not be stored immediately in this new memory. It must first be made active using <u>is_SetImageMem()</u>.

The returned pointer must be write-protected and may not be altered because it will be used for all further ImageMem functions. To release the memory, you can use <u>is_FreeImageMem()</u> [222].

Notes

- In the Direct3D or OpenGL modes, image memory allocation is not necessary.
- RGB16 and RGB15 require the same amount of memory, but can be distinguished by the bitspixel parameter. For information on the bit depths of different color formats please refer to the <u>Appendix: Color and memory formats</u> [502] chapter.
- In case the operating system is short of physical memory, today's OS versions swap individual areas of the RAM that have not been used for some time out to the slower hard disk. This can slow down image capture if more image memory has been allocated than can be provided by the RAM at a time.

Input parameters

hCam	Camera handle
width	Image width
height	Image height
bitspixel	Image bit depth (bits per pixel).
ppcImgMem	Returns the pointer to the memory starting address
pid	Returns the ID of this memory

Return values

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTE R	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_ LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

Related functions

- is_FreeImageMem() 222
- is_AddToSequence()
- is_SetImageMem() 337
- is_SetAllocatedImageMem()
- is_GetColorDepth() 237
- is_GetImgMemPitch() 248

4.3.3 is_AOI

E:	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_AOI (HIDS hCam, UINT nCommand, void* pParam, UINT nSizeOfParam)

Description

is_AOI() can be used to set the size and position of an <u>area of interest (AOI)</u> within an image. The following AOIs can be defined:

- Image AOI display of an image portion
- Auto Brightness AOI reference area of interest for automatic brightness control
- Auto Whitebalance AOI reference area of interest for automatic white balance control

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam input parameter.

Note

Previous AOI functions

The $is_AOI()$ function comprises all the functions for setting and positioning an AOI. The following uc480 API commands are therefore obsolete:

- <u>is_SetAOI()</u> [414]
- is_SetImageAOI() [434]
- is_SetImageSize() 438
- is SetImagePos() 435
- See also Obsolete functions 379

AOI for automatic image control

The AOI for automatic brightness control (AES/AGC) and automatic white balance (AWB) defaults to the same size as the current image (i.e. the image AOI).

After changes to the image geometry (by resetting an image AOI, by binning or subsampling), the AOIs for automatic image control will always be reset to the image AOI value. This means that it might be necessary to set the AOIs for auto brightness/auto white balance again manually.

Fast changes of AOI position

Using the IS_AOI_IMAGE_SET_POS_FAST command, you can change the positions of AOIs very quickly. Executing this command takes just a few milliseconds. When using this command, a few special requirements have to be met:

- The command is currently not supported by all DCx Cameras. With the IS_AOI_IMAGE_SET_POS_FAST_SUPPORTED command, you can check whether your sensor supports fast position changes.
- Hot pixel correction has to be disabled (see is_HotPixel()²⁶⁰).
- Image capture is not suspended for fast AOI position changes. As a result, when you call the command, a number of images might still be transferred with the old AOI position if they were in the driver buffer at that moment.

Notes

1. Changing the image size

- When changing the size of the AOI, please make sure that the selected image memory is large enough. If it isn't, allocate a new image memory (see <u>is_AllocImageMem()</u>].
- Changes to the image size affect the value ranges of the frame rate and exposure time. After executing is_AOI(), calling the following functions is recommended in order to keep the defined camera settings:

- o <u>is_SetFrameRate()</u> 329
- o <u>is_Exposure()</u> 216
- o If you are using the flash function: $is_{10}()$

2. Step widths for AOI definition (position grid)

The available step widths for the position and size of image AOIs depend on the sensor. The values defining the position and size of an AOI have to be integer multiples of the allowed step widths.

For details on the AOI grids of the individual camera models, please see Camera and sensor data. 4601

3. AOI in combination with high frame rates

With very small AOI and therefore high frame rate and maximum possible frame rate set, it is possible that the USB camera transfers in freerun mode only half frame rates. This is a signal for a camera-internal overload. In this case it is recommended to set the frame rate to maximum of 98 %.

Multi AOI function of the DCC1240x and DCC3240x models

The sensor of a.m. cameras supports multiple AOIs in one image capture. The AOIs are transferred together as one image. In this mode you can create 2 or 4 AOIs, which have either the same X axis or the same Y axis (see also uc480 Viewer: Multi AOI (112)). The sensor is faster in this mode. It is possible to switch the AOI in the horizontal direction.

Sequence AOI mode for DCC1240x and DCC3240x camera models

A.m. camera models have a special AOI mode. In this mode you can define besides the normal AOI (AOI 1) up to 3 further AOI on the sensor (see uc480 Viewer: <u>Sequence AOI</u>). When activating the sequence mode, note that only the following combinations are possible:

1. All additional AOIs are off. AOI 1 is always active.

- 2. AOI 2 (+ AOI 1)
- 3. AOI 2 and 3 (+ AOI 1)

4. AOI 2, 3 and 4 (+ AOI 1)

It is not possible to have a combination e.g. of AOI 2 and AOI 4.

The parameters of AOI 2, 3 and 4 are defined by the <u>AOI_SEQUENCE_PARAMS</u> structure. In the version 4.20 binning, subsampling and scaler are not supported.

Input parameters

hCam	Camera handle
nCommand	
IS_AOI_IMAGE_SET_AOI	Sets the position and size of the image by using an object of the IS_RECT type. Sample 1 for AOI [164] You can define the start position of the AOI in the memory by ORing IS_AOI_IMAGE_POS_ABSOLUTE with the X or Y position. Sample for setting the AOI position [164]
IS_AOI_IMAGE_GET_AOI	Returns the AOI in an IS_RECT object. Sample 2 for AOI 164
IS_AOI_IMAGE_SET_POS	Sets the AOI position by using an object of the IS_POINT_2D type. IS_AOI_IMAGE_POS_ABSOLUTE can be ORed here, as well. Sample for setting the AOI position 164
IS_AOI_IMAGE_GET_POS	Returns the position in an IS_POINT_2D object.
IS_AOI_IMAGE_SET_SIZE	Sets the AOI size by using an object of the IS_SIZE_2D type.
IS_AOI_IMAGE_GET_SIZE	Returns the size in an IS_SIZE_2D object.
IS_AOI_IMAGE_GET_POS_MIN	Returns the minimum possible position in an IS_POINT_2D object.
IS_AOI_IMAGE_GET_SIZE_MIN	Returns the smallest possible size in an IS_SIZE_2D object.
IS_AOI_IMAGE_GET_POS_MAX	Returns the maximum possible position in an IS_POINT_2D object.
IS_AOI_IMAGE_GET_SIZE_MAX	Returns the largest possible size in an IS_SIZE_2D object.
IS_AOI_IMAGE_GET_POS_INC	Returns the increment for the position in an IS_POINT_2D object.
IS_AOI_IMAGE_GET_SIZE_INC	Returns the increment for the size in an IS_SIZE_2D object.
IS_AOI_IMAGE_GET_POS_X_ABS	Returns an UINT object indicating whether IS_AOI_IMAGE_POS_ABSOLUTE is

hCam	Camera handle	
	set for the X position. Sample 3 for AOI	
IS_AOI_IMAGE_GET_POS_Y_ABS	Returns an UINT object indicating whether IS_AOI_IMAGE_POS_ABSOLUTE is set for the Y position.	
IS_AOI_IMAGE_GET_ORIGINAL_AOI	Returns the AOI in an IS_RECT object without binning, subsampling or scaling.	
IS_AOI_IMAGE_SET_POS_FAST	Allows changing the AOI position very quickly by using an IS_POINT_2D object. Hot pixel correction has to be disabled (see information above).	
IS_AOI_IMAGE_SET_POS_FAST_SUPPORTED	Returns an UINT object indicating whether fast AOI position changes are supported. The passed variable returns 0 if the function is not supported by the sensor.	
IS_AOI_AUTO_BRIGHTNESS_SET_AOI	Sets the AOI for automatic brightness control (similar to IS_AOI_IMAGE_SET_AOI).	
IS_AOI_AUTO_BRIGHTNESS_GET_AOI	Returns the AOI for automatic brightness control (similar to IS_AOI_IMAGE_GET_AOI).	
IS_AOI_AUTO_WHITEBALANCE_SET_AOI	Sets the AOI for automatic white balance (similar to IS_AOI_IMAGE_SET_AOI).	
IS_AOI_AUTO_WHITEBALANCE_GET_AOI	Returns the AOI for automatic white balance (similar to IS_AOI_IMAGE_GET_AOI).	
IS_AOI_MULTI_GET_SUPPORTED_MODES	Returns the supported multi AOI modes in an UINT object.	
IS_AOI_MULTI_SET_AOI	Sets the multi AOI mode. The mode you want to use has to be ORed with IS_AOI_MULTI_SET_AOI. The axes are passed in an UINT array: • Array[0] - Array[3] = X1X4 • Array[4] - Array[8] = Y1Y4 Sample 1 for multi AOI	
IS_AOI_MULTI_GET_AOI	Returns the set multi AOI mode. The mode that is used has to be ORed with IS_AOI_MULTI_SET_AOI. Sample 2 fo multi AOI	
IS_AOI_MULTI_MODE_X_Y_AXES	Multi AOI mode of the camera models DCC1240x/DCC3240x with up to AOIs (up to 4 x and y axes). The axes are passed by a UINT array: • array[0] - array[3] = X1X4 • array[4] - array[8] = Y1Y4 Attention: This parameter has been renamed in version 4.20. In formerly versions this parameter was named IS_AOI_MULTI_MODE_AXES.	
IS_AOI_MULTI_DISABLE_AOI	Disables Multi AOI. The mode that is used has to be ORed with IS_AOI_MULTI_SET_AOI. Sample 3 for multi AOI	
IS_AOI_SEQUENCE_GET_SUPPORT ED	Returns a bitmask with the supported AOIs (only DCC1240x/DCC3240x camera models) Sample 1 for AOI sequence mode	
IS_AOI_SEQUENCE_SET_PARAMS	Sets the <u>parameters</u> of AOI 2, 3 or 4 (only DCC1240x/DCC3240x camera models) Sample 2 for sequence AOI mode 166	
IS_AOI_SEQUENCE_GET_PARAMS	Returns the <u>parameters</u> 162 of AOI 2, 3 or 4 (only DCC1240x/DCC3240x camera models) Sample 2 for sequence AOI mode 166	
IS_AOI_SEQUENCE_SET_ENABLE	Set a bitmask defining which AOIs should be active (only DCC1240x/ DCC3240x camera models). Note: IS_AOI_SEQUENCE_SET_PARAMS must be called after IS_AOI_SEQUENCE_SET_ENABLE, with enabling the sequence AOI mode all AOIs are set to the same value and therefore the parameters are lost. <u>Sample 3 for sequence AOI mode</u>	

DCx Cameras

hCam	Camera handle
IS_AOI_SEQUENCE_GET_ENABLE	Returns the bitmask (only DCC1240x/DCC3240x camera models) Sample 3 for sequence AOI mode
pParam	Pointer to a function parameter, whose function depends on nCommand.
nSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the IS_RECT structure

INT	s32X	X position of the AOI
INT	s32Y	Y position of the AOI
INT	s32Width	Width of the AOI
INT	s32Height	Height of the AOI

Contents of the IS_POINT_2D structure

INT	s32X	X position of the AOI
INT	s32Y	Y position of the AOI

Contents of the IS_SIZE_2D structure

INT	s32Width	Width of the AOI
INT	s32Height	Height of the AOI

Content of the AOI_SEQUENCE_PARAMS structure

INT	s32AOIIndex	Index of the AOI
INT	s32NumberOfCycleRepetitions	Number of readout cycles
INT	s32X	X position of the AOI
INT	x32Y	Y position of the AOI
Double	dblExposure	Exposure
INT	s32Gain	Gain
INT	s32BinningMode	Binning mode (not supported in version 4.20)
INT	s32SubsamplingMode	Subsampling mode (not supported in version 4.20)
INT	s32DetachImageParameters	 0 = every change of the exposure time and the master gain is copied from AOI 1 to the additional AOIs (default). As a change of AOI 1 also reset the exposure time, this change is also transferred to AOI 2, 3 and 4. 1 = a change of exposure time, gain or position of AOI 1 does not affect the parameters of AOI 2, 3 and 4.
Double	dblScalerFactor	Scaling factor (not supported in version 4.20)
BYTE	byReserved[64]	Reserved

Return values

IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

Related functions

- is_ImageFormat()
- is_SetBinning() 310
- is_SetSubSampling() 347

Sample 1 for AOI

// Sets the position and size of the image by using an object of the IS_RECT type. IS_RECT rectAOI; rectAOI.s32X = 100;= 100;rectAOI.s32Y rectAOI.s32Width = 200; rectAOI.s32Height = 100;

INT nRet = is_AOI(hCam, IS_AOI_IMAGE_SET_AOI, (void*)&rectAOI, sizeof(rectAOI));

Sample 2 for AOI

// Returns the AOI position and size by using an object of the IS_RECT type. IS_RECT rectAOI;

```
INT nRet = is_AOI(hCam, IS_AOI_IMAGE_GET_AOI, (void*)&rectAOI, sizeof(rectAOI));
if (nRet == IS_SUCCESS)
{
                = rectAOI.s32X;
    INT x
    INT y = rectAOI.s32Y;
INT width = rectAOI.s32Width;
    INT height = rectAOI.s32Height;
}
```

Sample 3 for AOI

```
// Returns an UINT object indicating whether IS_AOI_IMAGE_POS_ABSOLUTE is set for the X position.
UINT nAbsPos = 0;
INT nRet = is_AOI(hCam, IS_AOI_IMAGE_GET_POS_X_ABS, (void*)&nAbsPos , sizeof(nAbsPos ));
if (nRet == IS_SUCCESS)
{
    if (nAbsPos == IS_AOI_IMAGE_POS_ABSOLUTE)
    {
        // set
    }
    else if (nAbsPos == 0)
    {
        // not set
    }
}
```

Examples for setting absolute AOI positions in memory

x = 100y = 100

AOI without absolute memory positioning

x = 100 | IS_AOI_IMAGE_POS_ABSOLUTE

x = 100	IS_AOI_IMAGE_	POS_ABSOLUTE
y = 100	IS_AOI_IMAGE_	POS_ABSOLUTE

AOI with absolute memory positioning on x- and y-axis

Sample 1 for multi AOI

```
// Set Multi AOI. The axes are passed in an UINT array of length 8.
UINT nAxes[8];
```

nAxes[0] = 100; // Set X1
nAxes[1] = 120; // Set X2
...

INT nRet = is_AOI(hCam, IS_AOI_MULTI_SET_AOI | IS_AOI_MULTI_MODE_X_Y_AXES, (void*)nAxes, sizeof(nAxes));
Sample 2 for multi AOI

Sample 2 for multi A

// Read Multi AOI
UINT nAxes[8];

INT nRet = is_AOI(hCam, IS_AOI_MULTI_GET_AOI | IS_AOI_MULTI_MODE_X_Y_AXES, (void*)nAxes, sizeof(nAxes));

Sample 3 for multi AOI

// Disable Multi AOI
UINT nAxes[8];

INT nRet = is_AOI(hCam, IS_AOI_MULTI_DISABLE_AOI | IS_AOI_MULTI_MODE_X_Y_AXES, NULL, NULL);

Sample 1 for sequence AOI mode

Sample 2 for sequence AOI mode

```
AOI_SEQUENCE_PARAMS Param;
// Set parameters of AOI 2
Param.s32AOIIndex = IS_AOI_SEQUENCE_INDEX_AOI_2;
Param.s32NumberOfCycleRepetitions = 1;
Param.s32X = 100;
Param.s32Y = 200;
INT nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_PARAMS, (void*)&Param, sizeof(Param));
// Get parameters of AOI 2
Param.s32AOIIndex = IS_AOI_SEQUENCE_INDEX_AOI_2;
nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_GET_PARAMS, (void*)&Param, sizeof(Param));
Sample 3 for sequence AOI mode
INT nMask = 0;
// Enable AOI 1, Disable AOI 2, 3 and 4
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1;
INT nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));
// Enable AOI 1 and 2
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1 |
        IS_AOI_SEQUENCE_INDEX_AOI_2;
nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));
// Enable AOI 1, 2 and 3
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1
        IS_AOI_SEQUENCE_INDEX_AOI_2
        IS_AOI_SEQUENCE_INDEX_AOI_3;
nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));
// Enable AOI 1, 2, 3 and 4
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1
        IS_AOI_SEQUENCE_INDEX_AOI_2
        IS_AOI_SEQUENCE_INDEX_AOI_3
        IS_AOI_SEQUENCE_INDEX_AOI_4;
nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));
```

// Get current AOI mask

INT nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_GET_ENABLE, (void*)&nMask, sizeof(nMask));

4.3.4 is_AutoParameter

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_AutoParameter(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

This functions enables/diisables the auto white balance. With this function, you can require all supported types for white balance. In addition to the older white balance with the Gray-World algorithm, there is also a color temperature control according to Kelvin. In addition to the function the supported color spaces are queried and set.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

In a later version the is_AutoParameter() function will replace the $\underline{is_SetAutoParameter()}$ function. In version 4.20, it is only partly replaced.

Input parameters

hCam	Camera handle	
nCommand		
IS_AWB_CMD_GET_SUPPORTED_TYPES		Returns the supported types for auto white balance (Example 1 (168))
		• IS_AWB_GREYWORLD: 0x0001
		• IS_AWB_COLOR_TEMPERATURE: 0x0002
IS_AWB_CMD_GET_TYPE		Returns the current set type of the auto white balance (Example 2 [168])
		• IS_AWB_GREYWORLD: 0x0001
		• IS_AWB_COLOR_TEMPERATURE: 0x0002
IS_AWB_CMD_SET_TYPE		Sets the type of the auto white balance (Example 2 168)
		• IS_AWB_GREYWORLD: 0x0001
		• IS_AWB_COLOR_TEMPERATURE: 0x0002
IS_AWB_CMD_GET_ENABLE		Returns if the auto white balance is enabled (Example 3 168)
		• IS_AUTOPARAMETER_DISABLE: 0
		• IS_AUTOPARAMETER_ENABLE: 1
		• IS_AUTOPARAMETER_ENABLE_RUNONCE: 2
IS_AWB_CMD_SET_ENABLE		Enables/Disables the auto white balance (Example 3 168)
		• IS_AUTOPARAMETER_DISABLE: 0
		• IS_AUTOPARAMETER_ENABLE: 1
		• IS_AUTOPARAMETER_ENABLE_RUNONCE: 2
IS_AWB_CMD_GET_SUPPORTED_ MODELS	RGB_COLOR_	Returns the supported color spaces for the auto white balance $(Example 4 163)$
		<pre>• RGB_COLOR_MODEL_SRGB_D50: 0x0001</pre>
		• RGB_COLOR_MODEL_SRGB_D65: 0x0002
		• RGB_COLOR_MODEL_CIE_RGB_E: 0x0004
		• RGB_COLOR_MODEL_ECI_RGB_D50: 0x0008
		• RGB_COLOR_MODEL_ADOBE_RGB_D65: 0x0010
IS_AWB_CMD_GET_RGB_COLOR_	MODEL	Returns the current color space for the auto white balance $(Example 5)$

hCam	Camera handle	
	• RGB_COLOR_MODEL_SRGB_D50: 0x0001	
	• RGB_COLOR_MODEL_SRGB_D65: 0x0002	
	• RGB_COLOR_MODEL_CIE_RGB_E: 0x0004	
	• RGB_COLOR_MODEL_ECI_RGB_D50: 0x0008	
	• RGB_COLOR_MODEL_ADOBE_RGB_D65: 0x0010	
IS_AWB_CMD_SET_RGB_COLOR_	MODEL Sets the color space for the auto white balance (Example 5 16)	
	• RGB_COLOR_MODEL_SRGB_D50: 0x0001	
	• RGB_COLOR_MODEL_SRGB_D65: 0x0002	
	• RGB_COLOR_MODEL_CIE_RGB_E: 0x0004	
	• RGB_COLOR_MODEL_ECI_RGB_D50: 0x0008	
	• RGB_COLOR_MODEL_ADOBE_RGB_D65: 0x0010	
pParam	Pointer to a function parameter, whose function depends on nCommand.	
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.	

Return values

IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

• is_SetAutoParameter() 303

Example 1

```
UINT nSupportedTypes = 0;
INT nRet = is_AutoParameter(m_hCam,
                             IS_AWB_CMD_GET_SUPPORTED_TYPES,
(void*)&nSupportedTypes,
                             sizeof(nSupportedTypes)
                            );
if (nRet == IS_SUCCESS)
{
    if ((nSupportedTypes & IS_AWB_COLOR_TEMPERATURE) != 0)
    {
        // AWB type "Color Temperature" is supported
    }
    if ((nSupportedTypes & IS_AWB_GREYWORLD) != 0)
    {
        // AWB type "Greyworld" is supported
    }
Example 2
UINT nType = 0;
// Read current type
INT nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_GET_TYPE, (void*)&nType, sizeof(nType));
// Write new type
nType = IS_AWB_GREYWORLD;
nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_SET_TYPE, (void*)&nType, sizeof(nType));
Example 3
// Is AWB enabled?
UINT nEnable;
INT nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_GET_ENABLE, (void*)&nEnable, sizeof(nEnable));
```

```
// Enable AWB (once)
nEnable = IS_AUTOPARAMETER_ENABLE_RUNONCE;
nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_SET_ENABLE, (void*)&nEnable, sizeof(nEnable));
```

Example 4

```
UINT nSupportedRGBColorModels = 0;
(void*)&nSupportedRGBColorModels,
                     sizeof(nSupportedRGBColorModels)
                    );
if (nRet == IS_SUCCESS)
{
   if ((nSupportedRGBColorModels & RGB_COLOR_MODEL_SRGB_D50) != 0)
   {
       // Color model SRGB D50 is supported. See uc480.h for color model defines
   }
}
Example 5
UINT nRGBColorModel = 0;
INT nRet = is_AutoParameter(m_hCam,
                        IS_AWB_CMD_GET_RGB_COLOR_MODEL,
                        (void*)&nRGBColorModel,
                        sizeof(nRGBColorModel)
```

nRGBColorModel = RGB_COLOR_MODEL_CIE_RGB_E;

);

4.3.5 is_Blacklevel

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_Blacklevel(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Beschreibung

is_Blacklevel() controls the black level correction of the camera which might improve the image quality under certain circumstances. By default, the sensor adjusts the black level value for each pixel automatically. If the environment is very bright, it can be necessary to adjust the black level manually.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

hCam	Camera handle	
nCommand		
IS_BLACKLEVEL_CMD_GET_CAPS		Returns the black level feature of the camera (Example 1 [17]):
		• IS_BLACKLEVEL_CAP_SET_AUTO_BLACKLEVEL: The state of the automatic black level can be changed. The flag does not indicate whether the camera is running with auto black level by default or not. For this purpose, use IS_BLACKLEVEL_CMD_GET_MODE_DEFAULT.
		• IS_BLACKLEVEL_CAP_SET_OFFSET: The offset can be changed. The flag does not indicate whether the camera has set an offset by default or not. For this purpose, use IS_BLACKLEVEL_CMD_GET_OFFSET_DEFAULT.
IS_BLACKLEVEL_CMD_GET	_MODE_DEFAULT	Returns the default black level mode (Example2 17)
IS_BLACKLEVEL_CMD_GET	'_MODE	Returns the current black level mode (Example2
IS_BLACKLEVEL_CMD_SET	_MODE	Sets the black level mode (Example 2 (171))
		• IS_AUTO_BLACKLEVEL_OFF: The automatic black level mode is switched off.
		 IS_AUTO_BLACKLEVEL_ON: The automatic black level mode is switched on.
IS_BLACKLEVEL_CMD_GET	_OFFSET_DEFAULT	Returns the default offset (Example 3 171)
IS_BLACKLEVEL_CMD_GET	_OFFSET_RANGE	Returns the range of the offset (Example 3 171)
IS_BLACKLEVEL_CMD_GET	_OFFSET	Returns the current offset (Example 3 (17))
IS_BLACKLEVEL_CMD_SET_OFFSET		Sets the offset (Example 3 [17])
pParam	Pointer to a function	parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.	

Input parameters

Return values

IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Example 1

INT nBlacklevelCaps;

```
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_CAPS,
                    (void*)&nBlacklevelCaps, sizeof(nBlacklevelCaps) );
if (nRet == IS_SUCCESS) {
  // The user can changed the state of the auto blacklevel
  BOOL bSetAutoBlacklevel = (nBlacklevelCaps & IS_BLACKLEVEL_CAP_SET_AUTO_BLACKLEVEL) != 0;
  // The user can change the offset
 BOOL bSetBlacklevelOffset = (nBlacklevelCaps & IS_BLACKLEVEL_CAP_SET_OFFSET) != 0;
}
Example 2
INT nMode = IS_AUTO_BLACKLEVEL_OFF;
// Get default blacklevel mode
INT nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_MODE_DEFAULT, (void*)&nMode, sizeof(nMode));
// Get current blacklevel mode
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_MODE, (void*)&nMode, sizeof(nMode));
// Set new mode (enable auto blacklevel)
nMode = IS_AUTO_BLACKLEVEL_ON;
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_SET_MODE, (void*)&nMode , sizeof(nMode ));
Example 3
INT nOffset = 0;
// Get default blacklevel offset
INT nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_OFFSET_DEFAULT,
                         (void*)&nOffset, sizeof(nOffset));
// Get offset range
IS_RANGE_S32 nRange;
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_OFFSET_RANGE, (void*)&nRange, sizeof(nRange));
INT nOffsetMin = nRange.s32Min;
INT nOffsetMax = nRange.s32Max;
INT nOffsetInc = nRange.s32Inc;
// Get current blacklevel offset
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_OFFSET, (void*)&nOffset, sizeof(nOffset));
// Set new offset
nOffset = 100;
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_SET_OFFSET, (void*)&nOffset, sizeof(nOffset));
```

4.3.6 is_CameraStatus

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

ULONG is_CameraStatus (HIDS hCam, INT nInfo, ULONG ulValue)

Description

Using is_CameraStatus(), you can query and partly set various status information and settings.

Input parameters

hCam		Camera handle	
nInfo			
IS_FIFO_OVR_CNT	Number of FIFO overruns. Is increased if image data gets lost because the USB bus is congested.		
IS_SEQUENCE_CNT	Returns the sequence count. For <u>is_CaptureVideo()</u> , this parameter is set to 0. Each time the sequence buffer (image counter) changes, the counter is increased by 1.		
IS_SEQUENCE_SIZE	Returns the number of	f sequence buffers.	
IS_EXT_TRIGGER_EVENT_CNT	Returns the camera's	internal count of external trigger events.	
IS_TRIGGER_MISSED	Returns the number of unprocessed trigger signals. Is reset to 0 after each call.		
IS_LAST_CAPTURE_ERROR	Returns the last image capture error. For a list of all possible error events, see is_CaptureStatus() [174].		
IS_PARAMETER_SET_1	Indicates whether parameter set 1 including camera settings is present on the camera (read-only). See also <u>is_ParameterSet()</u> Return values: TRUE Parameter set 1 present FALSE Parameter set 1 not present		
IS_PARAMETER_SET_2	Indicates whether parameter set 2 including camera settings is present on the camera (read-only). See also <u>is_ParameterSet()</u> [292]. Return values: TRUE Parameter set 2 present FALSE Parameter set 2 not present		
IS_STANDBY	Sets the camera to standby mode. Return values: TRUE Camera changes to standby mode FALSE The camera changes to freerun mode		
IS_STANDBY_SUPPORTED	Queries whether the camera supports standby mode (read-only). Return values: TRUE The camera supports standby mode FALSE The camera does not support standby mode		
🖃 ulValue	ulValue		
IS_GET_STATUS		Returns the information specified by nInfo.	

Return values

Only if ulValue = IS_GET_STATUS	Returns the information specified by nInfo
When used with IS_LAST_CAPTURE_ERROR	Returns the last image capture error. For a list of all possible error events, see <u>is_GetCaptureErrorInfo()</u> [386].
IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_COMMUNICATE_WITH_DRIVE R	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_EXPOSURE_TIME	This setting is not available for the currently set exposure time.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

- is_GetCameraInfo() 231
- is_GetError()²³⁹
- is_SetErrorReport() 326
- is_SetTriggerCounter()

4.3.7 is_CaptureStatus

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_CaptureStatus (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The function returns information on errors that occurred during an image capture. All errors are listed that occurred since the last reset of the function.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

The following functions are obsolete by the $\verb"is_CaptureStatus"()$ function:

- is_GetCaptureErrorInfo()
- is_ResetCaptureErrorInfo()

See also Obsolete functions 379.

Input parameters

hCam	Camera handle
nCommand	
IS_CAPTURE_STATUS_INFO_CMD_GET	Returns the CaptureStatus information (Example 1 [175])
IS_CAPTURE_STATUS_INFO_CMD_RESET	Resets the CaptureStatus infomation (Example 2 176)
pParam	Pointer to a function parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Content of the uc480_CAPTURE_STATUS enumeration

IS_CAP_STATUS_API_NO_DEST_MEM	There is no destination memory for copying the finished image. Possible cause/remedy
	Not enough destination memory allocated or all destination buffers locked by the application.
	 Release locked destination memory
	Allocate more destination memory
	 Reduce the frame rate so that there is more time to process the filled destination memory
IS_CAP_STATUS_API_CONVERSION_FAIL	The current image could not be processed correctly.
	Possible cause
	Internal error during internal processing of the image
IS_CAP_STATUS_API_IMAGE_LOCKED	The destination buffers are locked and could not be written to.
	Possible cause/remedy
	All destination buffers locked by the application
	 Possible cause/remedy All destination buffers locked by the application Release locked destination memory
	 Possible cause/remedy All destination buffers locked by the application Release locked destination memory Allocate more destination memory
	 Possible cause/remedy All destination buffers locked by the application Release locked destination memory Allocate more destination memory Reduce the frame rate so that there is more time to process the filled destination memory

	was discarded.
	Possible cause/remedy
	The computer takes too long to process the images in the uc480 API (e.g. color conversion)
	• Reduce the frame rate so that there is more time to process the filled image memory of the driver
	 Disable resource-intensive API image pre-processing functions (e.g. edge enhancement, color correction, choose smaller filter mask for software color conversion)
IS_CAP_STATUS_DRV_DEVICE_NOT_READ Y	The camera is no longer available. It is not possible to access images that have already been transferred. Possible cause
	The camera has been disconnected or closed.
IS_CAP_STATUS_USB_TRANSFER_FAILED	The image was not transferred over the USB bus.
	Possible cause/remedy
	Not enough free bandwidth on the USB bus for transferring the image
	Reduce the pixel clock frequency
	Operate fewer cameras simultaneously on a USB bus
	Check the quality of the USB cabling and components
IS_CAP_STATUS_DEV_TIMEOUT	The maximum allowable time for image capturing in the camera was exceeded.
	The colored timeout volue is too low for image conture
	The selected timeout value is too low for image capture
	Reduce the exposure time
	Increase the timeout

Contents of the uc480_CAPTURE_STATUS_INFO structure

DWORD	dwCapStatusCnt_Total	Returns the total number of errors occurred since the last reset.
BYTE	reserved[60]	Reserved for an internal function
DWORD	adwCapStatusCnt_Detail[256]	This array returns the current count for each possible error. The possible errors are listed above.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_GetError()²³⁹
- is_CameraStatus()
- <u>is_SetErrorReport(</u>) 326

Example 1

Example 2

4.3.8 is_CaptureVideo

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_CaptureVideo (HIDS hCam, INT Wait)

Description

 $is_CaptureVideo()$ activates the camera's live video mode (free run mode). The driver transfers the images to an allocated image memory or, if Direct3D/OpenGL is used, to the graphics card. The image data (DIB mode) is stored in the memory created using $\underline{is_AllocImageMem()}$ and designated as active image memory using $\underline{is_SetImageMem()}$. Using $\underline{is_GetImageMem()}$, you can query the memory address.

If ring buffering is used, the image capturing function cycles through all image memories used for storing the images of a capture sequence in an endless loop. Sequence memories locked by $\underline{is_LockSeqBuf()}$ will be skipped. If the last available sequence memory has been filled, the sequence event or message will be triggered. Capturing always starts with the first element of the sequence.

For further information on the image capture modes, see the <u>How to proceed: Image capture</u> [134] section.

Input parameters

hCam	Camera handle
🖃 Wait	
IS_DONT_WAIT	Timeout value for image capture (see also the <u>How to</u> proceed: Timeout values for image capture [135] section)
IS_WAIT	
Time t	
IS_GET_LIVE	Returns if live capture is enabled.

Return values

When used with IS_GET_LIVE	TRUE if live capture is enabled
IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_COMMUNICATE_WITH_DRI VER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_EXPOSURE_TIME	This setting is not available for the currently set exposure time.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.

DCx Cameras

IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

Related functions

- is_FreezeVideo() 223
- is_StopLiveVideo() 353
- is_SetExternalTrigger() 327
- is_ForceTrigger() 221
- is_SetTimeout() 350
- <u>is_CaptureStatus()</u>

Sample programs

• SimpleLive (C++)
4.3.9 is_ClearSequence

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ClearSequence (HIDS hCam)

Description

is_ClearSequence() removes all image memories from the sequence list that were added using <u>is_AddToSequence()</u> [156]. After a call of is_ClearSequence(), there is no more active image memory. To make an image memory the active memory, call is_SetImageMem() [337].

Input parameters

hCam Camera handle

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SEQUENCE_LIST_EMPTY	The sequence list is empty and cannot be deleted.
IS_SUCCESS	Function executed successfully

- is_AddToSequence()
- is_FreeImageMem()²²²
- is_SetImageMem() 337

4.3.10 is_ColorTemperature

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ColorTemperature (HIDS hCam, UINT nCommand, void *pParam, UINT nSizeOfParam)

Description

Using is_ColorTemperature() you can fix a setting (in kelvins) for the color temperature of an image when you are using a color camera. The function will use the sensor's hardware gain controls for the setting, as far as possible. In addition, you can choose between different color spaces. A specific color temperature will result in slightly differing RGB values, depending on the selected color space.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam input parameter.

The color temperature is the temperature to which a black body radiator has to be heated to glow and give off light in the corresponding color. Warm light (reddish) has a lower color temperature than cold light (bluish). The following table lists a few example values:

Light source	Color temperature
Light bulb (100 W)	2800
Halogen lamp	3200
Fluorescent lamp (cold white)	4000
Morning and evening sunlight	5000
Noon sunlight	5500-5800
Flash strobe	6000
Overcast daylight	6500-7500
Fog	8000

Note

The is_ColorTemperature() function cannot be used simultaneously with the automatic white balance function in <u>is_SetAutoParameter()</u> 10^{3} .

hCam	Camera handle
nCommand	
Setting the color space	
COLOR_TEMPERATURE_CMD_GET_SUPPORTED_RGB_C OLOR_MODELS	Returns the supported <u>color spaces</u> [182]. More details pParam: Pointer to a bit mask of type UINT The bit mask returns the supported modes, linked by logical ORs (see <u>Color spaces</u> [182] table). nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_SET_RGB_COLOR_MODEL	Sets a <u>color space</u> More details pParam: Pointer to variable of type UINT that passes the value to be set. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_RGB_COLOR_MODEL	Returns the set <u>color space</u> 182.

hCam	Camera handle
	 More details pParam: Pointer to variable of type UINT returning the current value. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_RGB_COLOR_MODEL _DEFAULT	Returns the default color space. More details pParam: Pointer to variable of type UINT returning the default value. nSizeOfParam: 4
Setting the color temperature	
COLOR_TEMPERATURE_CMD_SET_TEMPERATURE	Sets a color temperature. More details pParam: Pointer to variable of type UINT that passes the value to be set. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_TEMPERATURE	Returns the set color temperature. More details pParam: Pointer to variable of type UINT returning the current value. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_MIN	Returns the minimum value for the color temperature. More details pParam: Pointer to variable of type UINT returning the minimum value. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_MAX	Returns the maximum value for the color temperature. More details pParam: Pointer to variable of type UINT returning the maximum value. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_INC	Returns the increment for setting the color temperature. More details pParam: Pointer to variable of type UINT returning the increment. nSizeOfParam: 4
COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_DEF AULT	Returns the default value for the color temperature. More details pParam: Pointer to variable of type UINT returning the default value. nSizeOfParam: 4
pParam	Pointer to a function parameter, whose function depends on nCommand.
nSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Color Spaces

RGB_COLOR_MODEL_SRGB_D50	sRGB (standard RGB) color space with a white point of 5000 kelvins (warm light)
RGB_COLOR_MODEL_SRGB_D65	sRGB (standard RGB) color space with a white point of 6500 kelvins (mid daylight)
RGB_COLOR_MODEL_CIE_RGB_E	CIE-RGB color space with standard illumination E
RGB_COLOR_MODEL_ECI_RGB_D50	ECI-RGB color space with a white point of 5000 kelvins (warm light)
RGB_COLOR_MODEL_ADOBE_RGB_D65	Adobe RGB color space with a white point of 6500 kelvins (mid daylight). The Adobe RGB color space is larger than the sRGB color space, but not all devices can render it.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

- is_SetHardwareGain() 333
- is_AutoParameter()
- is_SetAutoParameter() 303

4.3.11 is_Configuration

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_Configuration (UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Use is_Configuration() to set various system-wide options:

• Windows only: Processor operating states (idle states/C-states)

Modern processors have various operating states, so-called C-states, that are characterized by different power requirements. When the operating system selects an operating state with low power consumption (unequal C0), the USB transmission efficiency may be affected.

Use the function parameters IS_CONFIG_CPU_IDLE_STATES_CMD... to disable these low power consumption operating states and improve USB transmission efficiency. The uc480 driver changes the current energy settings of the operating system when the first USB DCx camera is opened. After the last USB DCx camera is closed, the uc480 driver restores the original settings. The settings are valid for the current user only.

• Windows only: Activate OpenMP (Open Multi-Processing)

OpenMP is a programming interface that supports distributed computing on multi-core processors. When you activate OpenMP support, intensive computing operations, such as the <u>Bayer conversion</u> (26), are distributed across several processor cores to accelerate execution. The use of OpenMP, however, increases CPU load.

• Load camera parameters during installation

Use the function parameters IS_CONFIG_INITIAL_PARAMETERSET... to indicate whether to apply the parameters stored on the camera automatically when opening the camera. You must first store the camera parameters on the camera using the $\underline{is}_{ParameterSet}()$ function or via the corresponding function in the uc480 demo 80. This setting applies to all connected cameras. If no parameters are stored on the camera, the standard parameters of this camera model are applied.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

Settings for processor operating states: The settings for processor operating states are available only on Windows operating systems.

hCam	Camera handle
🖻 nCommand	
IS_CONFIG_CMD_GET_CAPABILITIES	Returns the configuration options supported by the system. Additional information
	• pParam: Pointer to a UINT bitmask. The status flags from <u>CONFIGURATION_CAPS</u> [185] are returned in the bitmask.
	• nSizeOfParam: 4
	Example 1 186
IS_CONFIG_CPU_IDLE_STATES_CMD_GET_ENABL E	Returns whether the current settings allow low power consumption operating states (unequal C0). Additional information
	• pParam: Pointer to a UINT bitmask. The status flags from <u>CONFIGURATION_SEL</u> are returned in the bitmask.
	• nSizeOfParam: 4
	Example 2 186

hCam	Camera handle
IS_CONFIG_CPU_IDLE_STATES_CMD_SET_DISAB LE_ON_OPEN	Changes the energy settings of the operating system so that low power consumption operating states (unequal C0) are disabled. Additional information pParam: Pointer to a UINT variable, see <u>CONFIGURATION_SEL</u> [185]. nSizeOfParam: 4 Note: To apply a new setting, you must close all open DCx Cameras and then reopen at least one camera. Example 3 [196]
IS_CONFIG_CPU_IDLE_STATES_CMD_GET_DISAB LE_ON_OPEN	 Returns the current setting for IS_CONFIG_CPU_IDLE_STATES_CMD_SET_DISABLE_ ON_OPEN. Additional information pParam: Pointer to a UINT bitmask. The status flags from <u>CONFIGURATION_SEL</u> [185] are returned in the bitmask. nSizeOfParam: 4
IS CONFIG OPEN MP CMD GET ENABLE	Returns whether OpenMP support is enabled
	 Additional information pParam: Pointer to a UINT bitmask. The status flags from <u>CONFIGURATION_SEL</u> [185] are returned in the bitmask. nSizeOfParam: 4 Example 4 [187]
IS_CONFIG_OPEN_MP_CMD_SET_ENABLE	Enables OpenMP support.
	 pParam: Pointer to a UINT variable, to enable: IS_CONFIG_OPEN_MP_ENABLE to disable: IS_CONFIG_OPEN_MP_DISABLE nSizeOfParam: 4 Note: The settings are lost after the application is closed and must be set again the next time the camera is started. Example 4 [187]
IS_CONFIG_OPEN_MP_CMD_GET_ENABLE_DEFAUL	Returns the default setting for OpenMP support.
Т	 Additional information pParam: Pointer to a UINT bitmask. The status flags from <u>CONFIGURATION_SEL</u> [185] are returned in the bitmask. nSizeOfParam: 4 Example 4 [187]
IS_CONFIG_INITIAL_PARAMETERSET_CMD_SET	 Sets the parameter set to read and apply from the camera EEPROM when the camera is opened. Additional information pParam: Pointer to a UINT variable, IS_CONFIG_INITIAL_PARAMETERSET_NONE IS_CONFIG_INITIAL_PARAMETERSET_1 IS_CONFIG_INITIAL_PARAMETERSET_2 nSizeOfParam: 4 Example 5 [187]
IS_CONFIG_INITIAL_PARAMETERSET_CMD_GET	Returns which parameter set will be read and applied from the camera EEPROM when the camera is opened.

DCx Cameras

hCam	Camera handle
G	Additional information
•	PParam: Pointer to a UINT variable, IS_CONFIG_INITIAL_PARAMETERSET_NONE IS_CONFIG_INITIAL_PARAMETERSET_1 IS_CONFIG_INITIAL_PARAMETERSET_2
•	nSizeOfParam: 4
	Example 5 187
pParam	Pointer to a function parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the CONFIGURATION_CAPS Structure

INT	IS_CONFIG_CPU_IDLE_STATES_CAP_SUPPORT ED	Function parameters for setting the processor operating states are supported.
INT	IS_CONFIG_OPEN_MP_CAP_SUPPORTED	Function parameters to configure OpenMP are supported.
INT	IS_CONFIG_INITIAL_PARAMETERSET_CAP_SU PPORTED	Function parameters to load camera parameters during initialization are supported.

Contents of the CONFIGURATION_SEL Structure

INT	IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALU E	Set/recover processor operating states for power supply unit operation
INT	IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALU E	Set/recover processor operating states for battery operation
INT	IS_CONFIG_OPEN_MP_DISABLE	OpenMP support disabled
INT	IS_CONFIG_OPEN_MP_ENABLE	OpenMP support enabled
INT	IS_CONFIG_INITIAL_PARAMETERSET_NONE	Load camera parameters during initialization disabled
INT	IS_CONFIG_INITIAL_PARAMETERSET_1	Load camera parameter set 1 during initialization
INT	IS_CONFIG_INITIAL_PARAMETERSET_2	Load camera parameter set 2 during initialization

Return values

IS_CANT_OPEN_REGISTRY	Error opening a Windows registry key
IS_CANT_READ_REGISTRY	Error reading settings from the Windows registry
IS_ERROR_CPU_IDLE_STATES_CONFIGURATION	The configuration of the CPU idle has failed.
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_IMAGE_MEM_ALLOCATED	The driver could not allocate memory.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OPERATING_SYSTEM_NOT_SUPPORTED	Operating system not supported
IS_SUCCESS	Function executed successfully

Related functions

• is_ParameterSet()²⁹²

DCx Cameras

Example 1

```
UINT nCaps = 0;
INT nRet = is_Configuration(IS_CONFIG_CMD_GET_CAPABILITIES, (void*)&nCaps, sizeof(UINT));
if (nRet == IS_SUCCESS)
{
    if (nCaps & IS_CONFIG_CPU_IDLE_STATES_CAP_SUPPORTED)
    {
        // CPU idle states supported
    }
    if (nCaps & IS_CONFIG_OPEN_MP_CAP_SUPPORTED)
    {
        // OpenMP supported
    }
    if (nCaps & IS_CONFIG_INITIAL_PARAMETERSET_CAP_SUPPORTED)
    {
        // Initial parameter set supported
    }
}
```

Example 2

Example 3

UINT nCpuStates = IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALUE | IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALUE;

```
INT nRet = is_Configuration(IS_CONFIG_CPU_IDLE_STATES_CMD_SET_DISABLE_ON_OPEN,
                             (void*)&nCpuStates,
                            sizeof(nCpuStates)
                            );
if (nRet == IS_SUCCESS)
{
    nCpuStates = 0;
    nRet = is_Configuration(IS_CONFIG_CPU_IDLE_STATES_CMD_GET_DISABLE_ON_OPEN,
                             (void*)&nCpuStates,
                            sizeof(nCpuStates)
                            );
    if (nRet == IS_SUCCESS)
        if (nCpuStates & IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALUE)
        {
            // CPU idle states for mains power are deactivated when camera is opened
        }
        if (nCpuStates & IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALUE)
        {
            // CPU idle states for battery power are deactivated when camera is opened
        }
    }
}
```

Example 4

{

}

{

}

}

{

}

// Parameter set 1

// Parameter set 2

// Set to parameter set 2

if (nRet == IS_SUCCESS)

nNumber = IS_CONFIG_INITIAL_PARAMETERSET_2;

else if (nNumber == IS_CONFIG_INITIAL_PARAMETERSET_2)

```
UINT nEnabled = 0;
INT nRet = is_Configuration(IS_CONFIG_OPEN_MP_CMD_GET_ENABLE, (void*)&nEnabled, sizeof(nEnabled));
if (nRet == IS_SUCCESS)
{
    if (nEnabled == IS_CONFIG_OPEN_MP_ENABLE)
    {
        // OpenMP enabled
    }
}
nEnabled = 0;
nRet = is_Configuration(IS_CONFIG_OPEN_MP_CMD_GET_ENABLE_DEFAULT, (void*)&nEnabled, sizeof(nEnabled));
if (nRet == IS_SUCCESS)
{
    nRet = is_Configuration(IS_CONFIG_OPEN_MP_CMD_SET_ENABLE, (void*)&nEnabled, sizeof(nEnabled));
    if (nRet == IS_SUCCESS)
    {
        // Default value set
    }
}
Example 5
UINT nNumber = 0;
INT nRet = is_Configuration(IS_CONFIG_INITIAL_PARAMETERSET_CMD_GET, (void*)&nNumber, sizeof(nNumber));
if (nRet == IS_SUCCESS)
{
    if (nNumber == IS_CONFIG_INITIAL_PARAMETERSET_NONE)
    {
        // No parameter set specified
    }
    else if (nNumber == IS_CONFIG_INITIAL_PARAMETERSET_1)
```

is_Configuration(IS_CONFIG_INITIAL_PARAMETERSET_CMD_SET, (void*)&nNumber, sizeof(nNumber));

```
© 2013 Thorlabs GmbH
```

4.3.12 is_Convert

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

IDSEXP is_Convert(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

is_Convert() is a general function for conversions. In version 4.20 a raw Bayer image is converted to the desired format. You can set all parameters, which are important for software conversion:

- Pixel format
- Pixel converter (3x3, 5x5)
- Color correction
- Gamma
- Saturation
- Edge enhancement

The target buffer must be allocated with the is_AllocImageMem() [157] function and must have the right size.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

The following functions are obsolete by the is_Convert() function:

- is_ConvertImage()
- is_SetConvertParam()

See also Obsolete functions 379

hCam	Camera handle
nCommand	
IS_CONVERT_CMD_APPLY_PARAMS_AND_CONVERT_B UFFER	Converts a raw Bayer buffer with the passed conversion parameters
pParam	Pointer to a function parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the BUFFER_CONVERSION_PARAMS structure

char*	pSourceBuffer	Pointer to the raw Bayer buffer which was created with the $\underline{is_AllocImageMem()}$ function.
char*	pDestBuffer	Pointer to the target buffer with the converted data which was created with the <u>is_AllocImageMem()</u> [157] function.
INT	nDestPixelFormat	Color mode of the target image; see $\underline{is_SetColorMode()}$ at for the possible modes
INT	nDestPixelConverter	Conversion mode of the target image; see <u>is_SetColorConverter()</u> [315] for the possible modes
INT	nDestGamma	Sets the gamma correction, see <u>is_SetGamma()</u>
INT	nDestEdgeEnhancement	Sets the edge enhancement, see <u>is_EdgeEnhancement()</u> 206
INT	nDestColorCorrectionMode	Sets the color correction, see <u>is_SetColorCorrection()</u>
INT	nDestSaturationU	Sets the color saturation (saturation U), see <u>is_SetSaturation</u> () 342
INT	nDestSaturationV	Sets the color saturation (saturation V), see $\underline{is_SetSaturation()}$

Return value

IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

- is_SetColorMode() 319
- is_SetBayerConversion() 420

Example

BUFFER_CONVERSION_PARAMS conversionParams;

```
conversionParams.nDestPixelFormat
                                                = IS_CM_BGRA8_PACKED;
conversionParams.nDestPixelConverter
                                                = IS_CONV_MODE_SOFTWARE_3X3;
conversionParams.nDestColorCorrectionMode
                                               = IS_CCOR_DISABLE;
conversionParams.nDestGamma
                                                = 100;
conversionParams.nDestSaturationU
                                                = 100;
conversionParams.nDestSaturationV
                                                = 100;
                                                = 0;
conversionParams.nDestEdgeEnhancement
conversionParams.pSourceBuffer
                                                = pSourceBuffer;
conversionParams.pDestBuffer
                                                = pDestBuffer;
INT nRet = is_Convert(m_hCam,
                      IS_CONVERT_CMD_APPLY_PARAMS_AND_CONVERT_BUFFER,
                      (void*)&conversionParams,
                      sizeof(conversionParams)
                      );
```

4.3.13 is_CopyImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_CopyImageMem (HIDS hCam, char* pcSource, INT nID, char* pcDest)

Description

 $is_CopyImageMem()$ copies the contents of the image memory described by pcSource and nID to the memory area to whose starting address pcDest points.

Attention

The allocated memory must be large enough to accommodate the entire image in its current format (bits per pixel).

Input parameters

hCam	Camera handle
pcSource	Pointer to the image memory
nID	ID of this image memory
pcDest	Pointer to the destination memory to copy the image to

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_AllocImageMem()
- is_SetAllocatedImageMem()

4.3.14 is_CopyImageMemLines

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_CopyImageMemLines (HIDS hCam, char* pcSource, INT nID, INT nLines, char* pcDest)

Description

 $is_CopyImageMemLines()$ copies the contents of the image memory described by pcSource and nID to the memory area to whose starting address pcDest points. The function only copies the number of lines indicated by nLines.

Attention

The allocated memory must be large enough to accommodate the in nLines given number of image lines considering the image width and format (Bits per Pixel).

Input parameters

hCam	Camera handle
pcSource	Pointer to the image memory
nID	ID of this image memory
nLines	Number of lines to be copied
pcDest	Pointer to the destination memory to copy the image to

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_AllocImageMem()
- is_SetAllocatedImageMem() 301

4.3.15 is_DeviceFeature

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Note

This command is supported by DCC1240x / DCC3240x cameras only!

Syntax

INT is_DeviceFeature (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Using is_DeviceFeature() you can configure special camera functions provided by DCC1240x / DCC3240x Camera models:

- Set line scan mode, see <u>Basics: Line scan mode</u> 33 (only monochrome models).
- Toggle between shutter modes, see Basics: Shutter methods. 30
- Control the Log mode, see uc480 Viewer: Shutter. [116]

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

hCam	Camera handle
nCommand	
IS_DEVICE_FEATURE_CMD_GET_SUPPORTED_FEAT URES	Returns the functions supported by the camera. See <u>Status flags</u> [193] table (<u>Example 1</u> [194])
IS_DEVICE_FEATURE_CMD_SET_LINESCAN_MODE	Sets the line scan mode, see DEVICE_FEATURE_MODE_CAPS
IS_DEVICE_FEATURE_CMD_GET_LINESCAN_MODE	Returns the currently set line scan mode
IS_DEVICE_FEATURE_CMD_SET_LINESCAN_NUMBE R	Sets the scan line used for the line scan mode
IS_DEVICE_FEATURE_CMD_GET_LINESCAN_NUMBE R	Returns the scan line used for the line scan mode
IS_DEVICE_FEATURE_CMD_SET_SHUTTER_MODE	Sets the shutter mode, see DEVICE_FEATURE_MODE_CAPS
IS_DEVICE_FEATURE_CMD_GET_SHUTTER_MODE	Returns the shutter mode
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_DEFAU LT	Returns the default settings for the Log mode (Example 2 194)
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE	Returns the currect Log mode (Example 3 194)
IS_DEVICE_FEATURE_CMD_SET_LOG_MODE	Sets the Log mode
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA L_VALUE_DEFAULT	Returns the default settings for the manual value of the Log mode (Example 4^{195})
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA L_VALUE_RANGE	Returns the range of the manual value of the Log mode.
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA L_VALUE	Returns the current manual value of the Log mode (Example 5 [195])
IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUA L_VALUE	Sets the manual value of the Log mode

hCam	Camera handle	Camera handle	
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA L_GAIN_DEFAULT	Returns the default settings for the manual gain for the Log mode (Example 6 195)		
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA L_GAIN_RANGE	Returns the range for the manual gain of the Log mode		
IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA L_GAIN	Returns the current manual gain of the Log mode (Example 7 [195])		
IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUA L_GAIN	Sets the manual gain of the Log mode		
pParam	Pointer to a function paramete depends on nCommand.	r, whose function	
nSizeOfParam	Size (in bytes) of the memory a pParam refers.	area to which	

Status Flags from DEVICE_FEATURE_MODE_CAPS

IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_ROLLIN G	Rolling shutter mode is supported/Set mode
IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_ROLLIN G_GLOBAL_START	Rolling shutter mode with global start is supported/Set mode
IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_GLOBAL	Global shutter mode is supported/Set mode
IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_GLOBAL _ALTERNATIVE_TIMING	Global shutter mode with different timing parameters is supported/Set mode
IS_DEVICE_FEATURE_CAP_LINESCAN_MODE_FAST	Fast line scan mode is supported/Set mode
IS_DEVICE_FEATURE_CAP_LINESCAN_NUMBER	Line number at fast line scan mode is supported/Set number
IS_DEVICE_FEATURE_CAP_LOG_MODE	LinLog pixel mode is supported/Set mode

LOG_MODES

IS_LOG_MODE_FACTORY_DEFAULT	Default settings for the Log mode
IS_LOG_MODE_OFF	Log mode off
IS_LOG_MODE_MANUAL	Manual Log mode. In this case the LogMode value and the LogMode gain are effective.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SUCCESS	Function executed successfully

Example 1

```
INT nSupportedFeatures;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_SUPPORTED_FEATURES,
                          (void*)&nSupportedFeatures, sizeof(nSupportedFeatures));
if (nRet == IS_SUCCESS)
  if (nSupportedFeatures & IS_DEVICE_FEATURE_CAP_LINESCAN_MODE_FAST)
  {
    // Enable line scan mode
    INT nMode = IS_DEVICE_FEATURE_CAP_LINESCAN_MODE_FAST;
   nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LINESCAN_MODE, (void*)&nMode,
                          sizeof(nMode));
    // Disable line scan mode
   nMode = 0;
   nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LINESCAN_MODE, (void*)&nMode,
                          sizeof(nMode));
    // Return line scan mode
   nRet = is DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LINESCAN_MODE, (void*)&nMode,
                          sizeof(nMode));
  if (nSupportedFeatures & IS_DEVICE_FEATURE_CAP_LINESCAN_NUMBER)
    // Set line number
    INT nLineNumber = 512;
    nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LINESCAN_NUMBER,
                           (void*)&nLineNumber, sizeof(nLineNumber));
   }
```

Example 2

Example 3

Example 4

```
/* Read default Log pixel mode manual value */
UINT nDefaultLogModeManualValue = 0;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_VALUE_DEFAULT,
                            (void*)&nDefaultLogModeManualValue,
                            sizeof(nDefaultLogModeManualValue));
/* Get the range of the manual value */
IS_RANGE_S32 nLogModeManualValueRange;
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_VALUE_RANGE,
                        (void*) & nLogModeManualValueRange,
                        sizeof(nLogModeManualValueRange);
if (nRet == IS_SUCCESS) {
  INT nMin = nLogModeManualValueRange.s32Min;
  INT nMax = nLogModeManualValueRange.s32Max;
  INT nInc = nLogModeManualValueRange.s32Inc;
}
Example 5
UINT nLogModeValue = 0;
/* Read current Log mode manual value */
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_VALUE,
                        (void*)&nLogModeValue, sizeof(nLogModeValue));
/* Set log pixel mode value */
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUAL_VALUE,
                        (void*)&nLogModeValue, sizeof(nLogModeValue));
Example 6
/* Read default Log mode manual gain */
UINT nDefaultLogModeManualGain = 0;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_GAIN_DEFAULT,
                            (void*)&nDefaultLogModeManualGain,
                            sizeof(nDefaultLogModeManualGain));
/* Get the range of the manual value *,
IS_RANGE_S32 nLogModeManualGainRange;
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_GAIN_RANGE,
                        (void*)&nLogModeManualGainRange,
                        sizeof(nLogModeManualGainRange));
if (nRet == IS_SUCCESS) {
  INT nMin = nLogModeManualGainRange.s32Min;
  INT nMax = nLogModeManualGainRange.s32Max;
  INT nInc = nLogModeManualGainRange.s32Inc;
Example 7
UINT nLogModeGain = 0;
/* Read current Log mode gain */
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_GAIN,
                       (void*)&nLogModeGain, sizeof(nLogModeGain));
/* Set Log mode gain*/
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUAL_GAIN,
                       (void*)&nLogModeGain, sizeof(nLogModeGain));
```

4.3.16 is_DeviceInfo

Ĥ	٨
USB 3	USB 3

Note

This command is supported by DCC3240x USB3 cameras only!

Syntax

INT is_DeviceInfo (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Using is_DeviceInfo(), you can query information about connected USB 3 Cameras. The resulting information is written to the IS_DEVICE_INFO structure. For this purpose, the cameras need not be opened.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Input parameters

hCam	Camera handle	
nCommand		
IS_DEVICE_INFO_CMD_GET_DEVICE_INFO	Returns a information structure about the specified device (Example 1 [197])	
pParam	Pointer to a function parameter, whose function depends on ${\tt nCommand}$.	
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.	

Contents of the IS_DEVICE_INFO structure

IS_DEVICE_INFO_HEARTBEAT	infoDevHeartbeat	Camera-related data retrieved from the camera (from the heartbeat telegram) See <u>IS_DEVICE_INFO_HEARTBEAT</u>
IS_DEVICE_INFO_CONTROL	infoDevControl	Camera-related driver data See <u>IS_DEVICE_INFO_CONTROL</u>
BYTE	reserved[240]	reserved

Contents of the IS_DEVICE_INFO::IS_DEVICE_INFO_HEARTBEAT structure

BYTE	reserved_1[36]	reserved
DWORD	dwRuntimeFirmwareVersion	Firmware version
BYTE	reserved_2[8]	reserved
WORD	wTemperature	Camera temperature in degree Celsius Bit 15: algebraic sign Bit 1411: filled according to algebraic sign Bit 104: temperature (places before the decimal point) Bit 30: temperature (places after the decimal point) See the <u>Ambient conditions</u> 400 chapter for permissible temperature range.
WORD	wLinkSpeed_Mb	Transfer rate: • IS_USB_HIGH_SPEED = 480 • IS_USB_SUPER_SPEED = 4000

	BYTE	reserved[208]	reserved
- 1			

Contents of the IS_DEVICE_INFO::IS_DEVICE_INFO_CONTROL structure

DWORD	dwDeviceId	Internal device ID of the camera
BYTE	reserved[148]	reserved

Return values

IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_SUCCESS	Function executed successfully

Related functions

• <u>is_GetCameraList()</u> [233]

Example 1

```
// The camera has the device ID 1
UINT nDeviceId = 1;
```

IS_DEVICE_INFO deviceInfo; memset(&deviceInfo, 0, sizeof(IS_DEVICE_INFO));

if (nRet == IS_SUCCESS)

{
 WORD wTemperature = deviceInfo.infoDevHeartbeat.wTemperature;
}

4.3.17 is_DirectRenderer

.	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_DirectRenderer (HIDS hCam, UINT nMode, void* pParam, UINT nSize)

Description

Note

The is_DirectRenderer() functions works under Linux only in OpenGL mode.

is_DirectRenderer() provides a set of advanced rendering functions and allows inserting overlay data into the camera's live image without flicker. The graphics card functions of the Direct3D library are supported under Windows.

The second input parameter nMode specifies the effect of the is_DirectRenderer() call.

The value of the third parameter pParam depends on the mode selected with nMode: For example, when setting the overlay size (nMode = DR_SET_OVERLAY_SIZE), a pointer to an array of two values (x and y) is passed (see <u>code samples</u> 202). When you load a bitmap image (nMode = DR_LOAD_OVERLAY_FROM_FILE), pParam passes the path to the file (see <u>code samples</u> 203). The required parameters are illustrated in the sample codes at the end of this section.

Notes

1. System requirements

- To use the Direct3D functionality, the appropriate version of the Microsoft DirectX Runtime has to be installed in your PC.
- When you are using high-resolution cameras, the maximum texture size supported by the graphics card should be at least 4096 x 4096 pixels. You can check the maximum texture size by reading out the D3D_GET_MAX_OVERLAY_SIZE parameter.
- The Direct3D mode automatically uses the Windows Desktop color depth setting for the display.

Please also read the notes on graphics cards which are provided in the System requirements 56 chapter.

2. Displaying monochrome or raw data formats

To display monochrome or Bayer raw data in Direct3D, please set the appropriate constants using the $is_SetDisplayMode()$ function.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam input parameter.

hCam	Camera handle
🖃 nMode	
DR_GET_SUPPORTED	Returns either if Direct3D or OpenGL is supported by the graphics card. ∃ More details
•	 IS_SET_DM_DIRECT3D: Tests if Direct3D is supported.
	• IS_SET_DM_OPENGL: Tests if OpenGL is supported. Example [201]
DR_GET_OVERLAY_DC	Direct3D only: Returns the device context (DC) handle to the overlay area of the graphics card.

hCam	Camera handle
	More details In Direct3D mode, the DR_GET_OVERLAY_DC mode returns the device context (DC) handle of the overlay area. Using this handle, it is possible to access the overlay using the Windows GDI functionality. Thus, all Windows graphics commands (e.g. Line, Circle, Rectangle, TextOut) are available. To transfer the drawn elements to the overlay, release the DC handle by calling DR_RELEASE_OVERLAY_DC. Example 201
DR_RELEASE_OVERLAY_DC	Direct3D only: Releases the device context (DC) handle. ☐ More details Using DR_RELEASE_OVERLAY_DC, you can release the DC handle and update the overlay data. Example 201
DR_GET_MAX_OVERLAY_SIZE	Returns the width ${\bf x}$ and height ${\bf y}$ of the maximum overlay area supported by the graphics card. Example
DR_SET_OVERLAY_SIZE	Defines the size of the overlay area (default: current camera image size). Example 202
DR_GET_OVERLAY_SIZE	Returns the size of the overlay area. (Sample: see DR_SET_OVERLAY_SIZE)
DR_SET_OVERLAY_POSITION	Defines the position of the overlay area. Example
DR_GET_OVERLAY_KEY_COLOR	Returns the RGB values of the current key color (default: black). Example
DR_SET_OVERLAY_KEY_COLOR	 Defines the RGB values of the key color. More details The key color specifies where the camera image will be visible in the overlay area. For example: if you fill the complete overlay with the key color, the whole camera image will be visible. If you fill part of the overlay with a different color, the camera image will be covered by the overlay in those places. The key color has no effect in semi-transparent mode!
DR_SHOW_OVERLAY	Enables overlay display on top of the current camera image. Example
DR_HIDE_OVERLAY	Disables overlay display. Example 202
DR_ENABLE_SCALING	Enables real-time scaling of the image to the size of the display window. The overlay is scaled together with the camera image. Example 202
DR_ENABLE_IMAGE_SCALING	Direct3D only: Enables real-time scaling of the image to the size of the display window. The overlay is not scaled. (Sample: see DR_ENABLE_SCALING)
DR_DISABLE_SCALING	Disables real-time scaling. Example 202
DR_ENABLE_SEMI_TRANSPARENT_OVERLAY	Enables a semi-transparent display of the overlay area. More details In semi-transparent mode, the values of the camera image and the overlay data are added up for each pixel. Since black has the value 0, the complete camera image will be visible if the overlay is black; if the overlay is white, only the overlay will be visible. With all other colors, the camera image will be visible with the overlay superimposed. The key color has no effect in semi-transparent mode! Example 202

hCam	Camera handle
DR_DISABLE_SEMI_TRANSPARENT_OVERLAY	Disables the semi-transparent display of the overlay area. Example 202
DR_SET_VSYNC_AUTO	Enables synchronization of the image display with the monitor's image rendering. The image is displayed upon the monitor's next VSYNC signal. Example
DR_SET_VSYNC_OFF	Disables image display synchronization. The image is displayed immediately. Example 203
DR_SET_USER_SYNC	Direct3D only: Enables synchronization of the image display with a monitor pixel row specified by the user. ☐ More details When displaying very large camera images, the auto VSYNC function might not always optimally synchronize image rendering. In this case, you can eliminate flicker by manually setting a suitable position for synchronization. The position needs to be determined individually, based on the camera type and the graphics card. Example 203
DR_GET_USER_SYNC_POSITION_RANGE	Direct3D only: Returns the minimum and maximum row position for DR_SET_USER_SYNC. Example 203
DR_LOAD_OVERLAY_FROM_FILE	Direct3D only: Loads a bitmap image (*.BMP file) into the overlay area. If the bitmap image is larger than the overlay area, the bitmap image is clipped. Example 203
DR_CLEAR_OVERLAY	Deletes the data of the overlay area by filling it with black color. Example 203
DR_STEAL_NEXT_FRAME	 Copies the next image to the active user memory (Steal function). More details Using the pParam parameter, you specify when the function should return: IS_WAIT: The function waits until the image save is complete. IS_DONT_WAIT: The function returns immediately. Example 203
DR_SET_STEAL_FORMAT	Defines the color format for the Steal function. ■ More details For a list of all available color formats, see the function description for <u>is_SetColorMode()</u> [318]. The default is IS_CM_BGRA8_PACKED (RGB 32). Example [203]
DR_GET_STEAL_FORMAT	Returns the color format setting for the Steal function.
DR_SET_HWND	Sets a new window handle for image output in Direct3D.
DR_CHECK_COMPATIBILITY	Returns whether the graphics card supports the uc480 Direct3D functions. Example 203
DR_GET_OVERLAY_DATA	OpenGL only: Returns a pointer to the overlay.
DR_UPDATE_OVERLAY_DATA	OpenGL only: Updates the overlay.
pParam	Pointer to a function parameter, whose function depends on nCommand.
nSize	Size (in bytes) of the data object or array.

DCx Cameras

Return values

When used with DR_CHECK_COMPATIBILITY	IS_DR_DEVICE_CAPS_INSUFFICIENT The graphics hardware does not fully support the uc480 Direct3D functions.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_CANNOT_GET_OVERLAY_DC	Could not get the device context handle for the overlay.
IS_DR_CANNOT_LOCK_OVERLAY_SURFACE	The overlay surface could not be locked.
IS_DR_CANNOT_RELEASE_OVERLAY_DC	Could not release the device context handle for the overlay.
IS_DR_CANNOT_UNLOCK_OVERLAY_SURFACE	The overlay surface could not be unlocked.
IS_DR_DEVICE_CAPS_INSUFFICIENT	Function is not supported by the graphics hardware.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_NOT_ALLOWED_WHILE_DC_IS_ACTIVE	A device context handle is still open in the application.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

- is_SetDisplayMode() 322
- is_SetColorMode() 319
- is_SetImageMem() 337
- is_RenderBitmap()²⁹⁷

Example Supported function

```
UINT nType = IS_SET_DM_DIRECT3D;
if (is_DirectRenderer(m_pMainView->GetCameraHandle(), DR_GET_SUPPORTED,
                   (void*)&nType, sizeof(nType)) == IS_SUCCESS)
{
 // Direct3D is supported
}
nType = IS_SET_DM_OPENGL;
if (is_DirectRenderer(m_pMainView->GetCameraHandle(), DR_GET_SUPPORTED,
                   (void*)&nType, sizeof(nType)) == IS_SUCCESS)
{ // OpenGL is supported
Example DC handle
//-----
                      _____
// DC-Handle
//-----
// Get DC handle for Overlay
HDC hDC;
is_DirectRenderer (hCam, DR_GET_OVERLAY_DC, (void*)&hDC, sizeof (hDC));
// Release DC handle
is_DirectRenderer (hCam, DR_RELEASE_OVERLAY_DC, NULL, NULL);
```

Example overlay size and position

```
//-----
// Size of overlay
// Query maximum size of overlay area
UINT OverlaySize[2];
is_DirectRenderer (hCam, DR_GET_MAX_OVERLAY_SIZE,
                 (void*)OverlaySize, sizeof(OverlaySize));
INT nWidth = OverlaySize[0];
INT nHeight = OverlaySize[1];
// Set size of overlay area
UINT Size[2];
Size[0] = 100;
Size[1] = 120;
is_DirectRenderer (hCam, DR_SET_OVERLAY_SIZE,
                 (void*)Size, sizeof (Size));
// Set position of overlay area
UINT Position[2];
Position[0] = 20;
Position[1] = 0;
is_DirectRenderer (hCam, DR_SET_OVERLAY_POSITION,
                 void*)Position, sizeof (Position));
Example key color
//-----
11
   Key color
//-----
// Get current key color
UINT OverlayKeyColor[3];
is_DirectRenderer (hCam, DR_GET_OVERLAY_KEY_COLOR,
                 (void*)OverlayKeyColor, sizeof(OverlayKeyColor));
INT nRed = OverlayKeyColor[0];
INT nGreen = OverlayKeyColor[1];
INT nBlue = OverlayKeyColor[2];
// Set new key color
```

Example display

//-----// Display //-----

// Show overlay
is_DirectRenderer (hCam, DR_SHOW_OVERLAY, NULL, NULL);

// Hide overlay
is_DirectRenderer (hCam, DR_HIDE_OVERLAY, NULL, NULL);

Example scaling

//---// Scaling
//
// Enable scaling
is_DirectRenderer (hCam, DR_ENABLE_SCALING, NULL, NULL);
// Disable scaling
is_DirectRenderer (hCam, DR_DISABLE_SCALING, NULL, NULL);

Example transparency

//----// Transparency
//------

// Enable semi-transparent overlay
is_DirectRenderer (hCam, DR_ENABLE_SEMI_TRANSPARENT_OVERLAY, NULL, NULL);

// Disable semi-transparent overlay
is_DirectRenderer (hCam, DR_DISABLE_SEMI_TRANSPARENT_OVERLAY, NULL, NULL);

Example synchronization

```
//-----
// Synchronization
// Enable auto-synchronization
is_DirectRenderer (hCam, DR_SET_VSYNC_AUTO, NULL, NULL);
// User defined synchronization: Query range and set position
UINT UserSync[2];
is_DirectRenderer (hCam, DR_GET_USER_SYNC_POSITION_RANGE,
             (void*)UserSync, sizeof (UserSync));
INT Min = UserSync[0];
INT Max = UserSync[1];
INT SyncPosition = 400;
// Disable synchronization
is_DirectRenderer (hCam, DR_SET_VSYNC_OFF, NULL, NULL);
Example overlay with BMP
     _____
//--
                 _____
// BMP file
//-----
// Load overlay from BMP file
//-----
// Delete overlay
//-----
// Delete overlay area
is_DirectRenderer (hCam, DR_CLEAR_OVERLAY, NULL, NULL);
Example steal mode
//-----
// Steal mode
//-----
// Get and set color mode for image to be copied
INT nColorMode;
is_DirectRenderer (hCam, DR_GET_STEAL_FORMAT,
             (void*)&nColorMode, sizeof (nColorMode));
nColorMode = IS_CM_MONO8;
// Copy image with function returning immediately
INT nwait = IS_DONT_WAIT;
Example window handle
//-----
// Handle to window
//-----
// Set new window handle for image display
is_DirectRenderer (hCam, DR_SET_HWND,
              (void*)&hWnd, sizeof (hWnd));
Example compatibility
//-----
// Compatibility
//-----
// Check graphics card compatibility
INT nRet = is_DirectRenderer (hCam, DR_CHECK_COMPATIBILITY, NULL, NULL);
if (nRet == IS_DR_DEVICE_CAPS_INSUFFICIENT )
// Graphics card does not support Direct3D
```

Example OpenGL under Linux

//OpenGL initialize OPENGL_DISPLAY display; display.pDisplay = NULL; display.nWindowID = 0 /* window id */ is_InitCamera(&hCam, (void*)&display); Example under Linux (with usage of the Cairo library) UINT Size[2] = { 480, 480 }; is_DirectRenderer (hCam, DR_SET_OVERLAY_SIZE, (void*)Size, sizeof (Size)); char *pOverlayBuffer; is_DirectRenderer(hCam, DR_GET_OVERLAY_DATA, (void*)&pOverlayBuffer, sizeof(pOverlayBuffer)); cairo_surface_t *surface = 0; cairo_t *cr = 0; int w, h; w = Size[0];h = Size[1];surface = cairo_image_surface_create_for_data(buffer, CAIRO_FORMAT_ARGB32, w, h, w * 4); cr = cairo_create(surface); cairo_set_line_width (cr, 6); cairo_rectangle (cr, 12, 12, 232, 70); cairo_new_sub_path (cr); cairo_arc (cr, 64, 64, 40, 0, 2* 3.14); cairo_new_sub_path (cr); cairo_arc_negative (cr, 192, 64, 40, 0, $-2\star3.14$); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); cairo_set_source_rgb (cr, 0, 0.7, 0); cairo_fill_preserve (cr); cairo_set_source_rgb (cr, 0, 0, 0); cairo_stroke (cr); cairo_translate (cr, 0, 128); cairo_rectangle (cr, 12, 12, 232, 70); cairo_new_sub_path (cr); cairo_arc (cr, 64, 64, 40, 0, 2*3.14); cairo_new_sub_path (cr); cairo_arc_negative (cr, 192, 64, 40, 0, -2*3.14); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_WINDING); cairo_set_source_rgb (cr, 0, 0, 0.9); cairo_fill_preserve (cr); cairo_set_source_rgb (cr, 0, 0, 0); cairo_stroke (cr); cairo_select_font_face (cr, "Sans", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD); cairo_set_font_size (cr, 90.0); cairo_move_to (cr, 10.0, 135.0); cairo_show_text (cr, "Hello"); cairo_move_to (cr, 70.0, 165.0); cairo_set_font_size (cr, 150.0 cairo_text_path (cr, "uc480"); 150.0); cairo_set_source_rgb (cr, 0.5, 0.5, 1); cairo_fill_preserve (cr); cairo_set_source_rgb (cr, 0, 0, 0); cairo_set_line_width (cr, 2.56); cairo stroke (cr); /* draw helping lines */ cairo_set_source_rgba (cr, 1, 0.2, 0.2, 0.6); cairo_arc (cr, 10.0, 135.0, 5.12, 0, 2*3.14); cairo_close_path (cr); cairo_arc (cr, 70.0, 165.0, 5.12, 0, 2*3.14); cairo_fill (cr); cairo_destroy (cr); cairo_surface_destroy (surface);

// update overlay
is_DirectRenderer(hCam, DR_UPDATE_OVERLAY_DATA, NULL, 0);

Sample programs

- uc480DirectRenderer
- uc480Steal

4.3.18 is_DisableEvent

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_DisableEvent (HIDS hCam, INT which)

Description

Using is_DisableEvent(), you disable the event indicated here. The event (e.g. image capture completed) will usually still occur, but will no longer trigger an event signal. Disabled events are no longer signaled to the application. You can re-enable the desired event using <u>is_EnableEvent()</u>. See also <u>is_InitEvent()</u>.

Input parameters

hCam	Camera handle
which	ID of the event to be disabled. See also
	is_EnableEvent() 2091.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- <u>is_EnableEvent()</u> 209
- Windows only: is_InitEvent() [276]
- Windows only: is_ExitEvent() [214]
- Linux only: is_WaitEvent() 355

4.3.19 is_EdgeEnhancement

	\$
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_EdgeEnhancement(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

This function enables/disables a software edge filter.

Due to Bayer format color conversion, the original edges of a color image may easily become blurred. By enabling the digital edge filter, you can optimize edge representation. This function causes a higher CPU load.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

The following function is obsolete by the is_EdgeEnhancement() function:

• is_SetEdgeEnhancement()

See also Obsolete functions 379

Input parameters

hCam	Camera handle
nCommand	
IS_EDGE_ENHANCEMENT_CMD_GET_RANGE	Returns the range of the edge enhancement (Example 1 $\overline{207}$)
IS_EDGE_ENHANCEMENT_CMD_GET_DEFAULT	Returns the standard value of the edge enhancement (Example 2 [207])
IS_EDGE_ENHANCEMENT_CMD_GET	Returns the current set edge enhancement (Example 3 $\overline{207}$)
IS_EDGE_ENHANCEMENT_CMD_SET	Sets the edge enhancement (<u>Example 4</u> 207)) 0: no edge enhancement
pParam	Pointer to a function parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Return values

IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetColorMode() 319
- is_SetColorConverter() 315

Example 1

```
UINT nRange[3];
ZeroMemory(nRange, sizeof(nRange));
INT nRet = is_EdgeEnhancement(m_hCam,
                              IS_EDGE_ENHANCEMENT_CMD_GET_RANGE,
                              (void*)nRange,
                              sizeof(nRange)
                             );
if (nRet == IS_SUCCESS)
{
    UINT nEdgeEnhancementMin = nRange[0];
    UINT nEdgeEnhancementMax = nRange[1];
    UINT nEdgeEnhancementInc = nRange[2];
}
Example 2
UINT nDefault;
INT nRet = is_EdgeEnhancement(m_hCam,
                              IS_EDGE_ENHANCEMENT_CMD_GET_DEFAULT,
                              (void*)&nDefault,
                              sizeof(nDefault)
                             );
Example 3
UINT nEdgeEnhancement;
INT nRet = is_EdgeEnhancement(m_hCam,
                              IS_EDGE_ENHANCEMENT_CMD_GET,
                              (void*)&nEdgeEnhancement,
                              sizeof(nEdgeEnhancement)
                             );
```

Example 4

4.3.20 is_EnableAutoExit

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_EnableAutoExit (HIDS hCam, INT nMode)

Description

is_EnableAutoExit() enables automatic closing of the camera handle after a camera has been removed on-the-fly. Upon closing of the handle, the entire memory allocated by the driver will be released.

Input parameters

hCam	Camera handle
nMode	
IS_ENABLE_AUTO_EXIT	Enables automatic closing
IS_DISABLE_AUTO_EXIT	Disables automatic closing
IS_GET_AUTO_EXIT_ENABLED	Returns the current setting

Return values

Current setting when used together withIS_GET_AUTO_EXIT_ENABLED	
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_ExitCamera() 213

4.3.21 is_EnableEvent

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_EnableEvent (HIDS hCam, INT which)

Description

Using is_EnableEvent(), you release an event object. Following the release, the event messages for the created event object are enabled. Depending on the operating system different functions are to call.

Windows	 Event has to be provided by the application program Event has to be declared by <u>is_InitEvent()</u> Event has to be activated by is_EnableEvent() You have to wait for the event in the application program by WaitForSingleObject or WaitForMultipleObject Event has to be deactivated by <u>is_DisableEvent()</u> Event has to be logged off by <u>is_ExitEvent()</u>
Linux	 Event has to be provided by the uc480 API Event has to be activated by is_EnableEvent() You have to wait for the event by <u>is_WaitEvent()</u> Event has to be deactivated by <u>is_DisableEvent()</u>

hCam	Camera handle		
■ which: ID of the event to be released.	■ which: ID of the event to be released.		
IS_SET_EVENT_AUTOBRIGHTNESS_FINISHED	The automatic brightness control in the run-once mode is completed.		
IS_SET_EVENT_CAMERA_MEMORY	In the camera memory mode an image acquisition iteration is finished.		
IS_SET_EVENT_CAPTURE_STATUS	There is an information about image capturing available. This information can be requested by <u>is_CaptureStatus()</u> Note that this event replaces the former IS_SET_EVENT_TRANSFER_FAILED from previous versions.		
IS_SET_EVENT_CONNECTIONSPEED_CHANGED	The connection speed of a USB 3 DCx camera changed from USB 2.0 to USB 3.0 or from USB 3.0 to USB 2.0.		
IS_SET_EVENT_DEVICE_RECONNECTED	A camera initialized with <u>is_InitCamera()</u> and disconnected afterwards was reconnected.		
IS_SET_EVENT_EXTTRIG	An image which was captured following the arrival of a trigger has been transferred completely. This is the earliest possible moment for a new capturing process. The image must then be post-processed by the driver and will be available after the IS_FRAME processing event.		
IS_SET_EVENT_FRAME	A new image is available.		
IS_SET_EVENT_NEW_DEVICE	A new camera was connected. This is independent of the device handle (hCam is ignored).		
IS_SET_EVENT_OVERLAY_DATA_LOST	Direct3D/OpenGL mode: Because of a re-programming the parameters of the overlay are invalid. The overlay must be draw new.		

DCx Cameras

hCam	Camera handle
IS_SET_EVENT_REMOVAL	A camera was removed. This is independent of the device handle (hCam is ignored).
IS_SET_EVENT_REMOVE	A camera initialized with $\underline{is_InitCamera()}$ was disconnected.
IS_SET_EVENT_SEQ	The sequence is completed.
IS_SET_EVENT_STATUS_CHANGED	Linux only: The availability of a camera has changed, e.g. an available camera was opened.
IS_SET_EVENT_STEAL	An image extracted from the overlay is available.
IS_SET_EVENT_WB_FINISHED	The automatic white balance control is completed.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is DisableEvent() 205
- Windows only: is_InitEvent() 276
- Windows only: is_ExitEvent() 214
- Linux only: is_WaitEvent() 355

Example Windows

```
HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
is_InitEvent(hCam, hEvent, IS_SET_EVENT_FRAME);
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
is_FreezeVideo(hCam, IS_DONT_WAIT);
DWORD dwRet = WaitForSingleObject(hEvent, 1000);
if (dwRet == WAIT_TIMEOUT)
{
    /* wait timed out */
else if (dwRet == WAIT_OBJECT_0)
{
    /* event signalled */
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
is_ExitEvent(hCam, IS_SET_EVENT_FRAME);
CloseHandle(hEvent);
```

Example Linux

```
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
is_FreezeVideo(hCam, IS_DONT_WAIT);
INT nRet = is_WaitEvent(hCam, IS_SET_EVENT_FRAME, 1000);
if (nRet == IS_TIMED_OUT)
{
    /* wait timed out */
else if (nRet == IS_SUCCESS)
{
    /* event signalled */
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
```

Sample programs

- SimpleLive (C++)
- uc480Event (C++)

4.3.22 is_EnableMessage

	۵
USB 2.0	-
USB 3.0	

Syntax

INT is_EnableMessage (HIDS hCam, INT which, HWND hWnd)

Description

Using $is_EnableMessage()$, you can enable Windows messages. If a particular event occurs, the messages are sent to the application.

Each message is structured as follows:

- Message: IS_uc480_MESSAGE
- wParam: Event (see table)
- 1Param: DCx camera handle associated with the message

Attention

You have to deactivate Windows messages with hWnd == NULL before you free the uc480 API library. Otherwise the application may not close properly.

hCam	Camera handle	
■ which: ID of the message to be enabled/disabled		
IS_FRAME	A new image is available.	
IS_SEQUENCE	The sequence is completed.	
IS_CAPTURE_STATUS	An error occurred during the data transfer, see <u>is_CaptureStatus()</u> . [174] The parameter IS_CAPTURE_STATUS replaces the previous parameter IS_TRANSFER_FAILED. The parameter IS_TRANSFER_FAILED was moved into the new header file uc480_deprecated.h, which contains all obsolete function definitions and constants. If necessary the header file uc480_deprecated.h can be included in addition to the header file uc480.h.	
IS_TRIGGER	An image which was captured following the arrival of a trigger has been transferred completely. This is the earliest possible moment for a new capturing process. The image must then be post-processed by the driver and is available after the IS_FRAME message has occurred.	
IS_DEVICE_REMOVED	A camera initialized with <u>is_InitCamera()</u> ^[273] was disconnected.	
IS_DEVICE_RECONNECTED	A camera initialized with <u>is_InitCamera()</u> and disconnected afterwards was reconnected.	
IS_NEW_DEVICE	A new camera was connected.	
IS_DEVICE_REMOVAL	A camera was removed.	
IS_WB_FINISHED	Automatic white balance control is completed (only if this control was started using the IS_SET_AUTO_WB_ONCE function).	
IS_AUTOBRIGHTNESS_FINISHED	Automatic brightness control is completed (only if this control was started using the IS_SET_AUTO_BRIGHTNESS_ONCE function).	

DCx Cameras

hCam	Camera handle
IS_CAMERA_MEMORY	In the camera memory mode an image acquisition iteration is finished.
IS_CONNECTIONSPEED_CHANGED	The connection speed of a USB 3 DCx camera changed from USB 2.0 to USB 3.0 or from USB 3.0 to USB 2.0.
hWnd	Application window for receiving the message. NULL disables the message designated by the which parameter.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_InitEvent() 276

4.3.23 is_ExitCamera

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ExitCamera (HIDS hCam)

Description

 $is_ExitCamera()$ disables the hCam camera handle and releases the data structures and memory areas taken up by the DCx camera. Image memory allocated using the <u>is_AllocImageMem()</u> function which has not been released yet is automatically released.

Note

We recommend that you call the following functions only from a single thread in order to avoid unpredictable behaviour of the application.

- is_InitCamera() 273
- is_SetDisplayMode() 322
- is_ExitCamera() 213

See also Programming: Thread programming 453

Input parameters

hCam	Camera handle
------	---------------

Return values

IS_CANT_OPEN_REGISTRY	Error opening a Windows registry key
IS_CANT_READ_REGISTRY	Error reading settings from the Windows registry
IS_ERROR_CPU_IDLE_STATES_CONFIGURATION	The configuration of the CPU idle has failed.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_IMAGE_MEM_ALLOCATED	The driver could not allocate memory.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_InitCamera() 273
- is_EnableAutoExit() 208

4.3.24 is_ExitEvent

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT is_ExitEvent (HIDS hCam, INT which)

Description

 $is_ExitEvent()$ deletes an existing event object. After an event has been deleted, you can no longer enable it by calling the $is_EnableEvent()$ function.

Input parameters

hCam	Camera handle
which	ID of the event to be deleted. See also <u>is_EnbaleEvent()</u>

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_EnableEvent() 209
- is_InitEvent() 276

Example

See also is_ForceTrigger()^[221]
4.3.25 is_ExitImageQueue

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ExitImageQueue (HIDS hCam)

Description

 $is_ExitImageQueue()$ deletes a queue which has been initialized with $\underline{is_InitImageQueue()}$ and discards all information about the order of queued images. The image memories will be unlocked. The memory sequence itself persists and can be deleted with $is_ClearSequence()$.

Input parameters

hCam Camera handle

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_InitImageQueue() 278
- is_WaitForNextImage()

4.3.26 is_Exposure

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_Exposure (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Using $is_Exposure()$ you can query the exposure time ranges available in your camera, and set new exposure times.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Notes

1. Dependencies on other settings

The use of the following functions will affect the exposure time:

- is_PixelClock()²⁹⁴
- is_SetOptimalCameraTiming() 338
- is_SetFrameRate() 329
- is_AOI() [159] (if the image size is changed)
- is_SetSubSampling() 347
- is_SetBinning() 310

Changes made to the image size, the frame rate or the pixel clock frequency also affect the exposure time. For this reason, you need to call is_Exposure() again after such changes.

2. New driver versions

Newer driver versions sometimes allow an extended value range for the exposure time setting. We recommend querying the value range every time and set the exposure time explicitly.

Applying new settings

In freerun mode ($\underline{is_CaptureVideo()}$, any modification of the exposure time will only become effective when the next image but one is captured. In trigger mode ($\underline{is_SetExternalTrigger()}$, the modification will be applied to the next image. See also the <u>Applying new parameters</u> [46] chapter.

Accuracy of the exposure time setting

The increments for setting the exposure time (IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_INC) depend on the sensor's current timing settings (pixel clock, frame rate). The smallest increment usually corresponds to the duration of one pixel row, which is the time it takes the sensor to read out one pixel row.

You can query the actual exposure time setting with the IS_EXPOSURE_CMD_GET_EXPOSURE parameter.

Some sensors allow setting the exposure time in smaller increments. Using the IS_EXPOSURE_CMD_GET_CAPS parameter, you can check whether your sensor supports this function.

For minimum and maximum exposure times as well as other sensor-based dependencies, please refer to the Camera and sensor data 400 chapter.

Rounding errors from increments

When calculating a new exposure time based on the returned increment, note that calculations with floating point values in the PC will always be subject to rounding errors. Therefore, an addition or subtraction of the n*INCREMENT value might not always produce the exact desired result. In this case, the uc480 API rounds down the floating point value and sets the exposure time to the next lower value.

You can avoid this behavior by additionally adding the value INCREMENT/2.f (half increment) when calculating with n*INCREMENT. This ensures that the desired value will be set even after rounding.

Note

Older uc480 exposure time functions

The following uc480 API commands are obsolete by the <code>is_Exposure()</code> function:

- is_GetExposureRange()
- is_SetExposureTime()

See also Obsolete functions 379

Input parameters

hCam	Camera handle
nCommand	
IS_EXPOSURE_CMD_GET_CAPS	Returns the supported function modes.
	 pParam: Pointer to bit mask of type UINT In the bit mask, the status flags from <u>EXPOSURE_CAPS</u> 219 are returned.
	• nSizeOfParam: 4
	Example 1 220
IS_EXPOSURE_CMD_GET_EXPOSURE_DEFAULT	Returns the default setting for the exposure time. More details
	• pParam: Pointer to variable of type double returning the default value.
	• nSizeOfParam: 8
IS_EXPOSURE_CMD_GET_EXPOSURE	Returns the currently set exposure time (in ms). More details
	• pParam: Pointer to variable of type double returning the current value.
	• nSizeOfParam: 8
IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_MIN	Returns the minimum exposure time. More details
	• pParam: Pointer to variable of type double returning the minimum value.
	• nSizeOfParam: 8
IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_MAX	Returns the maximum exposure time.
	 pParam: Pointer to variable of type double returning the maximum value. nSizeOfParam: 8
IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_INC	Returns the exposure time increment.
	• pParam: Pointer to variable of type double returning the increment.
	• nSizeOfParam: 8
IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE	Returns the exposure time range. More details
	 pParam: Pointer to array of type double returning the minimum and maximum values and the increment (in exactly this order). nSizeOfParam: 24
IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_ MIN	Returns the minimum exposure time in fine increments for some sensors.
	 pParam: Pointer to variable of type double returning

hCam Camera handle the minimum value. • nSizeOfParam: 8 Example 2 220 IS EXPOSURE CMD GET FINE INCREMENT RANGE Returns the maximum exposure time in fine increments MAX for some sensors. More details • pParam: Pointer to variable of type double returning the maximum value. • nSizeOfParam: 8 IS EXPOSURE CMD GET FINE INCREMENT RANGE Returns the exposure time increment in fine increments TNC for some sensors. More details • pParam: Pointer to variable of type double returning the increment. • nSizeOfParam: 8 IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE Returns the exposure time range in fine increments for some sensors. More details • pParam: Pointer to array of type double returning the minimum and maximum values and the increment (in exactly this order). nSizeOfParam: 24 Example 3 220 IS_EXPOSURE_CMD_SET_EXPOSURE Sets the exposure time (in ms). More details • pParam: Pointer to variable of type double that passes the value to be set. After setting the exposure time this value contains the actually set exposure time. Depending on the sensor the set exposure time may vary slightly from the desired exposure time. • nSizeOfParam: 8 If 0 is passed, the exposure time is set to the maximum value of 1/frame rate. IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE_M Returns the minimum long exposure time. IN More information • pParam: Pointer to variable of type double returning the minimum value. • nSizeOfParam: 8 IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE_M Returns the maximum long exposure time. AX More information pParam: Pointer to variable of type double returning the maximum value. nSizeOfParam: 8 IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE_I Returns the increments for long exposure. NC More information pParam: Pointer to variable of the type double returning the increment. • nSizeOfParam: 8 Returns the value range for long exposure. IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE More information • pParam: Pointer to an array of the type double returning the minmum and maximum values and the

DCx Cameras

hCam	Camera handle
	increment. • nSizeOfParam: 24
IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_ENABLE	Returns the current settings for long exposure. More information pval1: returns the current setting
IS_EXPOSURE_CMD_SET_LONG_EXPOSURE_ENABLE	Enables/Disables long exposure. More information pval1 = 1 enables control, 0 disables control
pParam	Pointer to a function parameter, whose function depends On nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the EXPOSURE_CAPS structure

INT	IS_EXPOSURE_CAP_EXPOSURE	The exposure time setting is supported
INT	IS_EXPOSURE_CAP_FINE_INCREMENT	Fine exposure time increments are supported
INT	IS_EXPOSURE_CAP_LONG_EXPOSURE	Long time exposure is supported

Return values

IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- <u>is_SetFrameRate()</u> 329
- is_PixelClock()
- is_SetOptimalCameraTiming() 338
- is_SetAutoParameter() 303
- is_AutoParameter()
- is_SetHardwareGain() 333

DCx Cameras

Example 1

```
UINT nCaps = 0;
INT nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_GET_CAPS, (void*)&nCaps, sizeof(nCaps));
if (nRet == IS_SUCCESS)
{
    if (nCaps & IS_EXPOSURE_CAP_FINE_INCREMENT)
    {
        // Fine increment supported
    }
}
Example 2
double dblMin, dblMax, dblInc;
INT nRet = is_Exposure(m_hCam,
              IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_MIN,
             (void*)&dblMin,
             sizeof(dblMin)
            );
INT nRet = is_Exposure(m_hCam,
              IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_MAX,
             (void*)&dblMax,
             sizeof(dblMax)
            );
INT nRet = is_Exposure(m_hCam,
              IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_INC,
             (void*)&dblInc,
             sizeof(dblInc)
            );
Example 3
double dblRange[3];
double dblMin, dblMax, dblInc;
INT nRet = is_Exposure(m_hCam,
              IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE,
             (void*)dblRange,
             sizeof(dblRange)
            );
if (nRet == IS_SUCCESS)
{
    dblMin = dblRange[0];
    dblMax = dblRange[1];
    dblInc = dblRange[2];
}
```

4.3.27 is_ForceTrigger

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ForceTrigger (HIDS hCam)

Description

You can use is_ForceTrigger() to force a software-controlled capture of an image while a capturing process triggered by hardware is in progress. This function can only be used if the triggered capturing process was started using the IS_DONT_WAIT parameter.

Input parameters

hCam Camera handle

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_FreezeVideo() 223
- is_CaptureVideo()
- is_SetExternalTrigger() 327

Example

Enable trigger and wait 1 second for the external trigger. If no trigger signal has arrived, force an exception using $is_ForceTrigger()$.

```
HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, "");
if ( hEvent != NULL )
{
    is_InitEvent(hCam, m_hEvent, IS_SET_EVENT_FRAME);
    is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
    is_SetExternalTrigger(hCam, IS_SET_TRIGGER_HI_LO);
    is_FreezeVideo(hCam, IS_DONT_WAIT);
    if (WaitForSingleObject(m_hEvent, 1000) != WAIT_OBJECT_0)
    {
        // No trigger has been received, so force image capture
        is_ForceTrigger(hCam);
    }
    is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
    is_ExitEvent(hCam, IS_SET_EVENT_FRAME);
}
```

4.3.28 is_FreeImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_FreeImageMem (HIDS hCam, char* pcImgMem, INT id)

Description

 $is_FreeImageMem()$ releases an image memory that was allocated using $\underline{is_AllocImageMem()}$ and removes it from the driver management.

Note

If the memory was not allocated using an SDK function, you need to call is_FreeImageMem() as well. Otherwise, there may be errors when the driver keeps trying to access this memory.

This does however not release the memory. So you need to make sure that the memory will be released again.

Input parameters

hCam	Camera handle
pcImgMem	Points to the starting address of the memory (e.g. set in the is_AllocImageMem() [157] function)
id	ID of this memory

Return values

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_CLEANUP_MEMORY	The driver could not release the allocated memory.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_AllocImageMem()

4.3.29 is_FreezeVideo

E.	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_FreezeVideo (HIDS hCam, INT Wait)

Description

is_FreezeVideo() acquires a single image from the camera. In DIB mode, the image is stored in the active image memory. If ring buffering is used in DIB mode, the captured image is transferred to the next available image memory of the sequence. Once the last available sequence memory has been filled, the sequence event or message will be triggered.

In Direct3D or OpenGL mode, the is directly copied to the graphics card buffer and then displayed.

Image capture will be started by a trigger if you previously enabled the trigger mode using <u>is_StetExternalTrigger()</u> [327]. A hardware triggered image acquisition can be cancelled using is_StopLiveVideo() [353] if exposure has not started yet.

For further information on the image capture modes of the DCx camera, see the <u>How to proceed: Image capture</u> 134 section.

Input parameters

hCam	Camera handle
🖃 Wait	
IS_DONT_WAIT	Timeout value for image capture (see also the <u>How to</u>
IS_WAIT	proceed: Timeout values for image capture 135 section)
Time t	

Return values

IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_EXPOSURE_TIME	This setting is not available for the currently set exposure time.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_USB20	The camera is connected to a port which does not support the USB 2.0 high-speed standard.

DCx Cameras

IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_SUCCESS	Function executed successfully
IS_TRANSFER_ERROR	Transfer error. Frequent transfer errors can mostly be avoided by reducing the pixel rate.

Related functions

- is_HasVideoStarted() 259
- is_IsVideoFinish() 288
- is_SetExternalTrigger() 327
- is_ForceTrigger() 221
- is_CaptureVideo()
- is_SetTimeout() 350
- is_CaptureStatus() 174

Example

Enable trigger mode, set high-active flash mode and capture an image:

is_SetExternalTrigger(hCam, IS_SET_TRIGGER_SOFTWARE);

// Set the flash to a high active pulse for each image in the trigger mode UINT nMode = IO_FLASH_MODE_TRIGGER_HI_ACTIVE; is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

is_FreezeVideo(hCam, IS_WAIT);

Sample programs

- SimpleAcquire (C++)
- uc480C# Demo (C#)

4.3.30 is_GetActiveImageMem

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetActiveImageMem (HIDS hCam, char** ppcMem, INT* pnID)

Description

 $is_GetActiveImageMem()$ returns the pointer to the starting address and the ID number of the active image memory.

If a Direct3D mode is active and image memory was nevertheless allocated, the pointer to the image memory and its ID will be returned. However, in Direct3D mode, the image will not be copied automatically to this image memory.

Input parameters

hCam	Camera handle
ppcMem	Returns the pointer to the starting address of the active image memory.
pnID	Returns the ID of the active image memory.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_AllocImageMem()
- is_GetImageMem() 247
- is_SetImageMem() 337
- is_SetAllocatedImageMem() 301

4.3.31 is_GetActSeqBuf

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

Description

Using is_GetActSeqBuf(), you can determine the image memory which is currently used for capturing an image (ppcMem) or the image memory that was last used for capturing an image (ppcMemLast). This function is only available if you have enabled ring buffering.

Attention

All input parameters of a function have to be initialized with valid values before the function is called; this also applies to parameters that are not used. Variables can be preset with '0', for example. For unused parameters, the NULL pointer has to be passed.

Note

This number is not the ID of the image memory that was allocated using the <u>is_AllocImageMem()</u> for function, but the running number from the order in which memory was allocated by the <u>is_AddToSequence()</u> for function.

Input parameters

hCam	Camera handle
pnNum	Contains the number of the image memory currently used for image capturing. If image capturing is already in progress when <code>is_GetActSeqBuf()</code> is called, <code>pnNum</code> will return the value 0 until the sequence arrives at the first image memory again.
ppcMem	Contains the starting address of the image memory currently used for image capturing.
ppcMemLast	Contains the starting address of the image memory last used for image capturing.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SEQUENCE_LIST_EMPTY	The sequence list is empty and cannot be deleted.
IS_SUCCESS	Function executed successfully

- is_AddToSequence()
- is_GetImageMem()²⁴⁷

4.3.32 is_GetAutoInfo

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetAutoInfo (HIDS hCam, UC480_AUTO_INFO* pInfo)

Description

Using the <code>is_GetAutoInfo()</code> function, you can query status information on the automatic image control features. This information is written to the <code>UC480_AUTO_INFO</code> structure.

For further information on automatic control, please refer to the <u>Automatic image control</u> 45 chapter.

Attention

The status information returned in the UC480_AUTO_INFO structure is only valid if at least one of the auto control feature has been enabled using <u>is_SetAutoParameter()</u>

Input parameters

hCam	Camera handle
pinfo	UC480_AUTO_INFO structure (see below)

Contents of the UC480_AUTO_INFO Structure

INT	AutoAbility	Supported auto control features
	AC_SHUTTER	Auto exposure shutter is supported
	AC_SENSOR_SHUTTER	The sensor's internal auto exposure shutter is supported
	AC_FRAMERATE	Auto frame rate is supported
	AC_SENSOR_FRAMERATE	The sensor's internal auto frame rate is supported
	AC_GAIN	Auto gain control is supported
	AC_SENSOR_GAIN	The sensor's internal auto gain control is supported
	AC_SENSOR_AUTO_ CONTRAST_CORRECTION	Auto contrast correction for automatic brightness control is supported
	AC_SENSOR_AUTO_ CONTRAST_FDT_AOI	Use of face detection as field of view for automatic brightness control is supported
	AC_SENSOR_AUTO_ BACKLIGHT_COMP	Backlight compensation for automatic brightness control is supported
	AC_WHITEBAL	Auto white balance is supported
	AC_SENSOR_WB	The sensor's internal auto white balance is supported
AUTO_BRIGHT_STATUS	sBrightCtrlStatus	Status of automatic brightness control, see below
AUTO_WB_STATUS	sWBCtrlStatus	Status of auto white balance, see below
DWORD	AShutterPhotomCaps	Returns a bit mask containing all supported photometry settings (fields of view) for auto exposure shutter, see below.
DWORD	AGainPhotomCaps	Returns a bit mask containing all supported photometry settings (fields of view) for auto gain control, see below.
DWORD	AAntiFlickerCaps	Returns a bit mask containing all supported anti flicker settings for automatic control, see below.
DWORD	SensorWBModeCaps	Returns a bit mask containing all supported settings for the sensor's auto white balance, see

		below.
DWORD	reserved[8]	Reserved space for extensions

Contents of the UC480_AUTO_INFO::AUTO_BRIGHT_STATUS Structure

INT	curValue	Current average brightness of the image (actual value); the following rule applies independently of the image bit depth: 0 = black 255 = white	
INT	curError	Current control deviation (error)	
INT	curController	Current parameter value	
	AC_SHUTTER	Exposure time (shutter)	
	AC_GAIN	Gain	
INT	curCtrlStatus	Current control status	
	ACS_ADJUSTING	Control is active.	
	ACS_FINISHED	Control is completed.	
	ACS_DISABLED	Control is disabled.	

Contents of the UC480_AUTO_INFO::AUTO_WB_STATUS Structure

INT	curController	Current white balance control
	AC_WB_RED_CHANNEL	Value of the red channel
	AC_WB_GREEN_CHANNEL	Value of the green channel
	AC_WB_BLUE_CHANNEL	Value of the blue channel
AUTO_WB_CHANNEL_STATUS	RedChannel	See AUTO_WB_CHANNEL_STATUS
AUTO_WB_CHANNEL_STATUS	GreenChannel	See AUTO_WB_CHANNEL_STATUS
AUTO_WB_CHANNEL_STATUS	BlueChannel	See AUTO_WB_CHANNEL_STATUS

Contents of the UC480_AUTO_INFO::AUTO_WB_STATUS::AUTO_WB_CHANNEL_STATUS Structure

INT	curValue	Current average grayscale value (actual value)
INT	curError	Current control deviation (error)
INT	curCtrlStatus	Current control status
	ACS_ADJUSTING	Control is active.
	ACS_FINISHED	Control is completed.
	ACS_DISABLED	Control is disabled.

Status Flags in UC480_AUTO_INFO::AShutterPhotomCaps

AS_PM_NONE	The entire field of view is used for metering.
AS_PM_SENS_CENTER_WEIGHTED	Metering is based on the entire field of view, but gives greater emphasis to the center area of the image.
AS_PM_SENS_CENTER_SPOT	Only a small area in the image center is used for metering.
AS_PM_SENS_PORTRAIT	Metering is based on that part of the field of view that corresponds to the portrait format.
AS_PM_SENS_LANDSCAPE	Metering is based on that part of the field of view that corresponds to the landscape format.

Status Flags in UC480_AUTO_INFO::AGainPhotomCaps

AG_PM_NONE	The entire field of view is used for metering.
AG_PM_SENS_CENTER_WEIGHTED	Metering is based on the entire field of view, but gives greater emphasis to the center area of the image.

AG_PM_SENS_CENTER_SPOT	Only a small area in the image center is used for metering.
AG_PM_SENS_PORTRAIT	Metering is based on that part of the field of view that corresponds to the portrait format.
AG_PM_SENS_LANDSCAPE	Metering is based on that part of the field of view that corresponds to the landscape format.

Status Flags in UC480_AUTO_INFO::AAntiFlickerCaps

ANTIFLCK_MODE_OFF	Anti flicker function disabled.
ANTIFLCK_MODE_SENS_AUTO	The anti flicker mode is selected automatically (50 or 60 Hz).
ANTIFLCK_MODE_SENS_50_FIXED	The anti flicker mode is set to a fixed value of 50 Hz.
ANTIFLCK_MODE_SENS_60_FIXED	The anti flicker mode is set to a fixed value of 60 Hz.

Status Flags in UC480_AUTO_INFO::SensorWBModeCaps

WB_MODE_DISABLE	Disables the sensor's auto white balance
WB_MODE_AUTO	Sensor automatically determines auto white balance
WB_MODE_ALL_PULLIN	Sensor automatically determines auto white balance using the Gray World algorithm. This algorithm assumes that the average color value in the scene is gray.
WB_MODE_INCANDESCENT_LAMP	Sensor sets auto white balance to incandescent light
WB_MODE_FLUORESCENT_DL	Sensor sets auto white balance to fluorescent light (daylight type)
WB_MODE_OUTDOOR_CLEAR_SKY	Sensor sets auto white balance to direct daylight
WB_MODE_OUTDOOR_CLOUDY	Sensor sets auto white balance to cloudy sky

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

• is_SetAutoParameter() 303

4.3.33 is_GetBusSpeed

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetBusSpeed (HIDS hCam)

Description

Using $is_GetBusSpeed()$, you can query whether a camera is connected to a USB 2.0 or USB 3.0 host controller. You can see in the uc480 Camera Manager below <u>"General Information"</u> 70 which kind of USB host controller are available on your PC.

Input parameters

nCam	Camera handle
------	---------------

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully
IS_USB_10	The controller to which the camera is connected does not support USB 2.0.
IS_USB_20	The camera is connected to a USB 2.0 controller.
IS_USB_30	The camera is connected to a USB 3.0 controller.

4.3.34 is_GetCameraInfo

Ħ	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetCameraInfo (HIDS hCam, CAMINFO* pInfo)

Description

 $is_GetCameraInfo()$ reads out the data hard-coded in the EEPROM and writes it to the data structure that pInfo points to.

Note

The serial number or model name should not be used to find a specific camera (e.g. in order to control this specific camera). If you use the serial number, the software may not find the serial number after exchanging the camera. The model name can be changed when updating the camera driver.

Instead, we recommend identifying a camera by a fixed camera ID, the camera type or by the sensor ID (see $\underline{is_GetCameraList()}$). The advantage of the camera ID is that you can set it manually. That means if you exchange a camera, you can set the same camera ID for the new camera.

Attention

For technical reasons, the following values for CAMINFO:: Type are internally redirected to the same value:

IS_CAMERA_TYPE_UC480_USB_SE and IS_CAMERA_TYPE_UC480_USB_RE

You can use the parameter strSensorName of the $\underline{is_GetSensorInfo()}$ function to discern the camera models DCU223x, DCU224x and DCC1240x.

Input parameters

hCam	Camera handle
pInfo	Pointer to a CAMINFO data structure

Contents of the CAMINFO Structure

char	SerNo[12]	Serial number of the camera
char	ID[20]	Manufacturer of the camera
char	Version[10]	For USB cameras, this value indicates the USB board hardware version (e.g. V2.10)
char	Date[12]	System date of the final quality check (e.g. 01.08.2011 (DD.MM.YYYY))
unsigned char	Select	Camera ID
unsigned char	Туре	Camera type:
		• IS_CAMERA_TYPE_UEYE_USB_SE: DCU223x, DCU224x and DCC1240x
		• IS_CAMERA_TYPE_UEYE_USB_LE: DCC1545M / DCC1645C
		• IS_CAMERA_TYPE_UEYE_USB3_CP: DCC3240x
char	Reserved[8]	Reserved

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_CameraStatus()

• <u>is_GetSensorInfo()</u> 251

4.3.35 is_GetCameraList

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetCameraList (UC480_CAMERA_LIST* pucl)

Description

Using is_GetCameraList(), you can query information about the connected cameras. To get all information that is available, you need to adjust the field size to the number of connected cameras. The following tables explain the structures used for that purpose.

Input parameters

pucl	Handle to the UC480_CAMERA_LIST structure

Contents of the UC480_CAMERA_LIST Structure

ULONG	dwCount	Has to be initialized with the number of cameras connected to the system. This value can be read out with <u>is_GetNumberOfCameras()</u> [249].
UC480_CAMERA_INFO	uci[1]	Placeholder for 1 n UC480_CAMERA_INFO structures

Contents of the UC480_CAMERA_LIST::UC480_CAMERA_INFO Structure

DWORD	dwCameraID	Customizable camera ID. This ID is stored in the camera and is persistent.
DWORD	dwDeviceID	Internal device ID. This ID is generated by the driver depending on order of connection and camera type. The device ID is not persistent.
DWORD	dwSensorID	Sensor ID
DWORD	dwInUse	1 = camera is being used. 0 = camera is not being used.
Char	SerNo[16]	Serial number of the camera
Char	Model[16]	Camera model
DWORD	dwStatus	Information for the status of the camera
DWORD	dwReserved[15]	Reserved for later use

Note

The serial number or model name should not be used to find a specific camera (e.g. in order to control this specific camera). If you use the serial number, the software may not find the serial number after exchanging the camera. The model name can be changed when updating the camera driver.

Instead, we recommend identifying a camera by a fixed camera ID, the camera type or by the sensor ID. The advantage of the camera ID is that you can set it manually. That means if you exchange a camera, you can set the same camera ID for the new camera.

Return values

IS_ACCESS_VIOLATION	Not enough memory allocated for the UC480_CAMERA_LIST structure
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.

DCx Cameras

IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_GetNumberOfCameras() 249

Example

```
// At least one camera must be available
INT nNumCam;
if( is_GetNumberOfCameras( &nNumCam ) == IS_SUCCESS) {
  if( nNumCam >= 1 ) {
    // Create new list with suitable size
UC480_CAMERA_LIST* pucl;
    pucl = (UC480_CAMERA_LIST*) new BYTE [sizeof (DWORD) + nNumCam * sizeof (UC480_CAMERA_INFO)];
    pucl->dwCount = nNumCam;
    //Retrieve camera info
    if (is_GetCameraList(pucl) == IS_SUCCESS) {
      int iCamera;
      for (iCamera = 0; iCamera < (int)pucl->dwCount; iCamera++) {
        //Test output of camera info on the screen
printf("Camera %i Id: %d", iCamera,
        pucl->uci[iCamera].dwCameraID);
      }
    }
  delete [] pucl;
}
```

4.3.36 is_GetCameraLUT

H	Δ
USB 3.0	USB 3.0

Syntax

INT is_GetCameraLUT (HIDS hCam, UINT Mode, UINT NumberOfEntries, double* pRed_Grey, double* pGreen, double* pBlue)

Description

is_GetCameraLUT() returns the current LUT values. Using the is_SetCameraLUT() function, you can select a different LUT for the camera.

Note

The $is_SetCameraLUT()$ function is only supported by DCC3240 cameras.

Input parameters

hCam		Camera handle
- Mode		
IS_GET_CAMERA_LUT_USER	Returns the I	_UT values set by the user without modifications.
IS_GET_CAMERA_LUT_COMPLETE	Returns the l and brightne	LUT values set by the user after the gamma, contrast ss values have been taken into account.
NumberOfEntries		Number of the LUT values
IS_CAMERA_LUT_64		LUT with 64 values
pRed_Grey		Pointer to the array to which the red channel values or the gray scale value of the LUT are written.
pGreen		Pointer to the array to which the green channel values of the LUT are written.
pBlue		Pointer to the array to which the blue channel values of the LUT are written.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

4.3.37 is_GetColorConverter

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetColorConverter (HIDS hCam,

INT ColorMode, INT* pCurrentConvertMode, INT* pDefaultConvertMode, INT* pSupportedConvertModes)

Description

For color cameras, $is_GetColorConverter()$ returns the set mode or all available Bayer conversion modes for the specified color mode. The return value depends on the selected color mode. For further information, please refer to the <u>Appendix: color and memory formats</u> section.

Input parameters

hCam	Camera handle
ColorMode	Color mode for which the converter is to be returned For a list of all available color formats and the associated input parameters, see the <u>Appendix: Color and memory</u> <u>formats</u> solution.
pCurrentConvertMode	Currently selected converter for this color mode
pDefaultConvertMode	Default converter for this color mode
pSupportedConvertModes	All converters supported for this color mode. Possible converters are: IS_CONV_MODE_NONE IS_CONV_MODE_SOFTWARE_3X3 IS_CONV_MODE_SOFTWARE_5X5 IS_CONV_MODE_HARDWARE_3X3

Return values

IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetColorConverter() 315
- is_SetColorMode() 319

4.3.38 is_GetColorDepth

	۵
USB 2.0	-
USB 3.0	

Syntax

INT is_GetColorDepth(HIDS hCam, INT* pnCol, INT* pnColMode)

Description

 $is_GetColorDepth()$ retrieves the current Windows Desktop color setting and returns the bit depth per pixel and the matching uc480 color mode. The color mode can be passed directly to the <u>is_SetColorMode()</u> retrieves the bit depth when allocating an image memory.

Input parameters

hCam	Camera handle
pnCol	Returns the bit depth of the color setting.
pnColMode	Returns the uc480 color mode that corresponds to pnCol. For a list of all available color formats and the associated input parameters, see the <u>Appendix: color and Memory</u> Formats 502 section.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetColorMode() 319
- is_AllocImageMem()

4.3.39 is_GetDLLVersion

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetDLLVersion()

Description

Returns the version of the uc480_api.dll.

Input parameters

<none>

Return values

The return value contains the version number which is coded as follows:

Bits 31-24:	Major version
Bits 23-16:	Minor version
Bits 15-0:	Build version

Related functions

• is_GetOsVersion() 250

Example

```
int version = is_GetDLLVersion();
int build = version & 0xFFF;
version = version >> 16;
int minor = version & 0xFF;
version = version >> 8;
int major = version & 0xFF;
printf("API version %d.%d_\n\n", major, minor, build);
```

4.3.40 is_GetError

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetError (HIDS hCam, INT* pErr, IS_CHAR** ppcErr)

Description

 $is_GetError()$ queries the last error that occurred and returns the associated error code and message. We recommend to use this function after an error has occurred that returned IS_NO_SUCCESS. Each error message will be overwritten when a new error occurs.

Input parameters

hCam	Camera handle
PErr	Pointer to the variable containing the error code
PpcErr	Pointer to the string containing the error text

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- <u>is_CaptureStatus()</u> 174
- is_SetErrorReport() 326
- is_CameraStatus()

4.3.41 is_GetFramesPerSecond

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetFramesPerSecond (HIDS hCam, double* dblFPS)

Description

In live capture mode started by $\underline{is}_{CaptureVideo()}$, the $is_{GetFramesPerSecond()}$ function returns the number of frames actually captured per second.

Input parameters

hCam	Camera handle
dblFPS	Returns the current frame rate.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_GetFrameTimeRange() 241
- is_SetFrameRate() 329
- is_PixelClock() 294
- is_Exposure() 216

4.3.42 is_GetFrameTimeRange

8	۵
USB 2.0	USB 2.0

Syntax

INT is_GetFrameTimeRange (HIDS hCam, double* min, double* max, double* intervall)

Description

Using is_GetFrameTimeRange(), you can read out the frame rate settings which are available for the current pixel clock setting. The returned values indicate the minimum and maximum frame duration in seconds. You can set the frame duration between min and max in increments defined by the intervall parameter.

The following applies:

 $fps_{\min} = \frac{1}{max}$ $fps_{\text{max}} = \frac{1}{\text{min}}$ $fps_n = \frac{1}{(\min + n*intervall)}$

The call of this function makes only sense in the freerun mode.

Note

The use of the following functions will affect the frame duration:

- is_PixelClock() 294
- is_SetOptimalCameraTiming() 338
- <u>is_AOI()</u> (if the image size is changed)
- is_SetSubSampling() 347
- is_SetBinning() 310

Changes made to the window size, the frame rate or the read-out timing (pixel clock frequency) also affect the defined frame duration. For this reason, you need to call is_GetFrameTimeRange() again after such changes.

Input parameters

hCam	Camera handle
min	Returns the minimum available frame duration.
max	Returns the maximum available frame duration.
intervall	Returns the increment you can use to change the frame duration.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_GetFramesPerSecond() | 240
- is_SetFrameRate() 329
- is_PixelClock()²⁹⁴
- is Exposure() 216

4.3.43 is_GetImageHistogram

E.	\$
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetImageHistogram (HIDS hCam, int nID, INT ColorMode, DWORD* pHistoMem)

Description

 $\texttt{is_GetImageHistogram()} \ \textbf{computes the histogram of the submitted image. The histogram always contains 256}$ values per channel. For color modes with a bit depth of more than 8 bits, the system evaluates the 8 most significant bits (MSBs).

Input parameters

hCam	Camera handle
nID	Memory ID
ColorMode	Color mode of the image with the nID memory ID For a list of all available color formats and the associated input parameters, see the <u>Appendix: Color and memory formats</u> $[502]$ section.
pHistoMem	Pointer to a DWORD array The array must be allocated in such a way that it can accommodate 3*256 values for color formats and in raw Bayer mode. In monochrome mode, the array must be able to accommodate 1*256 values.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully

Related functions

• <u>is_SetColorMode()</u> 319

Example

```
char * pcSource;
INT nIDSource;
is_AllocImageMem (hCam, 256, 256, 24, &pcSource, &nIDSource);
int nX, nY, nBits, nPitch;
is_InquireImageMem (hCam, pcSource, nIDSource, &nX ,&nY, &nBits, &nPitch);
//Create RGB test image
for (int j = 0; j < nY; j++)
{
     for (int i = 0; i < nX*3; i += 3)</pre>
     {
          pcSource[i + j*nPitch] = 0; // Blue pixels
pcSource[i + j*nPitch + 1] = i/3; // Green pixels
pcSource[i + j*nPitch + 2] = 255; // Red pixels
     }
}
// Create memory for RGB histogram
DWORD bgrBuffer [256*3];
//Create pointer for each histogram color
DWORD * pBlueHisto = bgrBuffer;
DWORD *pGreenHisto = bgrBuffer + 256;
DWORD * pRedHisto = bgrBuffer + 512;
//Retrieve histogram and release memory
is_GetImageHistogram (hCam, nIDSource, IS_CM_RGB8_PACKED, bgrBuffer);
is_FreeImageMem (hCam, pcSource, nIDSource);
```

4.3.44 is_GetImageInfo

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetImageInfo (HIDS hCam, INT nImageBufferID, UEYEIMAGEINFO* pImageInfo, INT nImageInfoSize)

- Description
 244
- Input parameters 244
- <u>Contents of the UEYEIMAGEINFO structure</u>
- Status flags in UEYEIMAGEINFO::dwloStatus 245
- Contents of the UEYETIME structure 245
- Return values 245
- Related functions 246
- Code sample 246

Description

 $is_GetImageInfo()$ provides additional information on the images you take. The function returns a timestamp indicating the time of image capture, and the states of the camera I/Os at that point in time. To get information on the last image that was taken, call $is_GetImageInfo()$ directly after receiving the IS_FRAME event.

Using the function with USB DCx Cameras

The u64TimestampDevice timestamp returns the time when image data transfer to the PC was completed.

The UEYETIME structure returns the timestamp (with a resolution of 1 ms) synchronized with the PC system time.

Attention

Image buffers that are part of a sequence need to be locked using $\underline{is_LockSeqBuf()}$. This is important to ensure correct assignment between image data and image information. Otherwise, it may happen that an image buffer is filled with new image data. In this case, the image information will not match the image data any more.

Input parameters

hCam	Camera handle
nImageBufferID	ID of the image buffer for which information is requested
pImageInfo	Pointer to a UC480IMAGEINFO type structure to which the information will be written
nImageInfoSize	Size of the structure

Contents of the UC480IMAGEINFO structure

DWORD	dwFlags	Internal status flags (currently not used)	
BYTE	byReserved1[4]	Reserved	
unsigned long long	u64TimestampDevice	Internal timestamp of image capture (tick count of the camera in 0.1 μ s steps)	
UEYETIME	TimestampSystem	Structure with timestamp information in PC system time format, see UEYETIME 245 below	
DWORD	dwIoStatus	 With DCC3240x Cameras: Returns the states of the digital I/Os at the time of image capture: Digital input (trigger): Pending signal GPIO as input: Pending signal GPIO as output: Set level 	

4 Programming (SDK)

		With all other cameras, dwIoStatus is empty. See <u>dwIOStatus</u> 245 below.
WORD	wAOIIndex	AOI index (only AOI sequence mode of DCC1240x)
WORD	wAOICycle	Readout cycles (only AOI sequence mode of DCC1240x)
unsigned long long	u64FrameNumber	Internal image number
DWORD	dwImageBuffers	Number of image buffers existing in the camera
DWORD	dwImageBuffersInUse	Number of image buffers in use in the camera
DWORD	dwReserved3	Reserved
DWORD	dwImageHeight	Image height
DWORD	dwImageWidth	Image width

Status flags in UC480IMAGEINFO::dwloStatus

Bit combination	State of digital input	State of GPIO 1	State of GPIO 2
000	0	0	0
001	0	0	1
010	0	1	0
011	0	1	1
100	1	0	0
101	1	0	1
110	1	1	0
111	1	1	1

Contents of the UC480IMAGEINFO::UEYETIME structure

WORD	wYear	Timestamp year
WORD	wMonth	Timestamp month
WORD	wDay	Timestamp day
WORD	wHour	Timestamp hour
WORD	wMinute	Timestamp minute
WORD	wSecond	Timestamp second
WORD	wMilliseconds	Timestamp millisecond
WORD	wReserved[2]	Reserved

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode. This may happen when e.g.:
	needs
	• nImageBufferID <= 0
	• pImageInfo == NULL
	• nImageInfoSize <= 0
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_CaptureStatus()
- is_LockSeqBuf() 289
- is_UnlockSeqBuf() 354
- is_SetImageMem()
- is_IO() 280

Example

```
UEYEIMAGEINFO ImageInfo;
// Read out camera timestamp
INT nRet = is_GetImageInfo( m_hCam,
           m_lMemoryId, &ImageInfo, sizeof(ImageInfo));
if (nRet == IS_SUCCESS)
unsigned long long u64TimestampDevice;
   u64TimestampDevice = ImageInfo.u64TimestampDevice;
CString Str; // Read out timestamp in system time
Str.Format("%02d.%02d.%04d, %02d:%02d:%02d:%03d",
           ImageInfo.TimestampSystem.wDay,
           ImageInfo.TimestampSystem.wMonth,
           ImageInfo.TimestampSystem.wYear,
           ImageInfo.TimestampSystem.wHour,
           ImageInfo.TimestampSystem.wMinute,
          ImageInfo.TimestampSystem.wSecond,
          ImageInfo.TimestampSystem.wMilliseconds);
DWORD dwTotalBuffers = ImageInfo.dwImageBuffers;
DWORD dwUsedBuffers = ImageInfo.dwImageBuffersInUse;
```

Sample Program

uc480Timestamp (C++)

4.3.45 is_GetImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetImageMem (HIDS hCam, VOID** pMem)

Description

is_GetImageMem() returns the pointer to the starting address of the active image memory. If you use ring buffering, is_GetImageMem() returns the starting address of the image memory last used for image capturing.

Input parameters

hCam	Camera handle
pMem	Pointer to the starting address of the image memory

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_GetImageMemPitch() 248
- is_AllocImageMem()
- is_AddToSequence()
- is_SetImageMem() 337
- is_SetAllocatedImageMem() [301]

Sample programs

• uc480PixelPeek (C++)

4.3.46 is_GetImageMemPitch

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetImageMemPitch (HIDS hCam, INT* pPitch)

Description

 $is_GetImageMemPitch()$ returns the line increment (in bytes). The line increment is defined as the number of bytes from the beginning of a line to the beginning of the next line. It may be greater than suggested by the parameters passed when calling $\underline{is_AllocImageMem()}$. The line increment is always a number that can be divided by 4.

The line increment is calculated as:

line = width * int[(bitspixel + 7) / 8]

lineinc = line + adjust

adjust = 0 - if line can be divided by 4 without remainder

adjust = 4 - rest(line / 4) if line cannot be divided by 4 without remainder

Input parameters

hCam	Camera handle
pPitch	Pointer to the variable containing the line increment

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_GetImageMem() 247
- is_AllocImageMem()
- is_AddToSequence()
- is_SetImageMem()
- is_SetAllocatedImageMem() 301

4.3.47 is_GetNumberOfCameras

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetNumberOfCameras (INT* pnNumCams)

Description

 $\verb"is_GetNumberOfCameras()" returns the number of DCx Cameras connected to the PC.$

Input parameters

pNumCams	Returns the number of connected cameras.
Return values	
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_SUCCESS	Function executed successfully

- is_GetCameraList() 233
- is_DeviceInfo()

4.3.48 is_GetOsVersion

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetOsVersion ()

Description

 $\tt is_GetOsVersion()$ returns the operating system type used at runtime.

Input parameters

<none>

Return values

IS_OS_WIN2000	Windows 2000 operating system
IS_OS_WINXP	Windows XP operating system
IS_OS_WINSERVER2003	Windows Server 2003 operating system
IS_OS_WINVISTA	Windows Vista operating system
IS_OS_WIN7	Windows 7 operating system
IS_OS_LINUX26	Linux 2.6 operating system
IS_OS_UNDETERMINED	Unknown operating system

Related functions

• is_GetDLLVersion() 238
4.3.49 is_GetSensorInfo

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetSensorInfo (HIDS hCam, SENSORINFO* pInfo)

Description

Using $is_GetSensorInfo()$, you can query information about the sensor type used in the camera. The information contained in the SENSORINFO structure is listed in the table below.

The <u>ueye.h</u> file provides a complete up-to-date list of all supported sensor types. To quickly locate the list, search the file for the keyword "Sensor types".

Input parameters

hCam	Camera handle
pInfo	Pointer to the SENSORINFO Structure

Contents of the SENSORINFO structure

WORD	SensorID	Returns the sensor type (e.g.: IS_SENSOR_xxxxx_x).
Char	strSensorName[32]	Returns the camera model (e.g.: xxxxxx-x).
Char	nColorMode	Returns the sensor color mode. IS_COLORMODE_BAYER IS_COLORMODE_MONOCHROME
DWORD	nMaxWidth	Returns the maximum image width
DWORD	nMaxHeight	Returns the maximum image height
BOOL	bMasterGain	Indicates whether the sensor provides analog master gain
BOOL	bRGain	Indicates whether the sensor provides analog red channel gain
BOOL	bGGain	Indicates whether the sensor provides analog green channel gain
BOOL	bBGain	Indicates whether the sensor provides analog blue channel gain
BOOL	bGlobShutter	Indicates whether the sensor has a global shutter. TRUE = global shutter FALSE = rolling shutter
WORD	wPixelSize	Returns the pixel size in μ m (e.g. 465 is equivalent to 4.65 μ m)
Char	Reserved[14]	Reserved

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

- <u>is_GetCameraInfo()</u> 231
- is_CameraStatus() 172

4.3.50 is_GetSensorScalerInfo

E.	\$
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetSensorScalerInfo (HIDS hCam, SENSORSCALERINFO* pSensorScalerInfo, INT nSensorScalerInfoSize)

Description

Using <code>is_GetSensorScalerInfo()</code> you can query information on the image scaling which is supported by some sensors.

Note

Internal image scaling is only supported by DCC1240x and DCC3240x series sensors.

Input parameters

hCam	Camera handle
pSensorScalerInfo	Pointer to a SENSORSCALERINFO type structure to which the information will be written
nSensorScalerInfoSize	Size of the structure

Contents of the SENSORSCALERINFO structure

INT	nCurrMode	Returns the current mode
INT	nNumberOfSteps	Returns the number of steps for the scaling factor
double	dblFactorIncrement	Returns the increment for the scaling factor
double	dblMinFactor	Returns the minimum scaling factor
double	dblMaxFactor	Returns the maximum scaling factor
double	dblCurrFactor	Returns the current scaling factor
INT	nSupportedModes	Returns the supported function modes, see is_SetSensorScaler() 343
BYTE	bReserved[84]	Reserved

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

• is_SetSensorScaler() 343

4.3.51 is_GetSupportedTestImages

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetSupportedTestImages (HIDS hCam, INT* SupportedTestImages)

Description

 $is_GetSupportedTestImages()$ returns all test images supported by the camera. You can enable the sensor test image feature using $is_SetSensorTestImage()$ and $as in the sensor feature using is_SetSensorTestImage()$ and $as interval as in the sensor feature using is_SetSensorTestImage()$ and as interval as interva

Input parameters

hCam	Camera handle
SupportedTestImages	Returns a bit mask of all test images supported by the camera.
IS_TEST_IMAGE_NONE	No test image
IS_TEST_IMAGE_WHITE	White image
IS_TEST_IMAGE_BLACK	Black image
IS_TEST_IMAGE_HORIZONTAL_GREYSCALE	Horizontal grayscale
IS_TEST_IMAGE_VERTICAL_GREYSCALE	Vertical grayscale
IS_TEST_IMAGE_DIAGONAL_GREYSCALE	Diagonal grayscale
IS_TEST_IMAGE_WEDGE_GRAY_SENSOR	Gray wedges, generated by the sensor
IS_TEST_IMAGE_WEDGE_COLOR	Color wedges
IS_TEST_IMAGE_ANIMATED_WEDGE_GRAY_SENSOR	Gray wedges, animated, generated by the sensor
IS_TEST_IMAGE_ANIMATED_WEDGE_COLOR	Color wedges, animated
IS_TEST_IMAGE_COLOR_BARS1	Color bars
IS_TEST_IMAGE_GREY_AND_COLOR_BARS	Gray and color bars
IS_TEST_IMAGE_MOVING_GREY_AND_COLOR_BARS	Gray and color bars, animated
IS_TEST_IMAGE_ANIMATED_LINE	Line, animated
IS_TEST_IMAGE_ALTERNATE_PATTERN	Alternating pattern (raw Bayer mode only)
IS_TEST_IMAGE_RAMPING_PATTERN	Diagonal color pattern
IS_TEST_IMAGE_MONOCHROME_HORIZONTAL_BARS	Monochrome bars, horizontal
IS_TEST_IMAGE_MONOCHROME_VERTICAL_BARS	Monochrome bars, vertical
IS_TEST_IMAGE_COLDPIXEL_GRID	Camera image overlaid with a grid of blue dots
IS_TEST_IMAGE_HOTPIXEL_GRID	Camera image overlaid with a grid of red dots
IS_TEST_IMAGE_VARIABLE_GREY	Adjustable grayscale image
IS_TEST_IMAGE_VARIABLE_RED_PART	Image with adjustable red content
IS_TEST_IMAGE_VARIABLE_GREEN_PART	Image with adjustable green content
IS_TEST_IMAGE_VARIABLE_BLUE_PART	Image with adjustable blue content

DCx Cameras

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

- <u>is_SetSensorTestImage()</u> 345
- <u>is_GetTestImageValueRange()</u> 255

4.3.52 is_GetTestImageValueRange

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetTestImageValueRange (HIDS hCam,

INT TestImage, INT* TestImageValueMin, INT* TestImageValueMax)

Description

Using is_GetTestImageValueRange(), you can query the value range of the additional parameter required for some camera test images. You can enable the sensor test image feature using $is_SetSensorTestImage()$ as

Input parameters

hCam	Camera handle
TestImage	Test image for which the value range is queried
TestImageValueMin	Minimum value
TestImageValueMax	Maximum value

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting. In this case, the TestImageValueMin and TestImageValueMax parameters are equal to 0.
IS_SUCCESS	Function executed successfully

- is_GetSupportedTestImages()²⁵³
- is_SetSensorTestImage() 345

4.3.53 is_GetTimeout

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetTimeout (HIDS hCam, UINT nMode, UINT* pTimeout)

Description

Using <code>is_GetTimeout()</code> , you can read out user-defined timeout values from the uc480 API.

For further information, please refer to the <u>How to proceed: Timeout values for image capture</u> section.

Input parameters

hCam	Camera handle
nMode	Selects the timeout value to be returned
IS_TRIGGER_TIMEOUT	Returns the timeout value in steps of 10 ms for triggered image capture
pTimeout	Pointer to the variable that holds the timeout value. Returns 0 if the default value of the uc480 API is used.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

- is_SetTimeout() 350
- is_CaptureVideo()
- is_FreezeVideo() 223
- is_SetExternalTrigger() 327

Example

// Return user-defined timeout UINT nTimeout; INT ret = is_GetTimeout(hCam, IS_TRIGGER_TIMEOUT, &nTimeout);

4.3.54 is_GetUsedBandwidth

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetUsedBandwidth (HIDS hCam)

Description

is_GetUsedBandwidth() returns the bus bandwidth (in MByte/s) currently used by all initialized or selected cameras. This is an approximate value which is calculated based on the pixel clock that has been set and the data format (bits per pixel). The actual data load on the bus can slightly deviate from this value.

Input parameters

hCam	Camera handle
Return values	

INT value The total current bus bandwidth (in MByte/s)
--

Related functions

• is_PixelClock() 294

4.3.55 is_GetVsyncCount

E.	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_GetVsyncCount (HIDS hCam, long* pIntr, long* pActIntr)

Description

 $is_GetVsyncCount()$ reads out the VSYNC counter. It will be incremented by 1 each time the sensor starts capturing an image.

Input parameters

hCam	Camera handle
pIntr	Current VSYNC count
pActIntr	Current Frame SYNC count

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_GetFramesPerSecond() 240

4.3.56 is_HasVideoStarted

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_HasVideoStarted (HIDS hCam, BOOL* pbo)

Description

Using is_HasVideoStarted(), you can check whether the image digitizing process has started. This function is helpful when the is_FreezeVideo() 1223 function was called with the IS_DONT_WAIT parameter.

Input parameters

hCam	Camera handle
pbo	Returns the digitizing status: 0 = Image capturing has not started yet. 1 = Image capturing has started.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_FreezeVideo()^[223]
- is_IsVideoFinish() 288

4.3.57 is_HotPixel

Ħ	Δ
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_HotPixel (HIDS hCam, UINT nCommand, void* pParam, UINT nSizeOfParam)

Description

is_HotPixel() configures the correction of sensor hot pixels. The correction is performed by the software. The hot pixel list is stored in the camera's non-volatile EEPROM. Some sensor models can also correct hot pixels directly in the sensor.

For further information on hot pixel correction, please refer to Basics: Hot pixels 28.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam input parameter.

Attention

This correction will not work with subsampling or with binning factors greater than 2.

Note

Previous hot pixel functions

The $is_HotPixel()$ function comprises all hot pixel correction functions. The following uc480 API commands are therefore obsolete:

- is_SetBadPixelCorrection()
- is_SetBadPixelCorrectionTable()
- is_LoadBadPixelCorrectionTable()
- is_SaveBadPixelCorrectionTable()

See also Obsolete functions 379

Input parameters

hCam	Camera handle
🖃 nCommand	
IS_HOTPIXEL_DISABLE_CORRECTION	Disables hot pixel correction (Example 1 262)
IS_HOTPIXEL_ENABLE_CAMERA_CORRECTION	Enables hot pixel correction using the hot pixel list(s) stored in the camera EEPROM.
IS_HOTPIXEL_ENABLE_SOFTWARE_USER_CORREC TION	Enables hot pixel correction using the user's hot pixel list stored in the computer. This requires the user's hot pixel list to be set (IS_HOTPIXEL_SET_SOFTWARE_USER_LIST)
IS_HOTPIXEL_ENABLE_SENSOR_CORRECTION	Enables sensor's own hot pixel correction function (if available).
IS_HOTPIXEL_DISABLE_SENSOR_CORRECTION	Disables the sensor's own hot pixel correction function.
IS_HOTPIXEL_GET_CORRECTION_MODE	Returns the currently set hot pixel correction mode $(Example 2)^{262}$
IS_HOTPIXEL_GET_SUPPORTED_CORRECTION_MO DES	Returns the supported hot pixel correction modes.The return value is a bitmask with the following constants (combined by OR):
	• IS_HOTPIXEL_ENABLE_CAMERA_CORRECTION: Hot pixel correction is possible via the hot pixel list in the camera EEPROM.

hCam	Camera handle
	• IS_HOTPIXEL_ENABLE_SOFTWARE_USER_CORRECTI ON: Hot pixel correction is possible via the user-defined hot pixel list.
	• IS_HOTPIXEL_ENABLE_SENSOR_CORRECTION: Hot pixel correction is possible via the sensor-internal hot pixel correction.
IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_EXIS TS	Indicates whether the user-defined hot pixel list exists in the computer (Example 3 262)
IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_NUMB ER	Returns the number of hot pixels in the user-defined hot pixel list stored in the computer.
IS_HOTPIXEL_GET_SOFTWARE_USER_LIST	Returns the user-defined hot pixel list stored in the computer.
IS_HOTPIXEL_SET_SOFTWARE_USER_LIST	Sets the user-defined hot pixel list that is stored in the computer.
IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST_UNI CODE	Saves the user-defined hot pixel list to a file. The function can also be used with Unicode file names. (Example 4^{263})
IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST_UNI CODE	Loads the user-defined hot pixel list from a file. The function can also be used with Unicode file names.
IS_HOTPIXEL_GET_CAMERA_FACTORY_LIST_EXI STS	Indicates whether the factory-set hot pixel list exists.
IS_HOTPIXEL_GET_CAMERA_FACTORY_LIST_NUM BER	Returns the number of hot pixels in the factory-set hot pixel list.
IS_HOTPIXEL_GET_CAMERA_FACTORY_LIST	Returns the factory-set hot pixel list.
IS_HOTPIXEL_GET_CAMERA_USER_LIST_EXISTS	Indicates whether the user-defined hot pixel list exists in the camera EEPROM.
IS_HOTPIXEL_GET_CAMERA_USER_LIST_NUMBER	Returns the number of hot pixels in the user-defined hot pixel list stored in the camera EEPROM.
IS_HOTPIXEL_GET_CAMERA_USER_LIST	Returns the user-defined hot pixel list stored in the camera EEPROM.
IS_HOTPIXEL_SET_CAMERA_USER_LIST	Sets the user-defined hot pixel list stored in the camera EEPROM (Example 5 263)
IS_HOTPIXEL_DELETE_CAMERA_USER_LIST	Deletes the user-defined hot pixel list from the camera EEPROM.
IS_HOTPIXEL_GET_CAMERA_USER_LIST_MAX_NU MBER	Returns the maximum number of hot pixels that the user can store in the camera EEPROM.
IS_HOTPIXEL_GET_MERGED_CAMERA_LIST_NUMB ER	Returns the number of hot pixels in a merged list that combines the entries from the factory-set hot pixel list with those of the user-defined hot pixels list stored in the camera EEPROM.
IS_HOTPIXEL_GET_MERGED_CAMERA_LIST	Returns the merged list (Example 6 263)
pParam	Pointer to a function parameter, whose function depends on nCommand.
nSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match

DCx Cameras

	the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Example 1

// Enable/disable correction
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_DISABLE_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_ENABLE_CAMERA_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_ENABLE_SOFTWARE_USER_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_ENABLE_SENSOR_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_DISABLE_SENSOR_CORRECTION, NULL, NULL);

Example 2

Example 3

```
// Query user-defined hot pixel list
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_EXISTS, NULL, NULL);
if (nRet == IS_SUCCESS)
{
    // Query the number of hot pixels in the user-defined list
    INT nNumber = 0;
   nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_NUMBER,
                      (void*)&nNumber, sizeof(nNumber));
    if (nRet == IS_SUCCESS)
    {
        // Allocate sufficient memory. Each hot pixel needs two WORDS
        // memory space.
       // Additional memory space of one WORD per hot pixel is required for numbering.
WORD *pList = new WORD[1 + 2 * nNumber];
       // Change a value and save the list.
        // The number of the hot pixel has to be specified in pList[0]
       pList[1] = 100;
       nRet = is_HotPixel(hCam, IS_HOTPIXEL_SET_SOFTWARE_USER_LIST,
                          (void*)pList, (1 + 2 * nNumber) * sizeof(WORD));
        // Delete unneeded list
       delete [] pList;
   }
}
```

```
// Save user-defined list to file
char File1[100];
ZeroMemory(File1, sizeof(File1));
strcpy(File1, "c:\\test.txt");
nRet = is_HotPixel(hCam, IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST, (void*)File1, 0);
nRet = is HotPixel(hCam, IS HOTPIXEL SAVE SOFTWARE USER LIST, (void*)File1, 0);
// Unicode
wchar_t File2[100];
ZeroMemory(File2, sizeof(File2));
wcscpy(File2, L"c:\\test.txt");
nRet = is HotPixel(hCam, IS HOTPIXEL LOAD SOFTWARE USER LIST UNICODE, (void*)File2, 0);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST_UNICODE, (void*)File2, 0);
Example 5
// Save user-defined list to the camera EEPROM
INT nNumber = 0;
if (nRet == IS_SUCCESS)
{
   // Write the maximum number of hot pixels to EEPROM
WORD *pList = new WORD[1 + 2 * nNumber];
    pList[0] = nNumber;
    for (int i = 0; i < nNumber; i++)</pre>
    {
       pList[1 + 2 * i] = x_value;
pList[2 + 2 * i] = y_value;
    }
   nRet = is_HotPixel(hCam, IS_HOTPIXEL_SET_CAMERA_USER_LIST,
                       (void*)pList, (1 + 2 * nNumber) * sizeof(WORD));
    delete [] pList;
    // Delete user-defined EEPROM list
    nRet = is_HotPixel(hCam, IS_HOTPIXEL_DELETE_CAMERA_USER_LIST, NULL, NULL);
}
Example 6
// Return combined list
INT nNumber = 0;
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_MERGED_CAMERA_LIST_NUMBER,
                       (void*)&nNumber , sizeof(nNumber));
if (nRet == IS_SUCCESS)
{
     // Allocate sufficient memory. Each hot pixel needs two WORDS
     // memory space.
     // Additional memory space of one WORD per hot pixel is required for numbering.
WORD *pList = new WORD[1 + 2 * nNumber];
    // Delete unneeded list
    delete [] pList;
}
```

4.3.58 is_ImageFile

H	٨
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ImageFile (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

is_ImageFile() loads and save an image from or to a file. The image must be BMP, JPEG or PNG format. The image is loaded into the active image memory or read-out from the active image memory.

Note

When saving an image $\underline{is_FreezeVideo()}$ sjould not be called with the $\underline{IS_DONT_WAIT}$ parameter, because the image acquisition might not be completed at the time of saving.

The bitmap is stored with the color depth that was used when allocating the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode). You can save images with a bit depth of more than 8 bit in the PNG format. 12 bit formats are converted into 16 bit. JPEG files are always saved with a color depth of 8 or 24 bits.

Note

In Direct3D or OpenGL mode, overlay data is not saved.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

The following functions are obsolete by the is_ImageFile() function:

- is_LoadImage()
- is_LoadImageMem()
- is_SaveImage()
- is_SaveImageMem()
- is_SaveImageEx()
- is_SaveImageMemEx()

See also: Obsolete functions 379

Input parameters

hCam	Camera handle
nCommand	
IS_IMAGE_FILE_CMD_LOAD	Loads an image file (bmp, jpg, png) (<u>Example 1</u> [266]) The function can be used with UNICODE file names.
IS_IMAGE_FILE_CMD_SAVE ;	Saves an image file (bmp, jpg, png) (<u>Example 2 (266</u>)) The function can be used with UNICODE file names.
pParam	Pointer to a function parameter, whose function depends On nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the IMAGE_FILE_PARAMS structure

wchar_t	pwchFileName	Name of the file to be loaded/saved (Unicode). If NULL is passed, the "Open file"/"Save as" dialog opens.
UINT	nFileType	File type to be saved: • IS_IMG_BMP • IS_IMG_JPG • IS_IMG_PNG
UINT	nQuality	 Sets the image quality for JPEG and PNG (and therefore the compression). The higher the value, the better the quality is: 100 = maximum quality with minimum compression If the parameter is set to 0, the the default value of 75 is used. For BMP the parameter is ignored.
char	ppcImageMem	When loading: Pointer to an image memory and pointer to the corresponding ID. If both pointers are NULL the image is loaded into the active image memory. If both pointers are valid a new memory is allocated. This memory must be released with is FreeTmageMem() [222]
UINT	pnImageID	When saving: Pointer to an image memory and pointer to the corresponding ID. If both pointers are NULL the image is saved from the active image memory. If both pointers are valid the corresponding memory is used.
BYTE	reserved[32]	reserved

Return values

IS_FILE_READ_INVALID_BMP_ID	The specified file is not a valid bitmap file.
IS_FILE_READ_OPEN_ERROR	The file cannot be opened.
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

- is_GetImageMem() 247
- is_SetImageMem() 337

IMAGE_FILE_PARAMS ImageFileParams;

```
ImageFileParams.pwchFileName = NULL;
ImageFileParams.pnImageID = NULL;
ImageFileParams.ppcImageMem = NULL;
ImageFileParams.nQuality = 0;
// Load bitmap into active memory (with file open dialog)
ImageFileParams.nFileType = IS_IMG_BMP;
INT nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_LOAD, (void*)&ImageFileParams,
                         sizeof(ImageFileParams));
// Load jpeg into active memory (with file open dialog)
ImageFileParams.nFileType = IS_IMG_JPG;
nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_LOAD, (void*)&ImageFileParams,
                     sizeof(ImageFileParams));
// Alloc image memory and load bitmap into it (without file open dialog)
char* pcMemory = NULL;
UINT nID = 0;
ImageFileParams.pwchFileName = L"c:\\test.bmp";
ImageFileParams.pnImageID = &nID;
ImageFileParams.ppcImageMem = &pcMemory;
ImageFileParams.nFileType = IS_IMG_BMP;
nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_LOAD, (void*)&ImageFileParams,
                     sizeof(ImageFileParams));
Example 2
IMAGE_FILE_PARAMS ImageFileParams;
ImageFileParams.pwchFileName = NULL;
ImageFileParams.pnImageID = NULL;
ImageFileParams.ppcImageMem = NULL;
ImageFileParams.nQuality = 0;
// Save bitmap from active memory to file (with file open dialog)
ImageFileParams.nFileType = IS_IMG_BMP;
INT nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
                         sizeof(ImageFileParams));
// Save jpeg from active memory with quality 80 (without file open dialog)
ImageFileParams.pwchFileName = L"c:\\test.jpg";
ImageFileParams.nFileType = IS_IMG_JPG;
ImageFileParams.nQuality = 80;
```

nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,

nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,

// valid buffer

// Save png from special memory with quality 50 (with file open dialog)
ImageFileParams.pwchFileName = NULL; ImageFileParams.pnImageID = &nID;

sizeof(ImageFileParams));

sizeof(ImageFileParams));

ImageFileParams.ppcImageMem = &pcMemory;

ImageFileParams.nFileType = IS_IMG_PNG;

ImageFileParams.nQuality = 50;

// valid ID

4.3.59 is_ImageFormat

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ImageFormat (HIDS hCam, UINT nCommand, void *pParam,

UINT nSizeOfParam)

Description

Using is_ImageFormat(), you can query a list of possible image sizes and set a new image format if supported by your DCx Camera model. This is useful for sensors that do not support a free selection of the area of interest or image format. Using the AOI, binning/subsampling or scaling functions, the driver sets the selected image format to achieve the best possible image quality. For a complete list of available image formats see table "Image formats" $rate{rate}$ below.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam input parameter.

Input parameters

hCam	Camera handle
nCommand	
IMGFRMT_CMD_GET_LIST	Returns a list of all image formats supported by the sensor. More details
	You can query the number of entries in the list with IMGFRMT_CMD_GET_NUM_ENTRIES.
	• pParam: Pointer to list of type <u>IMAGE_FORMAT_LIST</u> [268]. The list must be preallocated as specified below.
	 nSizeOfParam: Size of the list Size of (IMAGE_FORMAT_LIST + (number of list entries 1) * Size of (IMAGE_FORMAT_INFO))
IMGFRMT_CMD_GET_NUM_ENTRIES	Returns the number of entries in the list.
	 pParam: Pointer to variable of type UINT returning the number of list entries. nSizeOfParam: 4
IMGFRMT_CMD_SET_FORMAT	Sets the desired image format. More details
	 pParam: Pointer to variable of type UINT passing the format ID 268 of the desired image format. nSizeOfParam: 4
IMGFRMT_CMD_GET_ARBITRARY_AOI_SUPPORTED	Returns if the sensor supports a free selection of the area of interest (AOI). More details
	 pParam: Pointer to variable of type UINT indicating if free AOI selection is supported: 0 = No free AOI supported 1 = Free AOI supported nSizeOfParam: 4
n Do nom	
praram	Pointer to a function parameter, whose function depends on nCommand.

DCx Cameras

hCam	Camera handle
nSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the IMAGE_FORMAT_LIST list of image formats

UINT	nSizeOfListEntry	Must be preset with the size of a list entry in bytes
UINT	nNumListElements	Must be preset with the number of list entries (from IMGFRMT_CMD_GET_NUM_ENTRIES)
UINT	nReserved[4]	Reserved
IMAGE_FORMAT_INF O	FormatInfo[0]	First entry in the list. After having been filled by IMGFRMT_CMD_GET_LIST, the list contains additional entries FormatInfo[1]FormatInfo [nNumListElements-1].

Contents of the list entry IMAGE_FORMAT_INFO

INT	nFormatID	Format ID of the specified image format (see <u>table "Image</u> <u>formats"</u> below)
UINT	nWidth	Width of the area of interest
UINT	nHeight	Height of the area of interest
UINT	nX0	Start point of the area of interest (X)
UINT	nYO	Start point of the area of interest (Y)
UINT	nSupportedCaptureModes	Image capture modes supported for this format (see table below)
UINT	nBinningMode	Binning mode used
UINT	nSubsamplingMode	Subsampling mode used
IS_CHAR	<pre>strFormatName[64]</pre>	Description of the format
double	dSensorScalerFactor	Scaling factor used (only sensors that support $\frac{\text{scaling}}{343}$).
UINT	nReserved[24]	Reserved

Possible values for CAPTUREMODE

CAPTMODE_SINGLE	Freerun mode, single frame (freerun snap)
CAPTMODE_FREERUN	Freerun mode, continuous (freerun live)
CAPTMODE_TRIGGER_SOFT_SINGLE	Software triggered mode, single frame
CAPTMODE_TRIGGER_SOFT_CONTINUOUS	Software triggered mode, continuous
CAPTMODE_TRIGGER_HW_SINGLE	Hardware triggered mode, single frame
CAPTMODE_TRIGGER_HW_CONTINUOUS	Hardware triggered mode, continuous

For further information on the image capture modes, see also in the Basics: <u>Operating modes</u> the capture modes.

Image formats of CMOS sensors

Format	Decolution	Namo	Camera model		
ID	Resolution	Name	DCC1645C	DCC1545M	DCC1240x
1	3264x2448	(8M)			
2	3264x2176	(8M 3:2)			
3	3264x1836	(8M 16:9)			
4	2592x1944	(5M)			
5	2048x1536	(3M)			
6	1920x1080	(Full HD 16:9)			
7	1632x1224	(2M)			
8	1280x960	(1.2M 4:3)	X	X	Х
9	1280x720	(HD 16:9)	X	X	X
11	960x480	(WVGA 2:1)	X	X	X
12	800x480	(WVGA)	X	X	X
13	640x480	(VGA)	X	X	Х
14	640x360	(VGA 16:9)	X	X	Х
15	400x240	(WQVGA)	X	X	Х
16	352x288	(CIF)	X	X	X
17	288x352	(CIF Portrait)	X	X	х
18	320x240	(QVGA)	X	X	Х
19	240x320	(QVGA Portrait)	X	X	Х
20	1600x1200	(UXGA)			
21	3840x2748	(10M)			
22	1920x1080	(Full HD 16:9, HQ)			
23	2560x1920	(5M)			
24	768x576	(CCIR)	X	X	X
25	1280x1024	(1.3M SXGA)	X	X	Х
26	2448x2048	(5M)			
27	1024x768	(XGA)	X	X	X
28	1024x1024	(1M)	X	X	
29	800x600	(SVGA)	X	X	X
30	1360x1024	(1.4M 4:3)			

Image formats of CCD sensors

Format	Desclution	Nomo	Camera	a model
ID	Resolution	Name	DCU-223x	DCU-224x
1	3264x2448	(8M)		
2	3264x2176	(8M 3:2)		
3	3264x1836	(8M 16:9)		
4	2592x1944	(5M)		
5	2048x1536	(3M)		
6	1920x1080	(Full HD 16:9)		
7	1632x1224	(2M)		
8	1280x960	(1.2M 4:3)		X
9	1280x720	(HD 16:9)		X
11	960x480	(WVGA 2:1)	X	X
12	800x480	(WVGA)	X	X
13	640x480	(VGA)	X	X
14	640x360	(VGA 16:9)	X	
15	400x240	(WQVGA)	X	
16	352x288	(CIF)	X	
17	288x352	(CIF Portrait)	X	
18	320x240	(QVGA)	X	
19	240x320	(QVGA Portrait)	X	
20	1600x1200	(UXGA)		
21	3840x2748	(10M)		
22	1920x1080	(Full HD 16:9, HQ)		
23	2560x1920	(5M)		
24	768x576	(CCIR)	X	X
25	1280x1024	(1.3M SXGA)		X
26	2448x2048	(5M)		
27	1024x768	(XGA)	X	X
28	1024x1024	(1M)		X
29	800x600	(SVGA)	X	X
30	1360x1024	(1.4M 4:3)		

Return values

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_INVALID_PIXEL_CLOCK	This setting is not available for the currently set pixel clock frequency.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

Related functions

- <u>is_AOI()</u> 159
- is_SetBinning() 310
- is_SetSubSampling() 347

Example

```
HIDS hCam;
char strCamFileName[256];
int nRet;
// Get number of available formats and size of list
UINT count;
UINT bytesNeeded = sizeof(IMAGE_FORMAT_LIST);
nRet = is_ImageFormat(hCam, IMGFRMT_CMD_GET_NUM_ENTRIES, &count, 4);
bytesNeeded += (count - 1) * sizeof(IMAGE_FORMAT_INFO);
void* ptr = malloc(bytesNeeded);
// Create and fill list
IMAGE_FORMAT_LIST* pformatList = (IMAGE_FORMAT_LIST*) ptr;
pformatList->nSizeOfListEntry = sizeof(IMAGE_FORMAT_INFO);
pformatList->nNumListElements = count;
nRet = is_ImageFormat(hCam, IMGFRMT_CMD_GET_LIST, pformatList, bytesNeeded);
// Activate trigger mode for capturing high resolution images (USB uEye XS)
nRet = is_StopLiveVideo(hCam, IS_WAIT);
nRet = is_SetExternalTrigger(hCam, IS_SET_TRIGGER_SOFTWARE);
// Prepare for creating image buffers
char* pMem = NULL;
int memID = 0;
// Set each format and then capture an image
IMAGE_FORMAT_INFO formatInfo;
for (int i = 0; i < count; i++)</pre>
{
     formatInfo = pformatList->FormatInfo[i];
     int width = formatInfo.nWidth;
     int height = formatInfo.nHeight;
      // Allocate image mem for current format, set format
     nRet = is_AllocImageMem(hCam, width, height, 24, &pMem, &memID);
     nRet = is_SetImageMem(hCam, pMem, memID);
nRet = is_ImageFormat(hCam, IMGFRMT_CMD_SET_FORMAT, &formatInfo.nFormatID, 4);
      // Capture image
     nRet = is_FreezeVideo(hCam, IS_WAIT);
```

4.3.60 is_InitCamera

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_InitCamera (HIDS* phf, HWND hWnd)

Description

is_InitCamera() starts the driver and establishes the connection to the camera. After successful initialization, this function assigns the camera handle. All subsequent functions require this handle as the first parameter.

When using Direct3D or OpenGL for image display, you can pass a handle to the output window.

Notes

1. Multi-camera environments

When using multiple cameras in parallel operation on a single system, you should assign a unique camera ID to each camera. To initialize or select a camera with <code>is_InitCamera()</code>, the <code>phCam</code> handle must previously have been set to the desired camera ID.

To initialize or select the next available camera without specifying a camera ID, phCam has to be preset with 0.

2. Thread safety

We recommend that you call the following functions exclusively from a single thread in order to avoid unpredictable behavior of the application.

- is_InitCamera()²⁷³
- is_SetDisplayMode() 322
- is_ExitCamera() 213

See also General: Thread programming 453

Input parameters

phCam	Pointer to the camera handle When you call this function, the pointer value has the following meaning: 0: The first available camera will be initialized or selected. 1-254: The camera with the specified camera ID will be initialized or selected.
*phCam IS_USE_DEVICE_ID	The camera is opened using the device ID instead of the camera ID. For details on device ID please refer to the <u>is_GetCameraList()</u> ^[233] chapter.
*phCam IS_ALLOW_STARTER_FW_UPLOAD	During initialization of the camera, this parameter checks whether a new version of the starter firmware is required. If it is, the new starter firmware is updated automatically (only GigE uEye SE/RE/CP cameras). To ensure backward compatibility of applications, always call is_InitCamera() without the IS_ALLOW_STARTER_FW_UPLOAD parameter first. Only if an error occurs, call the function with this parameter set (see Example 275 below).
hWnd	Pointer to the window where the Direct3D image will be displayed If hWnd = NULL, DIB mode will be used for image display.

Return values

IS_ALL_DEVICES_BUSY	All cameras are in use
IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.

DCx Cameras

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS CANT OPEN REGISTRY	Error opening a Windows registry key
IS_CANT_READ_REGISTRY	Error reading settings from the Windows registry
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_CRC_ERROR	A CRC error-correction problem occurred while reading the settings.
IS_DEVICE_ALREADY_PAIRED	The device is already paired.
IS_DEVICE_NOT_COMPATIBLE	The device is not compatible to the drivers.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_ERROR_CPU_IDLE_STATES_CONFIGURATION	The configuration of the CPU idle has failed.
IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INCOMPATIBLE_SETTING	Because of other incompatible settings the function is not possible.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_DEVICE_ID	The device ID is invalid. Valid IDs start from 1 for USB cameras.
IS_INVALID_EXPOSURE_TIME	This setting is not available for the currently set exposure time.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_INVALID_PIXEL_CLOCK	This setting is not available for the currently set pixel clock frequency.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_IMAGE_MEM_ALLOCATED	The driver could not allocate memory.
IS_NO_IR_FILTER	No IR filter available
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.

IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_STARTER_FW_UPLOAD_NEEDED	The camera's starter firmware is not compatible with the driver and needs to be updated.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

Related functions

- is_ExitCamera() 213
- is_EnableAutoExit() 208
- is_GetCameraList() 233
- is_SetCameraID() 313
- is_GetCameraInfo()²³¹

Example

```
//Open camera with ID 1
HIDS hCam = 1;
INT nRet = is_InitCamera (&hCam, NULL);
if (nRet != IS_SUCCESS)
{
  //Check if GigE uEye SE needs a new starter firmware
  if (nRet == IS_STARTER_FW_UPLOAD_NEEDED)
  {
    //Calculate time needed for updating the starter firmware
    INT nTime;
    is_GetDuration (hCam, IS_SE_STARTER_FW_UPLOAD, &nTime);
    /*
    e.g. have progress bar displayed in separate thread
   */
    //Upload new starter firmware during initialization
    hCam = hCam | IS_ALLOW_STARTER_FW_UPLOAD;
nRet = is_InitCamera (&hCam, NULL);
    /*
     end progress bar
    */
  }
}
```

Sample programs

- uc480MultipleCameraScan (C++)
- uc480Console (C++)
- uc480C# Demo (C#)

4.3.61 is_InitEvent

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT is_InitEvent (HIDS hCam, HANDLE hEv, INT which)

Description

is_InitEvent() initializes the event handle for the specified event object. This registers the event object in the uc480 kernel driver.

Attention

Using USB cameras under Windows

The following events require a Windows message loop. This message loop has to be executed by the thread that loads the uc480 API. The message loop is usually provided by the application window. In some cases, the message loop might not be created automatically (e.g. in console applications). In this case you will need to implement the message loop yourself.

This applies to the following uc480 events:

- IS_SET_EVENT_REMOVE
- IS_SET_EVENT_REMOVAL
- IS_SET_EVENT_DEVICE_RECONNECTED
- IS_SET_EVENT_NEW_DEVICE

If no message loop exists, a USB camera will not be automatically detected after reconnecting.

Input parameters

hCam	Camera handle
hEv	Event handle created by the CreateEvent() Windows API function.
which	ID of the event to be initialized (see <u>is_EnableEvent()</u>

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_EnableEvent() 209
- is_DisableEvent() 205
- is_ExitEvent()²¹⁴

HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

```
//Enable frame event, start image capture and wait for event
is_InitEvent(hCam, hEvent, IS_SET_EVENT_FRAME);
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
is_FreezeVideo(hCam, IS_DONT_WAIT);
DWORD dwRet = WaitForSingleObject(hEvent, 1000);
if (dwRet == WAIT_TIMEOUT)
{
    /* wait timed out */
}
else if (dwRet == WAIT_OBJECT_0)
{
    /* event signalled */
}
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
is_ExitEvent(hCam, IS_SET_EVENT_FRAME);
CloseHandle(hEvent);
```

Sample programs

- SimpleLive (C++)
- uc480Event (C++)

4.3.62 is_InitImageQueue

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_InitImageQueue (HIDS hCam, INT nMode)

Description

is_InitImageQueue() enables the queue mode for existing image memory sequences. New images will be added to the end of the queue on arrival (FIFO principle). The image memory sequence has to be created with <u>is_AddToSequence()</u> [156] prior to calling is_InitImageQueue(). With <u>is_WaitForNextImage()</u> [356] you can query the pointer and sequence ID of the first (i.e. oldest) image in the sequence.

Note

Image memory sequences can also be used without queue mode. In this case the current image memory has to be queried with <u>is_GetActSeqBuf()</u> and on every frame event. Disadvantage of this proceeding is that at very high frame rates it may happen that additional images arrive between the frame event and accessing/locking the memory. The images arriving in this period will be skipped when you query the current image.

When the queue mode is used (is_InitImageQueue()), however, you can be sure to always receive the oldest image which has not yet been queried. In addition, image memories are automatically locked immediately after receiving the image. This prevents images from being overwritten when very high frame rates and few image memories are used.

Input parameters

hCam	Camera handle
nMode	Queue mode. Currently only nMode = 0 is supported.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_ExitImageQueue()²¹⁵
- is_WaitForNextImage()
- is_AddToSequence()

Example

```
// A previously initialized camera continuously captures images
// until a timeout or transfer error occurs.
// Note: image memories have to be allocated before this
is_InitImageQueue (m_hCam, 0);
INT nMemID = 0;
char *pBuffer = NULL;
while (IS_SUCCESS == is_WaitForNextImage(m_hCam, 1000, &pBuffer, &nMemID))
{
    is_SaveImageMem (m_hCam, "image.bmp", pBuffer, nMemID);
    is_UnlockSeqBuf (m_hCam, nMemID, pBuffer);
}
is_ExitImageQueue (m_hCam);
```

4.3.63 is_InquireImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

Description

 $\verb"is_InquireImageMem(")" reads out the properties of an allocated image memory.$

Input parameters

hCam	Camera handle
pMem	Pointer to the starting address of the image memory as allocated by $\underline{is_AllocImageMem()}^{157}$
NID	ID of the image memory as allocated by <u>is_AllocImageMem()</u>
pnX	Returns the width used to define the image memory. You can also pass ${\tt NULL}$ instead.
pnY	Returns the height used to define the image memory. You can also pass $\ensuremath{\mathrm{NULL}}$ instead.
pnBits	Returns the bit width used to define the image memory. You can also pass NULL instead.
pnPitch	Returns the line increment of the image memory. You can also pass $\ensuremath{\mathtt{NULL}}$ instead.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_AllocImageMem()
- is_SetImageMem() 337
- is_SetAllocatedImageMem() [301]
- is_GetColorDepth() [237]

4.3.64 is_IO

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_IO(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

With the $is_{10}()$ function you control all <u>flash and trigger functions</u> and the additional digital outputs (GPIOs) of some DCx Camera models. For information on GPIO wiring, please refer to the <u>Electrical Specifications</u> schapter.

Additionally you can toggle the color of the LED on the back of the DCU22x and DCC1240x camera housing.

Note

GPIOs are available only for DCC3240x cameras. The GPIOs are not provided with optocouplers and use TTL/ LVCMOS voltages. For information on GPIO wiring, please refer to the <u>Electrical specifications</u> that the <u>Electrical specifications</u> t

• Rolling shutter cameras:

Using $is_{IO()}$, you can determine the times required to implement a global flash function for rolling shutter cameras. This way, a rolling shutter camera can also be used as a global shutter camera provided that no ambient light falls on the sensor outside the flash period.

If the exposure time is set too short so that no global flash operation is possible, the function returns $\tt IS_NO_SUCCESS$.

Note

To use a rolling shutter camera with the global start function, first call the <code>is_SetGlobalShutter()</code> function. Otherwise, incorrect values will be returned for <code>Delay</code> and <code>Duration</code>.

Global shutter cameras:

In freerun mode, the exposure of global shutter cameras is delayed if the exposure time is not set to the maximum value. $is_{IO}()$ determines the required delay in order to synchronize exposure and flash operation. In triggered mode, the return values for delay and flash duration are 0, since no delay is necessary before exposure starts.

For further information, please refer to the chapters Camera basics: <u>Shutter methods</u>, <u>Digital input/output</u> (trigger/flash) [47] and <u>Operating modes</u> [17].

Attention

Accuracy of flash synchronization

The following parameters have an influence on the camera's internal timing:

- Image geometry [144] (CMOS and CCD sensors)
- <u>Pixel clock</u> (CMOS and CCD sensors)
- Exposure time [216] (CCD sensors)

If you change any of these parameters, you will have to set the flash duration and flash delay parameters once again.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

The following functions are obsolete by the $is_{10}()$ function:

- is_GetGlobalFlashDelays()
- is_SetFlashDelay()
- is_SetFlashStrobe()
- is_SetIO()
- is_SetIOMask()

• is_SetLED()

See also: Obsolete functions 379

Input parameters

hCam	Camera handle
nCommand	
GPIO	
IS_IO_CMD_GPIOS_GET_SUPPORTED	Returns the supported GPIO ports (Example 1 284) • IO_FLASH_GPIO_PORT_MASK (IO_FLASH_MODE_GPIO_1 IO_FLASH_MODE_GPIO_2)
IS_IO_CMD_GPIOS_GET_SUPPORTED_INPUTS	Returns the supported GPIO inputs (Example 1 284)
IS_IO_CMD_GPIOS_GET_SUPPORTED_OUTPUTS	Returns the supported GPIO outputs (Example 1 284)
IS_IO_CMD_GPIOS_GET_DIRECTION	Returns the input/output mask of the GPIOs (Example 2 (284))
IS_IO_CMD_GPIOS_SET_DIRECTION	Set the GPIO on input/output (Example 2 284) • IO_FLASH_MODE_GPIO_1: Sets GPIO 1 as outout. • IO_FLASH_MODE_GPIO_2: Sets GPIO 2 as output.
IS_IO_CMD_GPIOS_GET_STATE	Returns the state of the GPIO (High, Low) (Example 2^{284})
IS_IO_CMD_GPIOS_SET_STATE	Sets the state of the GPIOs if they are defined as output (High, Low) (Example 2 284)
IS_IO_CMD_GPIOS_GET_CONFIGURATION	Returns the configuration of a GPIO port (Example 10 $[287]$)
IS_IO_CMD_GPIOS_SET_CONFIGURATION	Sets the configuration of a GPIO port (Example 11 287), Example 12 287)
Flash	
IS_IO_CMD_FLASH_GET_SUPPORTED_GPIOS	Returns the GPIOs which can be used for flash output (Example 6 285)
IS_IO_CMD_FLASH_GET_MODE	Returns the current flash mode, see below (Example 7 $\boxed{285}$)
IS_IO_CMD_FLASH_SET_MODE	Sets the flash mode (Example 7 285)
	• IO_FLASH_MODE_OFF: Disables the digital output.
	• IO_FLASH_MODE_TRIGGER_LO_ACTIVE: Enables the flash strobe in trigger mode. The digital output is set to low level for the flash duration.
	• IO_FLASH_MODE_TRIGGER_HI_ACTIVE: Enables the flash strobe in trigger mode. The digital output is set to high level for the flash duration.
	 IO_FLASH_MODE_CONSTANT_HIGH: Statically sets the digital output to high level (HIGH). IO_FLASH_MODE_CONSTANT_LOW: Statically sets the
	digital output to low level (LOW).
	• IO_FLASH_MODE_FREERUN_LO_ACTIVE: Enables the flash strobe in freerun mode. The digital output is set to low level for the flash duration.
	• IO_FLASH_MODE_FREERUN_HI_ACTIVE: Enables the flash strobe in freerun mode. The digital output is set to high level for the flash duration.
IS_IO_CMD_FLASH_GET_GLOBAL_PARAMS	Returns the parameters for the global exposure window (Example 4 [284])
IS_IO_CMD_FLASH_APPLY_GLOBAL_PARAMS	Returns the parameters for the global exposure window and sets them as flash parameters (Examplel 4 284)
IS_IO_CMD_FLASH_GET_PARAMS	Returns the current values for flash delay and duration

DCx Cameras

hCam	Camera handle
	(Example 5 285)
IS_IO_CMD_FLASH_SET_PARAMS	Sets the current values for flash delay and duration $(\underline{\text{Example 5}}_{285})$
IS_IO_CMD_FLASH_GET_PARAMS_MIN	Returns the minimum possible values for flash delay and duration (Example 5^{285})
IS_IO_CMD_FLASH_GET_PARAMS_MAX	Returns the maximum possible values for flash delay and duration (Example 5^{285})
IS_IO_CMD_FLASH_GET_PARAMS_INC	Returns the increments for flash delay and duration $(\underline{Example 5}_{285})$
IS_IO_CMD_FLASH_GET_GPIO_PARAMS_MIN	Returns the minimum possible parameters for the GPIOs as shorter flash delay and flash duration are possible when using the GPIOs for flash (Example 13^{287}).
IS_IO_CMD_FLASH_SET_GPIO_PARAMS	Sets the flash delay and flash duration and allows the minimum values for GPIOs.
	behavior can occur when flashing is done via the normal flash pin (Example 13 287).
Pulse-width modulation	
IS_IO_CMD_PWM_GET_SUPPORTED_GPIOS	Returns the GPIOs which can be used for pulse-width modulation (PWM) (Example 6 [285])
IS_IO_CMD_PWM_GET_MODE	Returns the current PWM mode (Example 9 286)
IS_IO_CMD_PWM_SET_MODE	 Sets the current PWM mode (Example 9 2861) IS_FLASH_MODE_PWM: Sets the flash output as output for PWM mode. IO_GPIO_1: Sets GPIO 1 as output. IO_GPIO_2: Sets GPIO 2 as output.
IS_IO_CMD_PWM_GET_PARAMS	Returns the current values of the PWM parameters (Example 8 286)
IS_IO_CMD_PWM_SET_PARAMS	Sets the current values of the PWM parameters (Example 8 286)
IS_IO_CMD_PWM_GET_PARAMS_MIN	Returns the minimum possible values for PWM parameters (Example 8 286)
IS_IO_CMD_PWM_GET_PARAMS_MAX	Returns the maximum possible values for PWM parameters (Example 8 286)
IS_IO_CMD_PWM_GET_PARAMS_INC	Returns the increments of the PWM parameters (Example 8 286)
LED	
IS_IO_CMD_LED_GET_STATE	Returns the state of the LED (Example 3 284)
IS_IO_CMD_LED_SET_STATE	Sets the state of the LED (Example 3 284)
	• IO_LED_STATE_1: Sets LED to orange.
	• IO_LED_STATE_2: Sets LED to green.
IS_IO_CMD_LED_TOGGLE_STATE	Toggles between the LED states (Example 3 284)
pParam	Pointer to a function parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

Contents of the IO_FLASH_PARAMS structure

INT	s32Delay	Flash delay (in µs)
UINT	u32Duration	Flash duration (in μ s) If 0 is passed, the flash output will be active until the end of the exposure time. For sensors with Global Start Shutter this is the time until the end of exposure of the first sensor row.

Contents of the IO_PWM_PARAMS structure

double	dblFrequency_Hz	Frequency of the pulse-width modulation (PWM) 1.010 000 Hz
double	dbl_DutyCycle	Duty cycle of the pulse-width modulation 0.01.0 (1.0 corresponds to 100 %)

Contents of the IO_GPIO_CONFIGURATION structure

UINT	u32Gpio	Sets the GPIO whose configuration is to be read or set (IO_GPIO_1, IO_GPIO_2). So this value must be initialized before the GPIO configuration is read or set.
UINT	u32Caps	When reading the configuration: ORed bitmask of the supported GPIO modes (IS_GPIO_INPUT IS_GPIO_OUTPUT).
UINT	u32Configuration	 When reading the configuration: returns the current set configuration When setting the configuration: sets the configuration
UINT	u32State	 When reading the configuration: returns the current state of the GPIO (0 = Low, 1 = High). When setting the configuration: sets the state of the GPIO (0 = Low, 1 = High).
UINT	u32Reserved[12]	Reserved

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.
IS_TRIGGER_NOT_ACTIVATED	The function is not possible as trigger is disabled.

Example 2

INT nRet = IS_SUCCESS;

```
UINT nDirection = 0;
```

(void*)&nCurrentState, sizeof(nCurrentState));

```
Example 3
```

```
INT nRet = IS_SUCCESS;
```

UINT nLED = 0;

```
// Toggle LED state to green
nRet = is_IO(m_hCam, IS_IO_CMD_LED_TOGGLE_STATE, NULL, 0);
```

Example 4

```
INT nRet = IS_SUCCESS;
IO FLASH PARAMS flashParams;
// Get the minimum values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS_MIN,
             (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
    INT nFlashDelayMin
                          = flashParams.s32Delay;
    UINT nFlashDurationMin = flashParams.u32Duration;
}
// Get the maximum values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS_MAX,
             (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
    INT nFlashDelayMax
                         = flashParams.s32Delay;
    UINT nFlashDurationMax = flashParams.u32Duration;
}
// Get the increment for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS_INC,
             (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
   UINT nFlashDelayInc
                         = flashParams.s32Delay;
    UINT nFlashDurationInc = flashParams.u32Duration;
}
// Get the current values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS,
             (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
                             = flashParams.s32Delav;
    INT nCurrentFlashDelay
    UINT nCurrentFlashDuration = flashParams.u32Duration;
}
// Set the current values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_PARAMS,
             (void*)&flashParams, sizeof(flashParams));
```

Example 6

Example 7

INT nRet = IS_SUCCESS;

```
// Disable flash
UINT nMode = IO_FLASH_MODE_OFF;
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));
// Set the flash to a constant low output
nMode = IO_FLASH_MODE_CONSTANT_LOW;
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));
// Set the flash to a high active pulse for each image in the trigger mode
nMode = IO_FLASH_MODE_TRIGGER_HI_ACTIVE;
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));
// Get the current flash mode
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_MODE, (void*)&nMode, sizeof(nMode));
```

```
INT nRet = IS_SUCCESS;
IO_PWM_PARAMS m_pwmParams;
// Get the minimum values of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS_MIN,
             (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
    double dblFrequencyMin = m_pwmParams.dblFrequency_Hz;
    double dblDutyCycleMin = m_pwmParams.dblDutyCycle;
}
// Get the maximum values of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS_MAX,
             (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
ł
    double dblFrequencyMax = m_pwmParams.dblFrequency_Hz;
    double dblDutyCycleMax = m_pwmParams.dblDutyCycle;
}
// Get the increment of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS_INC,
             (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
    double dblFrequencyInc = m_pwmParams.dblFrequency_Hz;
    double dblDutyCycleInc = m_pwmParams.dblDutyCycle;
}
// Get the current values of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS,
             (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
    double dblFrequency = m_pwmParams.dblFrequency_Hz;
    double dblDutyCycle = m_pwmParams.dblDutyCycle;
}
// Set the current values of the PWM parameters (1 KHz, 50% duty cycle)
m_pwmParams.dblFrequency_Hz = 1000;
m_pwmParams.dblDutyCycle = 0.5;
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_SET_PARAMS,
             (void*)&m_pwmParams, sizeof(m_pwmParams));
```

Example 9

// Get the current PWM mode
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_MODE, (void*)&nMode, sizeof(nMode));
Example 10

```
INT nRet = IS_SUCCESS;
IO_GPIO_CONFIGURATION gpioConfiguration;
// Read information about GPI01
gpioConfiguration.u32Gpio = IO_GPIO_1;
nRet = is_IO(hCam, IS_IO_CMD_GPIOS_GET_CONFIGURATION, (void*)&gpioConfiguration,
             sizeof(gpioConfiguration) );
if (nRet == IS_SUCCESS)
  if ((gpioConfiguration.u32Caps & IS_GPIO_PWM) != 0)
    // GPIO1 supports PWM
  if ((gpioConfiguration.u32Caps & IS_GPIO_FLASH) != 0)
    // GPI01 supports Flash
  if (gpioConfiguration.u32Configuration == IS_GPIO_OUTPUT)
    // GPI01 is currently configured as output
    if (gpioConfiguration.u32State == 1)
    {
      // GPI01 is currently output HIGH
    }
  }
}
```

Example 11

INT nRet = IS_SUCCESS;

IO_GPIO_CONFIGURATION gpioConfiguration;

```
// Set configuration of GPIO1 (OUTPUT LOW)
gpioConfiguration.u32Gpio = IO_GPIO_1;
gpioConfiguration.u32Configuration = IS_GPIO_OUTPUT;
gpioConfiguration.u32State = 0;
```

Example 12

INT nRet = IS_SUCCESS;

```
IO_GPIO_CONFIGURATION gpioConfiguration;
```

sizeof(gpioConfiguration));

Example 13

INT nRet = IS_SUCCESS;

4.3.65 is_IsVideoFinish

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_IsVideoFinish (HIDS hCam, INT* pbo)

Description

Using is_IsVideoFinish(), you can check whether an image has been captured and stored completely in the image memory. This function is helpful if the <u>is_FreezeVideo()</u> function was called with the IS_DONT_WAIT parameter.

By setting the $*pbo==IS_CAPTURE_STATUS$ parameter before calling $is_IsVideoFinish()$, you can also check whether a transfer or post-processing error occurred.

Input parameters

hCam	Camera handle
odq	By setting *pbo != IS_CAPTURE_STATUS before calling the function, pbo contains the following digitizing status:
	• IS_VIDEO_NOT_FINISH = Digitizing of the image is not completed yet.
	• IS_VIDEO_FINISH = Digitizing of the image is completed.
	By setting *pbo == IS_CAPTURE_STATUS before calling the function, pbo contains the following digitizing status:
	• IS_VIDEO_NOT_FINISH = Digitizing of the image is not completed yet.
	• IS_VIDEO_FINISH = Digitizing of the image is completed.
	 IS_CAPTURE_STATUS = Transfer error or conversion problem (e.g. destination memory is invalid)
	The parameter IS_CAPTURE_STATUS replaces the previous parameter IS_TRANSFER_FAILED.
	The parameter IS_TRANSFER_FAILED was moved into the new header file uc480_deprecated.h, which contains all obsolete function definitions and constants. If necessary the header file uc480_deprecated.h can be included in addition to the header file uc480.h.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_FreezeVideo() 223
- is_HasVideoStarted() 259

4.3.66 is_LockSeqBuf

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_LockSeqBuf (HIDS hCam, INT nNum, char* pcMem)

Description

is_LockSeqBuf() locks write access to an image memory within a sequence. In the capturing process, locked image memories will be skipped in the sequence list of image memories to be used. This way, you can avoid that image data which are required for further processing will be overwritten by newly captured data. Full access to the image memory is still guaranteed. You can lock any number of image memories at the same time.

Using the is_UnlockSeqBuf() [354] function, you can re-enable write access to the image memory.

Input parameters

hCam	Camera handle
nNum	Number of the image memory to be locked (1max) or IS_IGNORE_PARAMETER: The image memory will be identified by its starting address only.
pcMem	Starting address of the image memory to be locked

Attention

nNum indicates the location in the sequence list, not the memory ID assigned using is_AllocImageMem() [157].

Return values

IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_UnlockSeqBuf() 354
- is_AddToSequence()
- is_SetImageMem() 337
- is_SetAllocatedImageMem() 301

4.3.67 is_Measure

H	٨
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_Measure(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The function allows the measurement of the sharpness in a defined AOI of the current image. To get a sharpness value the edges in the image are evaluated. The sharpness can only be indicated as a relative value as it depends on the edges in the current image. An image with less edges will reach the sharpness value of an image with a lot of edges.

The higher the value, the better the sharpness. The value can be used in comparative measurements to detect changes in the image acquisition of the same object, e.g. caused by readjusted lenses.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Input parameters

hCam	Camera handle	
nCommand		
IS_MEASURE_CMD_SHARPNESS_	AOI_SET	Sets an AOI in which the sharpness is measured. In the image are up to 5 AOIs possible. These AOIs can also overlap. (Example 1 291)
IS_MEASURE_CMD_SHARPNESS_	_AOI_INQUIRE	Returns information of the AOI, e.g. the sharpness (Example 2 [291])
IS_MEASURE_CMD_SHARPNESS_AOI_SET_PRESET		Sets different predefined AOIs in the image (Example 3 (291))
pParam	Pointer to a function parameter, whose function depends on nCommand.	
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.	

Content of the MEASURE_SHARPNESS_AOI_INFO structure

UINT	u32NumberAOI	ID of the AOI
UINT	u32SharpnessValue	Relative sharpness value in the defined AOI
IS_RECT	rcAOI	Position and size of the AOI: • s32X: X position • s32Y: Y position • s32Width: AOI width • s32Height: AOI height

Content of the MEASURE_SHARPNESS_AOI_PRESETS enumeration

IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the

	is_AddToSequence() function.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Example 1

INT nRet = IS_SUCCESS;

```
/* Create info object */
MEASURE_SHARPNESS_AOI_INFO measureSharpnessInfo;
/* Set values of AOI_0: The position and size of the AOI equals the whole image */
measureSharpnessInfo.u32NumberAOI
                                     = 0;
= 0;
measureSharpnessInfo.rcAOI.s32X
measureSharpnessInfo.rcAOI.s32Y
                                     = 0;
measureSharpnessInfo.rcAOI.s32Width = m_s32MaxImageWidth;
measureSharpnessInfo.rcAOI.s32Height = m_s32MaxImageHeight;
/* Set AOI_0 */
nRet = is_Measure(m_hCam, IS_MEASURE_CMD_SHARPNESS_AOI_SET, (void*)&measureSharpnessInfo,
                  sizeof(measureSharpnessInfo));
/* Set values of AOI_1 */
measureSharpnessInfo.u32NumberAOI
                                     = 1;
measureSharpnessInfo.rcAOI.s32X
                                     = 50;
measureSharpnessInfo.rcAOI.s32Y
                                     = 50;
measureSharpnessInfo.rcAOI.s32Width = 200;
measureSharpnessInfo.rcAOI.s32Height = 200;
/* Set AOI 1 */
nRet = is_Measure(m_hCam, IS_MEASURE_CMD_SHARPNESS_AOI_SET, (void*)&measureSharpnessInfo,
                  sizeof(measureSharpnessInfo));
```

Example 2

Example 3

4.3.68 is_ParameterSet

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ParameterSet(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The is_ParameterSet() function saves the current camera parameters to a file or to the EEPROM of the camera and loads the parameter set from a file or the EEPROM.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Only camera-specific ini files can be loaded. The <u>uc480 parameter file</u> section in the appendix describes the structure of a uc480 ini file.

Attention

When loading an ini file, make sure that the image size (AOI) and color depth parameters in the ini file match those in the allocated memory. Otherwise, display errors may occur.

Note

The following functions are obsolete by the ${\tt is_ParameterSet}()$ function:

- is_SaveParameters()
- is_LoadParameters()
- See also: Obsolete functions 379

Input parameter

hCam	Camera handle
nCommand	
IS_PARAMETERSET_CMD_LOAD_EEPROM	Loads a camera parameter set from the EEPROM (Example 1 293)) The parameter sets in the EEPROM of the camera can be loaded via special file names: • \\cam\\set1 oder /cam/set1
IS_PARAMETERSET_CMD_LOAD_FILE	Loads a camera parameter set from a file ($\underline{\text{Example 2}}_{293}$) You must pass the path to the ini file as Unicode string. You can pass either a relative or an absolute path. If you pass NULL the "Open file" dialog opens.
IS_PARAMETERSET_CMD_SAVE_EEPROM	Saves a camera parameter set in the EEPROM (Example 3 [293]) The parameter sets in the EEPROM of the camera can be saved with special file names: • \\cam\\set1 oder /cam/set1
IS_PARAMETERSET_CMD_SAVE_FILE	Saves a camera parameter set in a file (Example 4 295) You must pass the path to the ini file as Unicode string. You can pass either a relative or an absolute path. If you pass NULL the "Save as" dialog opens.
IS_PARAMETERSET_CMD_GET_NUMBER_SUPPORTE D	Returns the number of supported parameter sets in the camera EEPROM ($Example 5$ [293]). At the moment this is "1" for all cameras.
pParam	Pointer to a function parameter, whose function depends on nCommand.

cbSizeOfParam	Size (in bytes) of the memory area to which pParam
	refers.

Return values

IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

• is_CameraStatus()

Example 1

INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_LOAD_EEPROM, NULL, NULL);

Example 2

```
// Load parameters from file (open filebox)
INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_LOAD_FILE, NULL, NULL);
```

// Load parameters from specified file nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_LOAD_FILE, L"file.ini", NULL);

Example 3

INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_SAVE_EEPROM, NULL, NULL);

Example 4

```
// Save parameters to file (open filebox)
INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_SAVE_FILE, NULL, NULL);
```

// Save parameters to specified file nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_SAVE_FILE, L"file.ini", NULL);

Example 5

4.3.69 is_PixelClock

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_PixelClock(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The function returns the adjustable pixel clock range sets the piel clock. Due to an excessive pixel clock for USB cameras, images may get lost during the transfer. If you change the pixel clock on-the-fly, the current image capturing process will be aborted.

The pixel clock limit values can vary, depending on the camera model and operating mode. For detailed information on the pixel clock range of a specific camera model, please refer to the <u>Camera and sensor data</u> the chapter.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a variable of the UINT type. The size of the memory area to which pParam refers is specified in the cbSizeOfParam input parameter.

Note

Note: The following functions are obsolete by the is_PixelClock() function:

- is_SetPixelClock()
- is_GetPixelClockRange()

See also: Obsolete functions 379

Input parameter

hCam	Camera handle
nCommand	
IS_PIXELCLOCK_CMD_GET_NUMBER	Returns the number of discrete pixel clock which are supported by the camera (Example 1^{295}).
IS_PIXELCLOCK_CMD_GET_LIST	Returns the list with discrete pixel clocks.
IS_PIXELCLOCK_CMD_GET_RANGE	Returns the range for the pixel clock (Example 2 295)
IS_PIXELCLOCK_CMD_GET_DEFAULT	Returns the default pixel clock (Example 4 295)
IS_PIXELCLOCK_CMD_GET	Returns the current set pixel clock in MHz (Example 3 $[295]$)
IS_PIXELCLOCK_CMD_SET	Sets the pixel clock in MHz (<u>Example 4</u> [295])
pParam	Pointer to a function parameter, whose function depends on nCommand.
cbSizeOfParam	Size (in bytes) of the memory area to which pParam refers.

IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

- <u>is_GetFramesPerSecond()</u> 240
- <u>is_GetFrameTimeRange()</u> 241
- is_Exposure()²¹⁶
- is_SetOptimalCameraTiming() 338
- is_SetFrameRate() 329
- is_SetAutoParameter() 303
- is_SetBinning() 310
- is_SetSubSampling() 347
- is_AOI() 159

Example 1

Example 2

```
UINT nRange[3];
ZeroMemory(nRange, sizeof(nRange));
// Get pixel clock range
INT nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET_RANGE, (void*)nRange, sizeof(nRange));
if (nRet == IS_SUCCESS)
{
    UINT nMin = nRange[0];
    UINT nMin = nRange[0];
    UINT nMax = nRange[1];
    UINT nInc = nRange[2];
}
```

Example 3

UINT nPixelClock;

```
// Get current pixel clock
nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET, (void*)&nPixelClock, sizeof(nPixelClock));
```

Example 4

```
UINT nPixelClockDefault;
```

4.3.70 is_ReadEEPROM

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ReadEEPROM (HIDS hCam, INT Adr, char* pcString, INT Count)

Description

Using $is_ReadEEPROM()$, you can read the contents of the camera EEPROM. Besides the hard-coded factory information, the EEPROM of the DCx Camera can hold 64 bytes of user data.

Input parameters

hCam	Camera handle
Adr	Starting address for data reads Value range: 063
pcString	Pointer to the buffer for the data to read (min. size = Count)
Count	Number of characters to read

Return values

IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CRC_ERROR	A CRC error-correction problem occurred while reading the settings.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

• is_WriteEEPROM() 358

Example

```
char buffer[64];
is_ReadEEPROM( hCam, 0x00, buffer, 64 );
```

4.3.71 is_RenderBitmap

	۵
USB 2.0	-
USB 3.0	

Syntax

INT is_RenderBitmap (HIDS hCam, INT nMemID, HWND hwnd, INT nMode)

Description

Using $is_RenderBitmap()$, you can output an image from an image memory in the specified window. For the display, Windows bitmap functionality is used. The image is displayed in the format you specified when allocating the image memory.

The bitspixel parameter of the <u>is_AllocImageMem()</u> function defines the color depth and display type. RGB16 and RGB15 require the same amount of memory but can be distinguished by the bitspixel parameter.

Attention

is_RenderBitmap() can render Y8 and RGB formats. For displaying YUV/YCbCr formats please use the is_DirectRenderer() [198] function (see also Color and memory formats [502]).

Input parameters

hCam	Camera handle
nMemID	ID of the image memory whose contents is to be displayed
hwnd	Output window handle
🖬 nMode	
IS_RENDER_NORMAL	The image is rendered normally. It will be displayed in 1:1 scale as stored in the image memory.
IS_RENDER_FIT_TO_WINDOW	The image size is adjusted to fit the output window.
IS_RENDER_DOWNSCALE_1_2	Displays the image at 50 % of its original size.
IS_RENDER_PLANAR_COLOR_RED	Renders the red color component of the planar format in red.
IS_RENDER_PLANAR_COLOR_GREEN	Renders the green color component of the planar format in green.
IS_RENDER_PLANAR_COLOR_BLUE	Renders the blue color component of the planar format in blue.
IS_RENDER_PLANAR_MONO_RED	Renders the red color component of the planar format in gray shades.
IS_RENDER_PLANAR_MONO_GREEN	Renders the green color component of the planar format in gray shades.
IS_RENDER_PLANAR_MONO_BLUE	Renders the blue color component of the planar format in gray shades.
The following options can be linked by a logical OR using the nMode parameter:	
IS_RENDER_MIRROR_UPDOWN	Mirrors the displayed image along the horizontal axis.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid

© 2013 Thorlabs GmbH

	range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_AllocImageMem()
- is_SetColorMode() 319
- is_SetDisplayMode() 322
- is_DirectRenderer()

Example

Fit image to window and display it upside down:

is_RenderBitmap (hCam, nMemID, hwnd, IS_RENDER_FIT_TO_WINDOW | IS_RENDER_MIRROR_UPDOWN);

Sample programs

- SimpleAcquire (C++)
- SimpleLive (C++)

4.3.72 is_ResetToDefault

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_ResetToDefault (HIDS hCam)

Description

is_ResetToDefault() resets all parameters to the camera-specific defaults as specified by the driver. By default, the camera uses full resolution, a medium speed and color level gain values adapted to daylight exposure.

Input parameters

hCam	Camera handle

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

• is_ParameterSet() 292

4.3.73 is_SetAllocatedImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

Description

Using <code>is_SetAllocatedImageMem()</code>, you can make a memory allocated by a user the active memory for storing digitized images in it. The allocated memory must be large enough and must always be locked globally.

Depending on the selected image format you need more than one byte per pixel for image memory:

```
unsigned int uBytesPerPixel = bitspixel/8;
if (uImageSize % bitspixel != 0)
{
    uBytesPerPixel++;
}
unsigned int uImageSize = width * height * uBytesPerPixel;
You can call the <u>is_AddToSequence()</u> [156] function to add a memory which was set using
is_SetAllocatedImageMem() to a sequence.
```

The address of this memory will be passed to the uc480 driver. For this, you can use the $is_SetAllocatedImageMem()$ function. In addition, you need to specify the image size, just as you do when calling $is_AllocImageMem()$ [157]. The returned memory ID is required by other functions for memory access.

The memory area must be removed from the driver management again using the <u>is_FreeImageMem()</u> [22] function. Please note that this does not release the memory. You then need to make sure that the memory will be released again.

After is_SetAllocatedImageMem you must call is_SetImageMem or is_AddToSequence in order that the image caption can be carried out in the image memory.

Input parameters

hCam	Camera handle
width	Image width
height	Image height
bitspixel	Image color depth (bits per pixel)
pcImgMem	Pointer to the starting address of the allocated memory
pid	Returns the ID of this memory.

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

Related functions

- is_AllocImageMem()
- is_FreeImageMem() 222
- is_AddToSequence()
- is_SetImageMem() 337
- is_GetColorDepth()²³⁷
- is_GetImgMemPitch()²⁴⁸

Example Windows

```
HANDLE hMem = GlobalAlloc(0, uImageSize);
char* pcMem = (char*)GlobalLock(hMem);
INT nRet = is_SetAllocatedImageMem(hCam, uWidth, uHeight, uBitspixel, pcMem, &iMemID);
[...]
nRet = is_FreeImageMem(hCam, pcMem, iMemID);
GlobalUnlock(hMem);
GlobalFree(hMem);
```

Example Linux

```
char* pcMem = (char*)malloc(uImageSize);
int iRet = mlock(pcMem, uImageSize);
INT nRet = is_SetAllocatedImageMem(hCam, uWidth, uHeight, uBitspixel, pcMem, &iMemID);
[...]
nRet = is_FreeImageMem(hCam, pcMem, iMemID);
iRet = munlock(pcMem, uImageSize);
free(pcMem);
```

4.3.74 is_SetAutoParameter

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0
GigE	GigE

Syntax

INT is_SetAutoParameter (HIDS hCam, INT param, double* pval1, double* pval2)

Description

Using <code>is_SetAutoParameter()</code>, you can control the automatic gain, exposure shutter, frame rate and white balance control values.

For further information on automatic control, please refer to the <u>Automatic image control</u> 45 chapter.

- Control is only active as long as the camera is capturing images.
- A manual change of the exposure time and gain settings disables the auto functions.
- When the auto exposure shutter function is enabled, you cannot modify the pixel clock frequency.
- The **auto frame rate** function is only available when the auto shutter control is on. Auto frame rate and auto gain control cannot be used simultaneously.
- The **auto gain** function can only be used for cameras with master gain control. Auto white balance is only available for cameras with hardware RGB gain control.
- The sensor's internal auto features are not supported by the sensors of DCx camera models.

Attention

Automatic controls when using very high frame rates

Using very high frame rates can cause that too many control commands are sent to the camera. When using frame rates higher than 100 fps you should increase the value for IS_SET_AUTO_SKIPFRAMES. Thus, less image will be used for the automatic controls which takes load off the camera.

Input parameters

hCam	Camera handle
param	Configure auto function
Enabling auto functions and querying the status	
IS_SET_ENABLE_AUTO_GAIN	Enables/disables the auto gain control function Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_ENABLE_AUTO_GAIN	Returns the current auto gain setting or white level adjustment Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_SENSOR_GAIN	Enables/disables the internal auto gain control function of the sensor ^{*1} Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_ENABLE_AUTO_SENSOR_GAIN	Returns the current auto gain setting of the sensor ^{*1} Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_SHUTTER	Enables/disables the auto exposure shutter function. Control parameters pval1 = 1 enables control, 0 disables control

hCam	Camera handle
IS_GET_ENABLE_AUTO_SHUTTER	Returns the current auto exposure shutter setting. Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_SENSOR_SHUTTER	Enables/disables the sensor's internal auto exposure shutter function ^{*1} Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_ENABLE_AUTO_SENSOR_SHUTTER	Returns the sensor's current auto exposure shutter setting ^{*1} Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_WHITEBALANCE	 Enables/disables the auto white balance function. Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_ENABLE_AUTO_WHITEBALANCE	Returns the current auto white balance setting. Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_SENSOR_WHITEBALANCE	Enables/disables the sensor's internal auto white balance function ^{*1} Control parameters pval1: white balance mode (see <u>is_GetAutoInfo()</u> [227)): WB_MODE_DISABLE WB_MODE_AUTO WB_MODE_ALL_PULLIN WB_MODE_INCANDESCENT_LAMP WB_MODE_FLUORESCENT_DL WB_MODE_OUTDOOR_CLEAR_SKY WB_MODE_OUTDOOR_CLOUDY
IS_GET_ENABLE_AUTO_SENSOR_WHITEBALANCE	Returns the sensor's current auto white balance setting ^{*1} Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_FRAMERATE	Enables/disables the auto frame rate function. Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_ENABLE_AUTO_FRAMERATE	Returns the current auto frame rate setting. Control parameters pval1: returns the current setting
IS_SET_ENABLE_AUTO_SENSOR_FRAMERATE	Enables/disables the sensor's internal auto frame rate function ^{*1} Control parameters <pre>pval1 = 1 enables control, 0 disables control</pre>
IS_GET_ENABLE_AUTO_SENSOR_FRAMERATE	Returns the sensor's current auto frame rate setting ^{*1} Control parameters pval1: returns the current setting
Adjusting auto gain control/auto exposure shutter	
IS_SET_AUTO_REFERENCE	Sets the setpoint for auto gain control/auto exposure shutter. Control parameters pval1: defines the setpoint (average brightness of the

hCam	Camera handle
	 image); the following rule applies independently of the image bit depth: 0 = black 128 = 50% gray (default) 255 = white Note on the sensor's internal control functionality When using the sensor's internal control functionality, you can only used values in a range between [44235]. The increment in this range is 4. Smaller values are automatically set to 44, larger values to 235.
IS_GET_AUTO_REFERENCE	Returns the set point for auto gain control/auto exposure shutter. Control parameters pval1: returns the current setting
IS_SET_AUTO_GAIN_MAX	Sets the upper limit for auto gain control. Control parameters pval1: valid value for gain (0100)
IS_GET_AUTO_GAIN_MAX	Returns the upper limit for auto gain control. Control parameters pval1: returns the current setting
IS_SET_AUTO_SHUTTER_MAX	Sets the upper limit for auto exposure shutter. Control parameters pval1: valid exposure value (0 sets the value continuously to max. exposure)
IS_GET_AUTO_SHUTTER_MAX	Returns the upper limit for auto exposure shutter. Control parameters pval1: returns the current setting
IS_SET_AUTO_BRIGHTNESS_ONCE	Enables/disables the automatic disable for automatic brightness control (gain and exposure time) ^{*2} Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_AUTO_BRIGHTNESS_ONCE	Returns the automatic disable status ^{*2} Control parameters pval1: returns the current setting
Speed and hysteresis	
IS_SET_AUTO_SPEED	Sets the speed value for the auto function. Control parameters pval1: defines the control speed (0100)
IS_GET_AUTO_SPEED	Returns the speed value for the auto function. Control parameters pval1: returns the current setting
IS_SET_AUTO_SKIPFRAMES	Sets the number of frames to be skipped during automatic control. Control parameters pval1: defines the number of frames to be skipped during automatic control (default: 4)
IS_GET_AUTO_SKIPFRAMES	Returns the number of frames to be skipped during automatic control. Control parameters pval1: returns the current setting
IS_GET_AUTO_SKIPFRAMES_RANGE	Returns the permissible range for the number of frames to be skipped.

hCam	Camera handle
	 Control parameters pval1: returns the minimum permitted value pval2: returns the maximum permitted value
IS_SET_AUTO_HYSTERESIS	Sets the hysteresis value for auto exposure shutter and auto gain control. Control parameters pval1: defines the hysteresis value (default: 2)
IS_GET_AUTO_HYSTERESIS	Returns the hysteresis value for auto exposure shutter and auto gain control. Control parameters pval1: returns the current setting
IS_GET_AUTO_HYSTERESIS_RANGE	 Returns the permissible range for the hysteresis value. Control parameters pval1: returns the minimum permitted value pval2: returns the maximum permitted value
Photometric settings for auto gain control/auto expo	sure shutter
IS_SET_SENS_AUTO_SHUTTER_PHOTOM	Sets the photometry mode for auto exposure shutter. Control parameters pval1: defines which fields of view are used for auto exposure shutter (see <u>is_GetAutoInfo()</u> 227): AS_PM_NONE AS_PM_SENS_CENTER_WEIGHTED AS_PM_SENS_CENTER_SPOT AS_PM_SENS_PORTRAIT AS_PM_SENS_LANDSCAPE
IS_GET_SENS_AUTO_SHUTTER_PHOTOM	Returns the photometry mode for auto exposure shutter. Control parameters pval1: returns the current setting
IS_GET_SENS_AUTO_SHUTTER_PHOTOM_DEF	Returns the default photometry mode for auto exposure shutter. Control parameters pval1: returns the default
IS_SET_SENS_AUTO_GAIN_PHOTOM	Sets the photometry mode for auto gain control. Control parameters pval1: defines which fields of view are used for auto gain control (see <u>is_GetAutoInfo()</u> 227): AG_PM_NONE AG_PM_SENS_CENTER_WEIGHTED AG_PM_SENS_CENTER_SPOT AG_PM_SENS_CENTER_SPOT AG_PM_SENS_PORTRAIT AG_PM_SENS_LANDSCAPE Returns the photometry mode for auto gain control
IS_GET_SENS_AUTO_GAIN_PHOTOM	 Control parameters pval1: returns the current setting
IS_GET_SENS_AUTO_GAIN_PHOTOM_DEF	Returns the default photometry mode for auto gain control. Control parameters pval1: returns the default
Adjusting auto white balance	
IS_SET_AUTO_WB_OFFSET	Sets the offset values for the red and blue channels.

4 Programming (SDK)

hCam	Camera handle
	 Control parameters pval1: defines the red level offset (-5050) pval2: defines the blue level offset (-5050)
IS_GET_AUTO_WB_OFFSET	 Returns the offset values for the red and blue channels. Control parameters pval1: returns the red level offset (-5050) pval2: returns the blue level offset (-5050)
IS_SET_AUTO_WB_GAIN_RANGE	 Sets the color gain limits for auto white balance. Control parameters pval1: sets the lowest gain value pval2: sets the highest gain value
IS_GET_AUTO_WB_GAIN_RANGE	 Returns the color gain limits for auto white balance. Control parameters pval1: returns the minimum permitted gain value pval2: returns the maximum permitted gain value
IS_SET_AUTO_WB_ONCE	Sets automatic disabling of auto white balance ^{*2} Control parameters pval1 = 1 enables control, 0 disables control
IS_GET_AUTO_WB_ONCE	Returns the automatic disable status ^{*2} Control parameters pval1: returns the current setting
Speed and hysteresis	
IS_SET_AUTO_WB_SPEED	Sets the speed for auto white balance. Control parameters pval1: defines the control speed (0100)
IS_GET_AUTO_WB_SPEED	Returns the speed for auto white balance. Control parameters pval1: returns the current setting
IS_SET_AUTO_WB_HYSTERESIS	Sets the hysteresis value for auto white balance. Control parameters pval1: defines the hysteresis value (default: 2)
IS_GET_AUTO_WB_HYSTERESIS	Returns the hysteresis value for auto white balance. Control parameters pval1: returns the current setting
IS_GET_AUTO_WB_HYSTERESIS_RANGE	 Returns the permissible range for the hysteresis value. Control parameters pval1: returns the minimum permitted value pval2: returns the maximum permitted value
IS_SET_AUTO_WB_SKIPFRAMES	Sets the number of frames to be skipped during automatic control. Control parameters pval1: defines the number (default: 4)
IS_GET_AUTO_WB_SKIPFRAMES	Returns the number of frames to be skipped during automatic control. Control parameters pval1: returns the current setting
IS_GET_AUTO_WB_SKIPFRAMES_RANGE	Returns the permissible range for the number of frames to be skipped. Control parameters

hCam	Camera handle	
	<pre>pval1: returns the minimum permitted value pval2: returns the maximum permitted value</pre>	
Default values for auto gain control/auto exposure sho	utter	
NULL is passed for the pval1, pval2 parameters.		
IS_DEFAULT_AUTO_BRIGHT_REFERENCE	Default setpoint for auto gain control and auto exposure shutter.	
IS_MIN_AUTO_BRIGHT_REFERENCE	Minimum setpoint for auto gain control and auto exposure shutter.	
IS_MAX_AUTO_BRIGHT_REFERENCE	Maximum setpoint for auto gain control and auto exposure shutter.	
IS_DEFAULT_AUTO_SPEED	Default value for auto speed.	
IS_MAX_AUTO_SPEED	Maximum value for auto speed	
Default values for Auto White Balance		
NULL is passed for the pval1, pval2 parameters.		
IS_MIN_WB_OFFSET	Minimum value for auto white balance offset.	
IS_MAX_WB_OFFSET	Maximum value for auto white balance offset.	
IS_DEFAULT_AUTO_WB_SPEED	Default value for auto white balance speed.	
IS_MIN_AUTO_WB_SPEED	Minimum value for auto white balance speed.	
IS_MAX_AUTO_WB_SPEED	Maximum value for auto white balance speed.	
pval1	Control parameter, can have a variable value depending on the corresponding auto function	
pval2	Control parameter, can have a variable value depending on the corresponding auto function	

*1 Not all sensors support this feature (see information box)

*2 Not with use of sensor's internal control functionality

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INCOMPATIBLE_SETTING	Because of other incompatible settings the function is not possible.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_INVALID_WB_BINNING_MODE	Mono binning/mono sub-sampling do not support automatic white balance.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.

IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

- is_ParameterSet() [292]
- is_GetAutoInfo() 227
- is_SetHardwareGain() 333
- is_SetHWGainFactor() 335
- is_Exposure() 216
- is_SetFrameRate() 329
- is_AOI() 159

Examples

//Enable auto gain control: double dEnable = 1; int ret = is_SetAutoParameter (hCam, IS_SET_ENABLE_AUTO_GAIN, &dEnable, 0); //Set brightness setpoint to 128: double nominal = 128; int ret = is_SetAutoParameter (hCam, IS_SET_AUTO_REFERENCE, &nominal, 0); //Return shutter control limit: double maxShutter;

int ret = is_SetAutoParameter (hCam, IS_GET_AUTO_SHUTTER_MAX, &maxShutter, 0);

4.3.75 is_SetBinning

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetBinning (HIDS hCam, INT mode)

Description

Using is_SetBinning(), you can enable the binning mode both in horizontal and in vertical direction. This way, the image size in the binning direction can be reduced without scaling down the area of interest. Depending on the sensor used, the sensitivity or the frame rate can be increased while binning is enabled.

To enable horizontal and vertical binning at the same time, you can link the horizontal and vertical binning parameters by a logical OR.

The adjustable binning factors of each sensor are listed in the Camera and sensor data 460 chapter.

Note

Some sensors allow a higher pixel clock setting if binning or subsampling has been activated. If you set a higher pixel clock and then reduce the binning/subsampling factors again, the driver will automatically select the highest possible pixel clock for the new settings.

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing is_SetBinning(), calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_Exposure()²¹⁶
- If you are using the DCx Camera's flash function: is_IO()

Note

For the models DCC1240x Binning can be used only combined for the horizontal and the vertical direction. Please see also the information in section $\frac{DCC1240x}{DCC3240x}$ Application Notes **63**.

Input parameters

hCam	Camera handle
🖬 mode	
IS_BINNING_DISABLE	Disables binning.
IS_BINNING_2X_VERTICAL	Enables vertical binning with factor 2.
IS_BINNING_3X_VERTICAL	Enables vertical binning with factor 3.
IS_BINNING_4X_VERTICAL	Enables vertical binning with factor 4.
IS_BINNING_5X_VERTICAL	Enables vertical binning with factor 5.
IS_BINNING_6X_VERTICAL	Enables vertical binning with factor 6.
IS_BINNING_8X_VERTICAL	Enables vertical binning with factor 8.
IS_BINNING_16X_VERTICAL	Enables vertical binning with factor 16.
IS_BINNING_2X_HORIZONTAL	Enables horizontal binning with factor 2.
IS_BINNING_3X_HORIZONTAL	Enables horizontal binning with factor 3.
IS_BINNING_4X_HORIZONTAL	Enables horizontal binning with factor 4.
IS_BINNING_5X_HORIZONTAL	Enables horizontal binning with factor 5.
IS_BINNING_6X_HORIZONTAL	Enables horizontal binning with factor 6.
IS_BINNING_8X_HORIZONTAL	Enables horizontal binning with factor 8.

hCam	Camera handle
IS_BINNING_16X_HORIZONTAL	Enables horizontal binning with factor 16.
IS_GET_BINNING	Returns the current setting.
IS_GET_BINNING_FACTOR_VERTICAL	Returns the vertical binning factor.
IS_GET_BINNING_FACTOR_HORIZONTAL	Returns the horizontal binning factor.
IS_GET_SUPPORTED_BINNING	Returns the supported binning modes.
IS_GET_BINNING_TYPE	Indicates whether the camera uses color-proof binning (IS_BINNING_COLOR) or not (IS_BINNING_MONO)

When used with IS_GET_BINNING	Current setting
When used with IS_GET_BINNING_FACTOR_VERTICAL IS_GET_BINNING_FACTOR_HORIZONTAL	Current setting: Returns the current factor as integer value (2, 3, 4, 5, 6, 8, 16)
When used with IS_GET_BINNING_TYPE	Returns IS_BINNING_COLOR if the camera uses color- proof binning; otherwise, IS_BINNING_MONO is returned.
When used with IS_GET_SUPPORTED_BINNING	Returns the supported binning modes linked by logical ORs.
IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_INVALID_PIXEL_CLOCK	This setting is not available for the currently set pixel clock frequency.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file

	(uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

Related functions

- is_SetSubSampling() 347
- <u>is_AOI()</u> 159
- is_SetImagePos() 435
- <u>is_PixelClock()</u> 294

4.3.76 is_SetCameralD

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetCameraID (HIDS hCam, INT nID)

Description

Using is_SetCameraID(), you can assign a unique camera ID to a camera. Thus, it is possible to access the camera directly with the is_InitCamera() [273] function.

The camera ID is stored in the non-volatile memory of the camera. The factory default camera ID is 1. The camera ID can also be changed in the uc480 Camera Manager.

Input parameters

hCam	Camera handle
nID	
1254	New camera ID
IS_GET_CAMERA_ID	Returns the current ID.

Return values

When used together with IS_GET_CAMERA_ID	Current ID
IS_ACCESS_VIOLATION	An internal error has occured. The camera ID cannot be changed because the camera is running in the boot-boost mode.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

• is_InitCamera() 273

- <u>is_GetCameraInfo()</u> 231
- <u>is_CameraStatus()</u> 172

4.3.77 is_SetColorConverter

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetColorConverter (HIDS hCam, INT ColorMode, INT ConvertMode)

Description

Using $is_SetColorConverter()$, you can select the type of Bayer conversion for color cameras. Software conversion is done on the PC. The use of a larger filter mask results in a higher image quality, but increases the computational load. For further information, please refer to the <u>Camera basics: Color filters</u> [26] chapter.

Note

Software conversion with the large filter mask should only be used for sensors whose green pixels have the same sensitivity. This applies to all DCU22xX CCD cameras.

For all other sensors, we recommend using the standard filter mask.

Attention

While free run mode is active, you cannot change the color conversion type. To do so, you must first stop the capturing process using <u>is_StopLiveVideo()</u> or set the camera to trigger mode (see <u>is_StepLiveVideo()</u>.

Input parameters

hCam	Camera handle
ColorMode	Color mode for which the converter is to be set. For a list of all available color formats and the associated input parameters, see the <u>Appendix: Color</u> and memory formats section.
ConvertMode	Conversion mode selection
IS_CONV_MODE_NONE	No conversion
IS_CONV_MODE_SOFTWARE	Only for monochrome cameras, if you want to add a gamma
IS_CONV_MODE_SOFTWARE_3X3	Software conversion using the standard filter mask (default)
IS_CONV_MODE_SOFTWARE_5X5	Software conversion using a large filter mask
IS_CONV_MODE_HARDWARE_3X3	(Not applicable to DCx Cameras)
IS_CONV_MODE_OPENCL_3X3	Software conversion using the standard filter mask, but conversion is done on the graphic board
IS_CONV_MODE_OPENCL_5X5	(Not applicable to DCx Cameras)

IS_INVALID_COLOR_FORMAT	Parameter ColorMode invalid or not supported
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not

	available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_IR_FILTER	No IR filter available
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SUCCESS	Function executed successfully

Related functions

- is_GetColorConverter()
- <u>is_SetColorMode()</u> 319
- is_Convert() 188

4.3.78 is_SetColorCorrection

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetColorCorrection (HIDS hCam, INT nEnable, double* factors)

Description

For color cameras, is_SetColorCorrection() enables color correction in the uc480 driver. This enhances the rendering of colors for cameras with color sensors. Color correction is a digital correction based on a color matrix which is adjusted individually for each sensor.

Note

After changing this parameter, perform manual or automatic white balancing in order to obtain correct color rendering (see also <u>is_SetAutoParameter()</u>] (303).

Input parameters

hCam	Camera handle
🖃 nEnable	
IS_CCOR_ENABLE_NORMAL	Enables simple color correction. This parameter replaces IS_CCOR_ENABLE.
IS_CCOR_ENABLE_BG40_ENHANCED	Enables color correction for cameras with optical IR filter glasses of the BG40 type.
IS_CCOR_ENABLE_HQ_ENHANCED	Enables color correction for cameras with optical IR filter glasses of the HQ type.
IS_CCOR_SET_IR_AUTOMATIC	Enables color correction for cameras with optical IR filter glasses. The glass type is set automatically as specified in the camera EEPROM.
IS_CCOR_DISABLE	Disables color correction.
IS_GET_CCOR_MODE	Returns the current setting.
IS_GET_SUPPORTED_CCOR_MODE	Returns all supported color correction modes. See the Return values section.
IS_GET_DEFAULT_CCOR_MODE	Returns the default color correction mode.
factors	Sets the strength of the color correction between 0.0 (no correction) and 1.0 (strong correction).

When used together with IS_GET_CCOR_MODE	Current setting
When used together with IS_GET_SUPPORTED_CCOR_MODE	When used for color cameras and together with IS_GET_SUPPORTED_CCOR_MODE , this parameter returns the supported values linked by a logical OR:
	• IS_CCOR_ENABLE_NORMAL
	• IS_CCOR_ENABLE_BG40_ENHANCED
	• IS_CCOR_ENABLE_HQ_ENHANCED
	When used for monochrome cameras, the system returns 0.
When used together with IS_GET_DEFAULT_CCOR_MODE	When used for color cameras and together with IS_GET_DEFAULT_CCOR_MODE, this parameter returns the default color correction mode:
	• IS_CCOR_ENABLE_NORMAL
	• IS_CCOR_ENABLE_HQ_ENHANCED

	When used for monochrome cameras, the system returns 0.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_IR_FILTER	No IR filter available
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

- is_SetColorConverter() 315
- <u>is_SetColorMode()</u> 319
- is_SetAutoParameter() 303

4.3.79 is_SetColorMode

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetColorMode (HIDS hCam, INT Mode)

Description

 $is_SetColorMode()$ sets the color mode to be used when image data are saved or displayed by the graphics card. For this purpose, the allocated image memory must be large enough to accommodate the data with the selected color mode. When images are transferred directly to the graphics card memory, make sure that the display settings match the color mode settings. Otherwise, the images will be displayed with altered colors or are not clearly visible.

Notes

Display Modes

This function is only supported in the bitmap (DIB) display mode. Use the <u>is_SetDisplayMode()</u> function to display other color formats in Direct3D or OpenGL mode.

Bit Depth

Color formats with a bit depth of more than 8 bits per channel are not supported by DCx camera models.

RGB15/16

For the RGB16 and RGB15 data formats, the MSBs of the internal 8-bit R, G and B colors are used.

Input parameters

hCam	Camera handle
Mode: Color mode to be set. For a list of all available color formats and the associated input parameters, see the Appendix: Color and memory formats section.	
IS_CM_MONO16	Grayscale (16), for monochrome and color cameras, LUT/gamma active
IS_CM_MONO12	Grayscale (12), for monochrome and color cameras, LUT/gamma active
IS_CM_MONO8	Grayscale (8), for monochrome and color cameras, LUT/gamma active
IS_CM_SENSOR_RAW16	Raw sensor data (16), for monochrome and color cameras, LUT/gamma active
IS_CM_SENSOR_RAW12	Raw sensor data (12), for monochrome and color cameras, LUT/gamma active
IS_CM_SENSOR_RAW8	Raw sensor data (8), for monochrome and color cameras, LUT/gamma active
IS_CM_RGB12_PACKED	RGB36 (12 12 12), for monochrome and color cameras, LUT/gamma active.
IS_CM_RGB10_PACKED	RGB30 (10 10 10), for monochrome and color cameras, LUT/gamma active
IS_CM_RGB8_PACKED	RGB24 (8 8 8), for monochrome and color cameras, LUT/gamma active
IS_CM_RGBA12_PACKED	RGB48 (12 12 12), for monochrome and color cameras, LUT/gamma active
IS_CM_RGBA8_PACKED	RGB32 (8 8 8), for monochrome and color cameras, LUT/gamma active
IS_CM_RGBY8_PACKED	RGBY (8 8 8 8), for monochrome and color cameras, LUT/gamma active
IS_CM_BGR12_PACKED	BGR36 (12 12 12), for monochrome and color cameras, LUT/gamma active
IS_CM_BGR10_PACKED	BGR30 (10 10 10), for monochrome and color cameras, LUT/gamma active
IS_CM_BGR8_PACKED	BGR24 (8 8 8), for monochrome and color cameras, LUT/gamma active
IS_CM_BGRA12_PACKED	BGR48 (12 12 12), for monochrome and color cameras, LUT/gamma active
IS_CM_BGRA8_PACKED	BGR32 (8 8 8), for monochrome and color cameras, LUT/gamma active
IS_CM_BGRY8_PACKED	BGRY (8 8 8), for monochrome and color cameras, LUT/gamma active

hCam	Camera handle
IS_CM_RGB8_PLANAR	Planar RGB (8) for monochrome and color cameras, LUT/gamma active
IS_CM_BGR565_PACKED	BGR16 (5 6 5), for monochrome and color cameras, LUT/gamma active
IS_CM_BGR5_PACKED	BGR15 (5 5 5), for monochrome and color cameras, LUT/gamma active
IS_CM_UYVY_PACKED	YUV 4:2:2 (8 8), for monochrome and color cameras, LUT/gamma active
IS_CM_CBYCRY_PACKED	YC_bC_r 4:2:2 (8 8), for monochrome and color cameras, LUT/gamma active
IS_GET_COLOR_MODE	Returns the current setting.

Return values

When used together with IS_GET_COLOR_MODE	Current setting
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_IR_FILTER	No IR filter available
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

- <u>is_SetDisplayMode()</u>
- is_SetColorConverter() 315
- is_SetColorCorrection() 317
- is_GetColorDepth() 237
- is_AllocImageMem()
- is_RenderBitmap()

Note on obsolete parameters

The following parameters for color formats are obsolete. Only the new parameters should be used:

Old parameter	New parameter
IS_SET_CM_RGB32	IS_CM_BGRA8_PACKED
IS_SET_CM_RGB24	IS_CM_BGR8_PACKED
IS_SET_CM_RGB16	IS_CM_BGR565_PACKED
IS_SET_CM_RGB15	IS_CM_BGR555_PACKED
IS_SET_CM_Y8	IS_CM_MONO8
IS_SET_CM_BAYER	IS_CM_BAYER_RG8
IS_SET_CM_UYVY	IS_CM_UYVY_PACKED
IS_SET_CM_UYVY_MONO	IS_CM_UYVY_MONO_PACKED
IS_SET_CM_UYVY_BAYER	IS_CM_UYVY_BAYER_PACKED
IS_SET_CM_CBYCRY	IS_CM_CBYCRY_PACKED
IS_SET_CM_RGBY	IS_CM_BGRY8_PACKED
IS_SET_CM_RGB30	IS_CM_BGR10V2_PACKED
IS_SET_CM_Y12	IS_CM_MONO12
IS_SET_CM_BAYER12	IS_CM_BAYER_RG12
IS_SET_CM_Y16	IS_CM_MONO16
IS_SET_CM_BAYER16	IS_CM_BAYER_RG16
IS_CM_BGR10V2_PACKED	IS_CM_BGR10_PACKED
IS_CM_RGB10V2_PACKED	IS_CM_RGB10_PACKED
IS_CM_BGR555_PACKED	IS_CM_BGR5_PACKED
IS_CM_BAYER_RG8	IS_CM_SENSOR_RAW8
IS_CM_BAYER_RG12	IS_CM_SENSOR_RAW12
IS_CM_BAYER_RG16	IS_CM_SENSOR_RAW16

4.3.80 is_SetDisplayMode

Ħ	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetDisplayMode (HIDS hCam, INT Mode)

Description

Using is_SetDisplayMode(), you can set the way in which images will be displayed on the screen.

For live videos including overlays, you can use the Direct3D or OpenGL mode. These modes are not supported by all graphics cards. The graphics card must have sufficient extended memory because the overlay mode requires additional memory up to the size needed for the current screen resolution.

For further information on the display modes of the DCx camera, see the <u>How to proceed: Image display</u> section.

Attention

The Direct3D display mode is not available on Linux operating systems.

Note

We recommend that you call the following functions exclusively from a single thread in order to avoid unpredictable behaviour of the application.

- is_InitCamera()²⁷³
- is_SetDisplayMode() 322
- is_ExitCamera()²¹³

See also Programming: Thread programming 453

Input parameters

hCam	Camera handle
Mode	
IS_SET_DM_DIB	Captures an image in system memory (RAM). Using <u>is_RenderBitmap()</u> (29 ³), you can define the image display (default).
IS_SET_DM_DIRECT3D	Image display in Direct3D mode
IS_SET_DM_DIRECT3D IS_SET_DM_MONO	Monochrome image display in Direct3D mode
IS_SET_DM_DIRECT3D IS_SET_DM_BAYER	Raw Bayer format image display in Direct3D mode
IS_SET_DM_OPENGL	Image display in OpenGL mode
IS_SET_DM_OPENGL IS_SET_DM_MONO	Monochrome image display in OpenGL mode
IS_SET_DM_OPENGL IS_SET_DM_BAYER	Raw Bayer format image display in OpenGL mode
IS_GET_DISPLAY_MODE	Returns the current setting.

Attention

The new Direct3D mode completely replaces the "BackBuffer" and "Overlay Surface" display modes from DirectDraw. It is advisable not to use these modes any longer (see also <u>Obsolete functions</u> 379). To activate the obsolete modes, do the following:

IS_SET_DM_DIRECTDRAW IS_SET_DM_BACKBUFFER	Image display in DirectDraw BackBuffer mode
IS_SET_DM_DIRECTDRAW	Image display in DirectDraw Overlay Surface mode
4 Programming (SDK)

IS_SET_DM_ALLOW_OVERLAY	
IS_SET_DM_ALLOW_SCALING	Real-time scaling in Overlay Surface mode

Return values

When used with IS_GET_DISPLAY_MODE	Current setting
IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_IR_FILTER	No IR filter available
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- is_RenderBitmap() 297
- is_SetColorMode() 319
- <u>is_DirectRenderer()</u> 198

Example

is_SetDisplayMode (hCam, Mode);

//Bitmap mode (images are digitized and stored in system memory): Mode = IS_SET_DM_DIB

//Direct3D mode
Mode = IS_SET_DM_DIRECT3D

4.3.81 is_SetDisplayPos

H	۵
USB 2.0	_
USB 3.0	

Syntax

INT is_SetDisplayPos (HIDS hCam, INT x, INT y)

Description

 $is_SetDisplayPos()$ allows you to move an area of interest when rendering images using $\underline{is_RenderBitmap}()$ [297]. The function moves the camera image by the selected offset within the output window. The image memory remains unchanged.

Note

To set the size and position of an area of interest in memory, use the is_AOI() [159] functions.

Input parameters

hCam	Camera handle
x	Offset in x direction, measured from the top left corner of the output window
У	Offset in y direction, measured from the top left corner of the output window

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_AOI() 159
- is_RenderBitmap() [297]
- <u>is_SetDisplayMode()</u> 322

4.3.82 is_SetErrorReport

E	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetErrorReport (HIDS hCam, INT Mode)

Description

Using $is_SetErrorReport()$, you can enable/disable error event logging. If error reporting is enabled, errors will automatically be displayed in a dialog box. Cancelling the dialog box disables the error report. Even with disabled error reporting, you can still query errors using the $\underline{is_GetError()}$ and $\underline{is_GetError()}$ function.

Note

is_SetErrorReport() can be called before calling <u>is_InitCamera()</u> 273.

You only need to enable the is_SetErrorReport() function once for all cameras in the application.

Input parameters

hCam	Camera handle Or 0 if no camera has been initialized yet
🖃 Mode	
IS_DISABLE_ERR_REP	Disables error reporting.
IS_ENABLE_ERR_REP	Enables error reporting.
IS_GET_ERR_REP_MODE	Current status of error reporting.

Return values

When used with IS_GET_ERR_REP_MODE	Current setting
IS_SUCCESS	Function executed successfully

- is_GetError() 239
- is_CaptureStatus() 174
- is_CameraStatus()

4.3.83 is_SetExternalTrigger

E:	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetExternalTrigger (HIDS hCam, INT nTriggerMode)

Description

Using is_SetExternalTrigger(), you can activate the trigger mode. If the camera is in standby mode, it quits this mode and activates trigger mode.

In hardware trigger mode, image capture is delayed for each function call until the selected trigger event has occurred.

In software trigger mode, an image is captured immediately when $\underline{is_FreezeVideo()}$ is called, or a continuous triggered capture is started when $\underline{is_CaptureVideo()}$ is called. In hardware trigger mode, you can use the $\underline{is_ForceTrigger()}$ command to trigger an image capture even if no electric signal is present.

When you disable the trigger functionality, you can query the signal level at the trigger input. This option causes the camera to change to freerun mode.

For further information on the image capture modes of the DCx camera, see How to proceed: Image capture 134.

Input parameters

hCam	Camera handle	
nTriggerMode		
	Trigger mode	Trigger event
IS_SET_TRIGGER_OFF	Off	-
IS_SET_TRIGGER_HI_LO	Hardware trigger	Falling signal edge
IS_SET_TRIGGER_LO_HI	Hardware trigger	Rising signal edge
IS_SET_TRIGGER_PRE_HI_LO	(Not supported by DCx Cameras)	
IS_SET_TRIGGER_PRE_LO_HI	(Not supported by DCx Cameras)	
IS_SET_TRIGGER_HI_LO_SYNC	(Not supported by DCx Cameras)	
IS_SET_TRIGGER_LO_HI_SYNC	(Not supported by DCx Cameras)	
IS_SET_TRIGGER_SOFTWARE	Software trigger	Call of <u>is_FreezeVideo()</u> (single frame mode) Call of <u>is_CaptureVideo()</u> (continuous mode)
IS_GET_EXTERNALTRIGGER	Returns the trigger mode setting	
IS_GET_TRIGGER_STATUS	Returns the current signal level at the trigger input	
IS_GET_SUPPORTED_TRIGGER_M ODE	Returns the supported trigger modes	

Return values

When used with IS_GET_EXTERNALTRIGGER	Returns the current setting
When used with IS_GET_TRIGGER_STATUS	Returns the current signal level at the trigger input
When used with IS_GET_SUPPORTED_TRIGGER_MODE	Returns the supported modes linked by logical ORs
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle

DCx Cameras

IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_CaptureVideo()
- is_FreezeVideo()²²³
- is_ForceTrigger() 221
- is_SetTriggerCounter()
- is_SetTriggerDelay() 352
- is_IO() 280

Example

//Enable trigger mode and set high-active flash mode. is_SetExternalTrigger(hCam, IS_SET_TRIGGER_SOFTWARE);

// Set the flash to a high active pulse for each image in the trigger mode UINT nMode = IO_FLASH_MODE_TRIGGER_HI_ACTIVE; is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

is_FreezeVideo(hCam, IS_WAIT);

Sample programs

- uc480 Simple Trigger (C++)
- uc480 IO (C++)

4.3.84 is_SetFrameRate

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetFrameRate (HIDS hCam, double FPS, double* newFPS)

Description

Using $is_SetFrameRate()$, you can set the sensor frame rate in freerun mode (live mode). Since this value depends on the sensor timing, the exposure time actually used may slightly deviate from the value set here. After you have called the function, the actual frame rate is returned through the newFPS parameter.

If the frame rate is set too high, it might not be possible to transfer every single frame. In this case, the effective frame rate may vary from the set value.

For minimum and maximum frame rates as well as other sensor-based dependencies, please refer to <u>Camera and</u> <u>sensor data</u> 400 chapter.

Note

Newer driver versions sometimes allow an extended value range for the frame rate setting. We recommend to query the value range every time and set the frame rate explicitly.

Changes to the frame rate affect the value ranges of the exposure time. After executing $is_SetFrameRate()$, calling the function $is_Exposure()$ is recommended in order to keep the defined camera settings.

Attention

The use of the following functions will affect the frame rate:

- is_PixelClock() [294]
- is_SetOptimalCameraTiming() 338
- is_AOI() [159] (if the image size is changed)
- is_SetSubSampling() 347
- is_SetBinning() 310

Changes made to the window size or the read-out timing (pixel clock frequency) also affect the defined frame rate. For this reason, you need to call is_SetFrameRate() again after such changes.

Attention

To be able to set the default frame rate, you have to set a pixel clock equal to or higher than the default pixel clock.

Input parameters

hCam	Camera handle
FPS	Desired frame rate in frames per second (fps)
IS_GET_FRAMERATE	Returns the set frame rate in the newFPS parameter. To query the frame rate actually reached by the camera, use $is_GetFramesPerSecond()$
IS_GET_DEFAULT_FRAMERATE	Returns the default frame rate.
newFPS	Returns the frame rate actually set.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- <u>is_GetFramesPerSecond()</u> [240]
- <u>is_GetFrameTimeRange()</u> 241
- <u>is_PixelClock()</u> 294
- <u>is_SetOptimalCameraTiming()</u>
- is_Exposure() 216
- <u>is_SetAutoParameter()</u> 303
- <u>is_AOI()</u> 159
- is_SetSubSampling() 347
- is_SetBinning() 310
- <u>is_CaptureVideo()</u>

4.3.85 is_SetGainBoost

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetGainBoost (HIDS hCam, INT mode)

Description

In some cameras, <code>is_SetGainBoost()</code> enables an additional analog hardware gain boost feature on the sensor.

Input parameters

hCam	Camera handle
🖃 mode	
IS_GET_GAINBOOST	Returns the current state of the gain boost function.
IS_SET_GAINBOOST_ON	Enables the gain boost function.
IS_SET_GAINBOOST_OFF	Disables the gain boost function.
IS_GET_SUPPORTED_GAINBOOST	Indicates whether the camera supports a gain boost feature or not.

Return values

Current setting when used together with IS_GET_GAINBOOST	Returns IS_SET_GAINBOOST_ON if the function is enabled, otherwise it returns IS_SET_GAINBOOST_OFF.
Current setting when used together with IS_GET_SUPPORTED_GAINBOOST	Returns IS_SET_GAINBOOST_ON if the function is supported, otherwise it returns IS_SET_GAINBOOST_OFF.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetHardwareGain() 333
- is_SetHWGainFactor()
- <u>is_SetAutoParameter()</u> 303

4.3.86 is_SetGamma

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0
GigE	GigE

Syntax

INT is_SetGamma (HIDS hCam, INT nGamma)

Description

 $is_SetGamma()$ enables digital gamma correction which applies a gamma characteristic to the image. When hardware color conversion is used on GigE uEye HE cameras the gamma correction is performed in the camera hardware as well. When the color conversion is performed in the PC (software conversion) the gamma correction is performed in software.

Notes

- 1. When the color format is set to Raw Bayer the gamma correction can not be used.
- 2. Typical values for gamma range between 1.6 and 2.2.

Input parameters

hCam	Camera handle
nGamma	Gamma value to be set, multiplied by 100 (Range: 11000. Default = 100, corresponds to a gamma value of 1.0)
IS_GET_GAMMA	Returns the current setting.

Return values

When used with IS_GET_GAMMA	Current setting
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

See also:

- Basics: Characteristics and LUT 39
- Basics: Color filter (Bayer filter) 26
- Programming: <u>is_SetColorConverter()</u> 315

4.3.87 is_SetHardwareGain

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetHardwareGain (HIDS hCam, INT nMaster, INT nRed, INT nGreen, INT nBlue)

Description

is_SetHardwareGain() controls the sensor gain channels. These can be set between 0 % and 100 % independently of of each other. The actual gain factor obtained for the value 100 % depends on the sensor and is specified in Camera and sensor data 460 chapter.

You can use the is_GetSensorInfo() [25] function to query the available gain controls.

Notes

1. Sensor Gain

A signal gain will also result in a noise gain. High gain settings are therefore not recommended.

We suggest the following gain settings:

1. Enable the gain boost function is_SetGainBoost() [33].

2. If required, adjust the gain setting with is_SetHardwareGain()

New gain settings might only become effective when the next image is captured. This depends on the time when the gain settings are changed.

2. Linearity of Sensor Gain

On DCx Cameras, you can set the gain factor in increments from 0 to 100. These increments are not graduated linearly throughout the range due to the sensor. The increments will typically be greater in the upper range than in the lower range.

The maximum gain factor settings also vary from sensor to sensor.

3. Default Settings for RGB gains

The default setting values for the red, green and blue channel gain factors depend on the color correction matrix that has been set. If you select a different color correction matrix, the returned default values might change (see also <u>is_SetColorCorrection()</u>].

Input parameters

hCam	Camera handle
nMaster	Sets the overall gain factor (0100).
IS_IGNORE_PARAMETER	The master gain factor will not be changed.
IS_GET_MASTER_GAIN	Returns the master gain factor.
IS_GET_RED_GAIN	Returns the red channel gain factor.
IS_GET_GREEN_GAIN	Returns the green channel gain factor.
IS_GET_BLUE_GAIN	Returns the blue channel gain factor.
IS_GET_DEFAULT_MASTER	Returns the default master gain factor.
IS_GET_DEFAULT_RED	Returns the default red channel gain factor.
IS_GET_DEFAULT_GREEN	Returns the default green channel gain factor.
IS_GET_DEFAULT_BLUE	Returns the default blue channel gain factor.
IS_SET_ENABLE_AUTO_GAIN	Enables the auto gain functionality (see also <u>is_SetAutoParameter()</u> [303]). You can disable the auto gain functionality by setting a value for nMaster.
nRed	Sets the red channel gain factor (0100).
IS_IGNORE_PARAMETER	The red channel gain factor will not be changed.
nGreen	Sets the green channel gain factor (0100).
IS_IGNORE_PARAMETER	The green channel gain factor will not be changed.

DCx Cameras

hCam	Camera handle
nBlue	Sets the blue channel gain factor (0100).
IS_IGNORE_PARAMETER	The blue channel gain factor will not be changed.

Return values

When used with IS_GET_MASTER_GAIN IS_GET_RED_GAIN IS_GET_GREEN_GAIN IS_GET_BLUE_GAIN	Current setting
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- is_SetHWGainFactor() 335
- <u>is_GetSensorInfo()</u> 251
- is_SetGainBoost() 331
- is_SetAutoParameter() 303

4.3.88 is_SetHWGainFactor

E:	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetHWGainFactor (HIDS hCam, INT nMode, INT nFactor)

Description

 $is_SetHWGainFactor()$ uses gain factors to control sensor gain channels. These channels can be set independently of each other. The <u>is_SetHardwareGain()</u> and does not use factors for setting the gain channels, but standardized values between 0 and 100. The actual gain factor is sensor-dependent and can be found in <u>Camera and sensor data</u> to chapter.

You can use the is_GetSensorInfo() [251] function to query the available gain controls.

Depending on the time when the gain settings are changed, these changes might only become effective when the next image is captured.

Input parameters

hCam	Camera handle
🗏 nMode	
IS_GET_MASTER_GAIN_FACTOR	Returns the master gain factor.
IS_GET_RED_GAIN_FACTOR	Returns the red channel gain factor.
IS_GET_GREEN_GAIN_FACTOR	Returns the green channel gain factor.
IS_GET_BLUE_GAIN_FACTOR	Returns the blue channel gain factor.
IS_SET_MASTER_GAIN_FACTOR	Sets the master gain factor.
IS_SET_RED_GAIN_FACTOR	Sets the red channel gain factor.
IS_SET_GREEN_GAIN_FACTOR	Sets the green channel gain factor.
IS_SET_BLUE_GAIN_FACTOR	Sets the blue channel gain factor.
IS_GET_DEFAULT_MASTER_GAIN_FACTOR	Returns the default master gain factor.
IS_GET_DEFAULT_RED_GAIN_FACTOR	Returns the default red channel gain factor.
IS_GET_DEFAULT_GREEN_GAIN_FACTOR	Returns the default green channel gain factor.
IS_GET_DEFAULT_BLUE_GAIN_FACTOR	Returns the default blue channel gain factor.
IS_INQUIRE_MASTER_GAIN_FACTOR	Converts the index value for the master gain factor.
IS_INQUIRE_RED_GAIN_FACTOR	Converts the index value for the red channel gain factor.
IS_INQUIRE_GREEN_GAIN_FACTOR	Converts the index value for the green channel gain factor.
IS_INQUIRE_BLUE_GAIN_FACTOR	Converts the index value for the blue channel gain factor.
nFactor	Gain value (100 = gain factor 1, i. e. no effect)

For converting a gain value from the <u>is_SetHardwareGain()</u> subscription function, you can set the nMode parameter to one of the IS_INQUIRE_x_FACTOR values. In this case, the value range for nFactor is between 0 and 100.

To set the gain using <code>IS_SET_..._GAIN_FACTOR</code>, you must set the <code>nFactor</code> parameter to an integer value in the range from 100 to the maximum value. By calling <code>IS_INQUIRE_x_FACTOR</code> and specifying the value 100 for <code>nFactor</code>, you can query the maximum value. A gain value of 100 means no gain, a gain value of 200 means gain to the double level (factor 2), etc.

Return values

When used with IS_GET_MASTER_GAIN_FACTOR IS_GET_RED_GAIN_FACTOR IS_GET_GREEN_GAIN_FACTOR Current setting

DCx Cameras

IS_GET_BLUE_GAIN_FACTOR	
When used with IS_SET_MASTER_GAIN_FACTOR IS_SET_RED_GAIN_FACTOR IS_SET_GREEN_GAIN_FACTOR IS_SET_BLUE_GAIN_FACTOR	Defined setting
When used with IS_GET_DEFAULT_MASTER_GAIN_FACTOR IS_GET_DEFAULT_RED_GAIN_FACTOR IS_GET_DEFAULT_GREEN_GAIN_FACTOR IS_GET_DEFAULT_BLUE_GAIN_FACTOR	Default setting
When used with IS_INQUIRE_MASTER_GAIN_FACTOR IS_INQUIRE_RED_GAIN_FACTOR IS_INQUIRE_GREEN_GAIN_FACTOR IS_INQUIRE_BLUE_GAIN_FACTOR	Converted gain index
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

Related functions

- is_SetHardwareGain() 333
- is_SetGainBoost() 331
- is_SetAutoParameter() 303
- <u>is_GetSensorInfo()</u> [251]

Example

//Set master gain factor to 3.57: INT ret = is_SetHwGainFactor (hCam, IS_SET_MASTER_GAIN_FACTOR, 357); //ret has the value 363 for the UI-1460-C

//Query the maximum gain factor for the red channel: ret = is_SetHWGainFactor (hCam, IS_INQUIRE_RED_GAIN_FACTOR, 100); //ret has the value 725 for the UI-1460-C

4.3.89 is_SetImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetImageMem (HIDS hCam, char* pcImgMem, INT id)

Description

is_SetImageMem() makes the specified image memory the active memory. Only an active image memory can receive image data. When you call <u>is_FreezeVideo()</u> [223], the captured image is stored in the image buffer designated by pcImgMem and id. For pcImgMem, you must pass a pointer which was created by is_AllocImageMem() [157], passing any other pointer will result in an error message. You may pass the same pointer multiple times.

Notes

- In the Direct3D or OpenGL modes, there is no need to set an image memory.
- If you want the application to be compatible with the FALCON SDK, make sure to call $\underline{is_SetImageSize()}$ after $is_SetImageMem()$.

Input parameters

hCam	Camera handle
pcImgMem	Pointer to the starting position in the memory.
id	ID of this memory.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_AllocImageMem()
- is_FreeImageMem()²²²
- is_AddToSequence()
- is_SetAllocatedImageMem() 301
- is_GetColorDepth() 237
- is_GetImageMem() 247
- is_GetImageMemPitch()²⁴⁸

4.3.90 is_SetOptimalCameraTiming

Syntax

INT is_SetOptimalCameraTiming (HIDS hCam, INT Mode, INT Timeout, INT* pMaxPxlClk, double* pMaxFrameRate)

Description

Using <code>is_SetOptimalCameraTiming()</code>, you can determine the highest possible pixel clock frequency for the current configuration. This function sets the pixel clock for which no transfer errors will occur during the Timeout period. Moreover, it returns the highest frame rate available for this pixel clock frequency.

is_SetOptimalCameraTiming() can only be executed in free-run mode ($\underline{is_CaptureVideo()}$). If the return value is \neq IS_SUCCESS, no clock setting will be made.

Attention

The function should be executed in a separate thread and run in the background to allow for the computational load caused by additional color conversions, etc. Otherwise, it will not be able to return the optimum values.

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing is_SetOptimalCameraTiming(), calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_Exposure()²¹⁶
- If you are using the DCx Camera's flash function: is_IO()

Input parameters

hCam	Camera handle
🖬 Mode	
IS_BEST_PCLK_RUN_ONCE	The function makes one attempt to determine the optimum pixel clock and returns immediately.
Timeout [400020000]	Sets the period (in milliseconds) during which no transfer error may occur. The adjustable range is between 4 and 20 seconds. The higher the value you set for this parameter, the more stable the determined pixel clock value will be. This, in turn, increases the runtime of the function correspondingly.
pMaxPxlClk	Returns the maximum pixel clock frequency (in MHz).
pMaxFrameRate	Returns the maximum frame rate (in fps).

Return values

IS_AUTO_EXPOSURE_RUNNING	This setting cannot be changed while automatic exposure time control is enabled.
IS_INVALID_IMAGE_SIZE	Invalid image size This value is returned if e.g. the function is called with active binning or subsampling
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

- is_PixelClock() 294
- <u>is_SetFrameRate()</u> 329
- is_SetAutoParameter()
- <u>is_CaptureVideo()</u>

4.3.91 is_SetRopEffect

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetRopEffect (HIDS hCam, INT effect, INT param, INT reserved)

Description

is_SetRopEffect() enables functions for real-time image geometry modification (Rop = raster operation).

Input parameters

hCam	Camera handle
seffect	
IS_SET_ROP_MIRROR_UPDOWN	Mirrors the image along the horizontal axis.
IS_SET_ROP_MIRROR_LEFTRIGHT	Mirrors the image along the vertical axis. Depending on the sensor, this operation is performed in the camera or in the PC software.
IS_GET_ROP_EFFECT	Returns the current settings.
param	Turns the Rop effect on/off. 0 = Turn off 1 = Turn on
reserved	Reserved. 0 must be passed.

Return values

When used with IS_GET_ROP_EFFECT	Current setting
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- is_SetBinning() 310
- <u>is_SetSubSampling()</u>
- <u>is_AOI()</u> 159

4.3.92 is_SetSaturation

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetSaturation (HIDS hCam, INT ChromU, INT ChromV)

Description

 $Using \verb"is_SetSaturation()"$, you can set the software color saturation.

Note

In the YUV format, color information (i.e. the color difference signals) is provided by the U and V channels. In the U channel, this information results from the difference between the blue level and Y (luminance), in the V channel from the difference between the red level and Y.

For use in other color formats than YUV, U and V are converted using a driver matrix.

Input parameters

hCam	Camera handle
ChromU	U saturation: value multiplied by 100. Range: [IS_MIN_SATURATION IS_MAX_SATURATION]
IS_GET_SATURATION_U	Returns the current value for the U saturation.
ChromV	V saturation: value multiplied by 100. Range: [IS_MIN_SATURATION IS_MAX_SATURATION]
IS_GET_SATURATION_V	Returns the current value for the V saturation.

Return values

When used with IS_GET_SATURATION_U IS_GET_SATURATION_V	Current setting
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetColorMode() 319
- is_SetColorCorrection() 317
- is_SetColorConverter() 315

4.3.93 is_SetSensorScaler

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetSensorScaler (HIDS hCam, UINT nMode, double dblFactor)

Description

is_SetSensorScaler() enables internal image scaling for some sensors. This allows to reduce the image resolution by adjustable factors. Thus, the amount of data from high resolution sensors can be reduced.

Note

- Internal image scaling is only supported <u>DCC1240x and DCC3240x</u> [461] series cameras.
- The use of the internal scaler has no effect on the attainable frame rate.

Input parameters

hCam	Camera handle
nMode: Function mode	
IS_ENABLE_SENSOR_SCALER	Enable image scaling
IS_ENABLE_SENSOR_SCALER IS_ENABLE_ANTI_ALIASING	Enable image scaling with smoothed edges (anti- aliasing effect)
dblFactor	Scaling factor

Return values

Communication with the driver failed because no driver has been loaded.
An attempt to initialize or select the camera failed (no camera connected or initialization error).
The camera type defined in the .ini file does not match the current camera model.
Invalid camera handle
One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
General error message
The camera does not contain any calibration data.
The camera model used here does not support this function or setting.
Invalid array
Function executed successfully
A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

• <u>is_GetSensorScalerInfo()</u> [252]

Example

SENSORSCALERINFO Info; INT nRet; double dblNewFactor;

4.3.94 is_SetSensorTestImage

E:	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetSensorTestImage (HIDS hCam, INT TestImage, INT Param)

Description

 $is_SetSensorTestImage()$ enables a test image function in the sensor. You can select different test images. The test images supported by a particular camera can be queried using the $is_GetSupportedTestImages()$ 1253 function. For some test images, the Param parameter provides additional options. If the test image does not support additional parameters, Param will be ignored.

Attention

Manually changing the pixel clock will disable the test image mode.

Input parameters

hCam	Camera handle
TestImage	The test image to be set. See also <u>is_GetSupportedTestImages()</u> [253].
Param	Additional parameter for used to modify the test image. Not available for all test images.

Return values

IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully

DCx Cameras

IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

Related functions

• is_GetSupportedTestImages()

• is_GetTestImageValueRange()²⁵⁵

4.3.95 is_SetSubSampling

E:	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetSubSampling (HIDS hCam, INT mode)

Description

Using $is_SetSubSampling()$, you can enable sub-sampling mode both in horizontal and in vertical directions. This allows you to reduce the image size in the sub-sampling direction without scaling down the area of interest. In order to simultaneously enable horizontal and vertical sub-sampling, the horizontal and vertical sub-sampling parameters can by linked by a logical OR.

Some monochrome sensors are limited by their design to mere color sub-sampling. In case of fine image structures, this can result in slight artifacts.

The adjustable sub-sampling factors of each sensor are listed in Camera and sensor data 460 chapter.

Note

Some sensors allow a higher pixel clock setting when binning or subsampling is activated. If you set a higher pixel clock and then reduce the binning/subsampling factors again, the driver will automatically select the highest possible pixel clock for the new settings.

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing is_SetSubSampling(), calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_Exposure() 216
- If you are using the DCx Camera's flash function: is_IO() [280]

Input parameters

hCam	Camera handle
🖬 mode	
IS_SUBSAMPLING_DISABLE	Disables sub-sampling.
IS_SUBSAMPLING_2X_VERTICAL	Enables vertical sub-sampling with factor 2.
IS_SUBSAMPLING_3X_VERTICAL	Enables vertical sub-sampling with factor 3.
IS_SUBSAMPLING_4X_VERTICAL	Enables vertical sub-sampling with factor 4.
IS_SUBSAMPLING_5X_VERTICAL	Enables vertical sub-sampling with factor 5.
IS_SUBSAMPLING_6X_VERTICAL	Enables vertical sub-sampling with factor 6.
IS_SUBSAMPLING_8X_VERTICAL	Enables vertical sub-sampling with factor 8.
IS_SUBSAMPLING_16X_VERTICAL	Enables vertical sub-sampling with factor 16.
IS_SUBSAMPLING_2X_HORIZONTAL	Enables horizontal sub-sampling with factor 2.
IS_SUBSAMPLING_3X_HORIZONTAL	Enables horizontal sub-sampling with factor 3.
IS_SUBSAMPLING_4X_HORIZONTAL	Enables horizontal sub-sampling with factor 4.
IS_SUBSAMPLING_5X_HORIZONTAL	Enables horizontal sub-sampling with factor 5.
IS_SUBSAMPLING_6X_HORIZONTAL	Enables horizontal sub-sampling with factor 6.
IS_SUBSAMPLING_8X_HORIZONTAL	Enables horizontal sub-sampling with factor 8.
IS_SUBSAMPLING_16X_HORIZONTAL	Enables horizontal sub-sampling with factor 16.
IS_GET_SUBSAMPLING	Returns the current setting.
IS_GET_SUBSAMPLING_FACTOR_VERTICAL	Returns the vertical sub-sampling factor

DCx Cameras

hCam	Camera handle
IS_GET_SUBSAMPLING_FACTOR_HORIZONTAL	Returns the horizontal sub-sampling factor
IS_GET_SUBSAMPLING_TYPE	Indicates whether the camera uses color-proof sub- sampling.
IS_GET_SUPPORTED_SUBSAMPLING	Returns the supported sub-sampling modes.

Return values

When used with IS_GET_SUBSAMPLING	Current setting: Returns an ORing of the defined constants from ueye.h, e.g. IS_SUBSAMPLING_2X_HORIZONTAL
When used with IS_GET_SUBSAMPLING_FACTOR_VERTICAL IS_GET_SUBSAMPLING_FACTOR_HORIZONTAL	Current setting: Returns the current factor as integer value (2, 3, 4, 5, 6, 8, 16)
When used with IS_GET_SUBSAMPLING_TYPE	Current setting: Returns IS_SUBSAMPLING_COLOR if the camera uses color-proof sub-sampling, else IS_SUBSAMPLING_MONO
In Verbindung mit IS_GET_SUPPORTED_SUBSAMPLING	Returns the supported sub-sampling modes linked by logical ORs
IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_INVALID_PIXEL_CLOCK	This setting is not available for the currently set pixel clock frequency.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll

	(API) and the driver file (uc480_usb.sys) do not match.
IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem() function or create a sequence using the is_AddToSequence() function.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.

- is_SetBinning() 310
- <u>is_AOI()</u> 159
- is_ImageFormat() [267]
- <u>is_PixelClock()</u> 294

4.3.96 is_SetTimeout

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetTimeout (HIDS hCam, UINT nMode, UINT Timeout)

Description

Using $is_SetTimeout()$, you can change user-defined timeout values of the uc480 API. If no user-defined timeout is set, the default value of the uc480 API is used for the relevant timeout.

For further information, please refer to the <u>How to proceed: Timeout values for image capture</u> section.

Note

The user-defined timeout only applies to the specified camera at runtime of the program.

Input parameters

hCam	Camera handle
nMode	Selects the timeout value to be set
IS_TRIGGER_TIMEOUT	Sets the timeout value for triggered image capture
Timeout	Timeout value in 10 ms. Value range [0; 4429496729] (corresponds to 40 ms to approx. 1193 hours)
	0 = use default value of the uc480 API For 13, the value 4 is used.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

Related functions

- is_GetTimeout()²⁵⁶
- is_CaptureVideo()
- is_FreezeVideo() 223
- is_SetExternalTrigger() 327

Example

```
// Set user-defined timeout to 120 seconds
is_SetTimeout(hCam, IS_TRIGGER_TIMEOUT, 12000);
```

4.3.97 is_SetTriggerCounter

H	۵
USB 2.0	USB 2.0

Syntax

INT is_SetTriggerCounter (HIDS hCam, INT nValue)

Description

is_SetTriggerCounter() returns the number of images captured in hardware or software trigger mode.

Note

In freerun mode, the counter always returns 0 even when images were captured.

Input parameters

hCam	Camera handle
🖃 nValue	
IS_GET_TRIGGER_COUNTER	Returns the current count for triggered image captures
Other values	Resets the counter for triggered image captures

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetExternalTrigger() 327
- is_CameraStatus()

4.3.98 is_SetTriggerDelay

E	٨
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetTriggerDelay (HIDS hCam, INT nTriggerDelay)

Description

Using $is_SetTriggerDelay()$, you can set the delay time between the arrival of a trigger signal and the start of exposure. The trigger signal can be initiated by hardware or by software.

The delay time set here adds to the delay caused by the sensor. The delay times of each sensor are listed in Camera and sensor data to hapter.

Input parameters

hCam	Camera handle
nTriggerDelay	Time by which the image capture is delayed (in μ s) 0 = deactivate trigger delay
IS_GET_TRIGGER_DELAY	Returns the currently set delay time.
IS_GET_MIN_TRIGGER_DELAY	Returns the minimum adjustable value.
IS_GET_MAX_TRIGGER_DELAY	Returns the maximum adjustable value.
IS_GET_TRIGGER_DELAY_GRANULARITY	Returns the resolution of the adjustable delay time.

Return values

When used with IS_GET_TRIGGER_DELAY	Current setting
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- <u>is_IO()</u> 2801
- <u>is_SetExternalTrigger()</u> 327

4.3.99 is_StopLiveVideo

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_StopLiveVideo (HIDS hCam, INT Wait)

Description

is_StopLiveVideo() stops live mode or cancels a hardware triggered image capture in case the exposure has not yet started.

Input parameters

hCam	Camera handle
🖃 Wait	
IS_WAIT	The function waits until the image save is complete.
IS_DONT_WAIT	The function returns immediately. Digitizing the image is completed in the background.
IS_FORCE_VIDEO_STOP	Digitizing is stopped immediately.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- is_FreezeVideo()^[223]
- is_CaptureVideo()
- is_SetDisplayMode() 322

4.3.100 is_UnlockSeqBuf

E	٨
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_UnlockSeqBuf (HIDS hCam, INT nNum, char* pcMem)

Description

Using is_UnlockSeqBuf(), you unlock a previously locked image memory in order to make it available again for storing captured images. The image memory is re-inserted at its previous position in the sequence list.

Input parameters

hCam	Camera handle
nNum	Number of the image memory to unlock. When you pass IS_IGNORE_PARAMETER, the image memory is only identified by its starting address. nNum identifies the position in the sequence list, not the memory ID assigned with <u>is_AllocImageMem()</u> [157].
pcMem	Starting address of the image memory

Return values

IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_LockSeqBuf() 289
- is_WaitForNextImage() 356

4.3.101 is_WaitEvent

	۵
-	USB 2.0
	USB 3.0

Syntax

INT is_WaitEvent (HIDS hCam, INT which, INT nTimeout)

Description

is_WaitEvent() allows waiting for uc480 events. The function indicates successful execution when the event has occurred within the specified timeout.

Input parameters

hCam	Camera handle
which	ID of the event (see <u>is_EnableEvent()</u>
nTimeout	Time (in ms) that the function will wait for an event to occur. Using the constant INFINITE you can set the time for the timeout to infinity.

Return values

IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period. That means the specified timeout expired without the event having occurred.

Related functions

- is_EnableEvent()²⁰⁹
- is_DisableEvent() 205

Example

```
//Activate and initialize FRAME event
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
//Start image capture and wait 1000 ms for event to occur
is_FreezeVideo(hCam, IS_DONT_WAIT);
INT nRet = is_WaitEvent(hCam, IS_SET_EVENT_FRAME, 1000);
if (nRet == IS_TIMED_OUT)
{
    /* wait timed out */
}
else if (nRet == IS_SUCCESS)
{
    /* event signalled */
}
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
```

4.3.102 is_WaitForNextImage

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_WaitForNextImage(HIDS hCam, UINT timeout, char** ppcMem, INT* imageID)

Description

is_WaitForNextImage() returns the pointer and sequence ID of the first (i.e. oldest) image in a memory sequence. The queue mode has to be enabled for the memory sequence (see <u>is_InitImageQueue()</u>]. If the sequence does not contain images, is_WaitForNextImage() waits until a new image arrives or until the specified time has elapsed.

Note

Note that also image capture errors are added to the ImageQueue like images. If a call of is_WaitForNextImage() returns the IS_CAPTURE_STATUS return value then you can check by a new call of the function, if any further images were enqueued into the ImageQueue after the error.

Attention

Image memories in a sequence with queue mode are automatically locked. The image memories will have to be unlocked with $is_UnlockSeqBuf()$ in order to be re-used in the sequence.

Input parameters

hCam	Camera handle
timeout	Timeout in ms. Range 02 ³² -1 If no images are in the sequence and no image arrives during the timeout, the function returns IS_TIMED_OUT.
ppcMem	Pointer to a variable which will receive the address of the last image in the sequence.
imageID	Pointer to a variable which will receive the sequence ID of the oldest image in the sequence.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
IS_CAPTURE_STATUS	A transfer error occurred or no image memory was available for saving. The parameter IS_CAPTURE_STATUS replaces the previous parameter IS_TRANSFER_FAILED.

The parameter IS_TRANSFER_FAILED was moved into the new header file uc480_deprecated.h, which contains all obsolete function definitions and constants.
If necessary the header file uc480_deprecated.h can be included in addition to the header file uc480.h.

Related functions

- is_InitImageQueue() 278
- is_ExitImageQueue() 215
- is_UnlockSeqBuf() 354

See also:

- How to proceed: <u>Image memory sequences</u> [132]
- How to proceed: <u>Allocating image memory</u> [130]
- Transfer error: uc480 Viewer Image infos 90
- Transfer error: is_GetImageInfo() 24

4.3.103 is_WriteEEPROM

	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_WriteEEPROM (HIDS hCam, INT Adr, char* pcString, INT Count)

Description

Using $is_WriteEEPROM()$, you can write data to the EEPROM of the camera. Besides the hard-coded factory information, the EEPROM of the DCx Camera can hold 64 bytes of user data.

Input parameters

hCam	Camera handle
Adr	Starting address for data writes (063)
pcString	Pointer to the string containing the data to be written
Count	Number of characters to be written (164)

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

• is_ReadEEPROM() 296
4.4 AVI Function Descriptions

The functions of the uc480_tools.dll enable you to save images captured with the DCx Camera as sequences to an AVI file. The <u>How to proceed: Capturing AVIs</u> chapter shows the command sequence for capturing an AVI video.

Notes

• Video Resolution

If the width or height of the video resolution is greater than 2048 pixels, some media players may not be able to play the video.

Video Compression

To reduce the file size, the single frames are stored in the AVI container using an adjustable JPEG compression. It is possible to extract single frames from the AVI file.

4.4.1 isavi_AddFrame

H	۵
USB 2.0	
USB 3.0	-

Syntax

INT isavi_AddFrame (INT nAviID, char* pcImageMem)

Description

isavi_AddFrame() adds a new frame to an AVI sequence.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function
pcImageMem	Pointer to the memory containing the image.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_COMPRESS	The last image compression failed.
IS_AVI_ERR_COMPRESSION_RUN	The current image could not be processed since compression is still in progress.
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.

Related functions

• isavi_InitAVI() 369

4.4.2 isavi_CloseAVI

E.	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_CloseAVI (INT nAviID)

Description

isavi_CloseAVI() closes an AVI file which was opened using isavi_OpenAVI() [371].

Input parameters

nAviID Instance ID set by the	e isavi_InitAVI() [369] function.
-------------------------------	-----------------------------------

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].

Related functions

- isavi_OpenAVI() 371
- isavi_InitAVI() 369
- isavi_ExitAVI() 362

4.4.3 isavi_DisableEvent

H	Δ
USB 2.0	-
USB 3.0	

Syntax

INT isavi_DisableEvent (INT nAviID, INT which)

Description

 $isavi_DisableEvent()$ disables the specified event. The disabled event no longer triggers an event notification when the associated event occurs.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
which	Name of the event to be disabled.
IS_AVI_SET_EVENT_FRAME_SAVED	A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_PARAMETER	One of the submitted parameters is outside the valid range.

Related functions

• isavi_EnableEvent() 361

4.4.4 isavi_EnableEvent

H	Δ
USB 2.0	-
USB 3.0	

Syntax

INT isavi_EnableEvent (INT nAviID, INT which)

Description

 $isavi_EnableEvent()$ enables the specified event. The enabled event triggers an event notification when the associated event occurs.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
which	Name of the event to be enabled.
IS_AVI_SET_EVENT_FRAME_SAVED	A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_PARAMETER	One of the submitted parameters is outside the valid range.

Related functions

• isavi_DisableEvent() 300

4.4.5 isavi_ExitAVI

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_ExitAVI (INT nAviID)

Description

 $\texttt{isavi}_\texttt{ExitAVI()}$ terminates and deletes the instance of the uc480 AVI interface.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> function.
--------	---

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.

- isavi_InitAVI() 369
- isavi_OpenAVI() 371
- isavi_CloseAVI() 360

4.4.6 isavi_ExitEvent

H	Δ
USB 2.0	-
USb 3.0	

Syntax

INT isavi_ExitEvent (INT nAviID, INT which)

Description

isavi_ExitEvent() deletes the specified event. The deleted event no longer occurs and needs to be re-created using isavi_InitEvent()] and before it can be enabled and used.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
which	Name of the event to be deleted.
IS_AVI_SET_EVENT_FRAME_SAVED	A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_PARAMETER	One of the submitted parameters is outside the valid range.

- isavi_InitEvent() 370
- isavi_EnableEvent() 361
- isavi_DisableEvent()

4.4.7 isavi_GetAVIFileName

E	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_GetAVIFileName (INT nAviID, char* strName)

Description

Using $isavi_GetAVIFileName()$, you can read out the filename of the current AVI file. This function is helpful if an AVI file was opened with the $isavi_OpenAVI()$ function and a Null parameter was specified.

Note

The functions <u>isavi_OpenAVI()</u> and isavi_GetAVIFileName() do not support UNICODE strings. For this purpose you use the functions <u>isavi_OpenAVIW()</u> and <u>isavi_GetAVIFileNameW()</u>.

If the AVI file was created using a UNICODE string, only the $isavi_GetAVIFileNameW()$ function can return the right file string.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
strName	Pointer to the memory location where the filename is written to. The allocated memory must be large enough to accommodate the full file path.
NULL	When NULL is passed the function returns the length of the filename.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].

- isavi_GetAVISize() 366
- isavi_OpenAVI() 371

4.4.8 isavi_GetAVIFileNameW

H	Δ
USB 2.0	-
USB 3.0	

Syntax

INT isavi_GetAVIFileNameW (INT nAviID, wchar_t* strName)

Description

Using $isavi_GetAVIFileNameW()$, you can read out the filename of the current AVI file as UNICODE string. This function is helpful if an AVI file was opened with the $\underline{isavi_OpenAVIW()}$ function and a NULL parameter was specified.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
strName	Pointer to the memory location where the filename is written to. The allocated memory must be large enough to accommodate the full file path as UNICODE string.
NULL	When NULL is passed the function returns the length of the filename.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u>

- isavi_GetAVISize()
- isavi_OpenAVIW() 372

4.4.9 isavi_GetAVISize

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_GetAVISize (INT nAviID, float* size)

Description

 $\label{eq:use_save_save} Use \verb"isavi_GetAVISize()" to retrieve the size of the frame sequence saved to the current AVI file.$

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function
size	The size in kBytes

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].

Related functions

• isavi_GetAVIFileName() 364

4.4.10 isavi_GetnCompressedFrames

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_GetnCompressedFrames (INT nAviID, unsigned long* nFrames)

Description

 $Using \verb"isavi_GetnCompressedFrames()", you can read out the number of frames saved to the current AVI file.$

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [365] function.
nFrames	The number of frames

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].

- isavi_GetnLostFrames() 368
- isavi_ResetFrameCounters() 373

4.4.11 isavi_GetnLostFrames

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_GetnLostFrames (INT nAviID, unsigned long* nFrames)

Description

Using isavi_GetnLostFrames(), you can read out the number of frames that have been discarded. A frame will be discarded if it cannot be processed because a compression operation in still in progress.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [365] function.
nFrames	The number of frames

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].

- isavi_GetnCompressedFrames()
- isavi_ResetFrameCounters() 373

4.4.12 isavi_InitAVI

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_InitAVI (INT* pnAviID, HIDS hCam)

Description

 $isavi_InitAVI()$ initializes an instance of the uc480 AVI interface. Multiple instances can be created simultaneously.

Input parameters

pnAviID	Pointer. Returns the instance ID which is needed for calling the other uc480 AVI functions.
hCam	Handle of a selected or initialized DCx camera.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_PARAMETER	One of the submitted parameters is outside the valid range.
IS_AVI_ERR_NO_CODEC_AVAIL	The maximum number of instances allowed in this system has been reached. It is not possible to create another instance.
IS_AVI_ERR_INVALID_UEYE	No DCx camera was found.

- isavi_ExitAVI() 362
- isavi_OpenAVI() 371
- isavi_CloseAVI()

4.4.13 isavi_InitEvent

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_InitEvent (INT nAviID, INT which)

Description

isavi_InitEvent() creates the specified event. This includes registering the event object in the uc480 AVI interface and creating an event handler. Before you can use a new event, you must enable it by calling isavi_EnableEvent() [361].

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
which	Name of the event to be created.
IS_AVI_SET_EVENT_FRAME_SAVED	A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_EVENT_FAILED	The event could not be initialized. The Windows SetEvent function failed.
IS_AVI_ERR_PARAMETER	One of the submitted parameters is outside the valid range.

Related functions

- isavi_ExitEvent() 363
- isavi_EnableEvent() 361
- isavi_DisableEvent()

Example

Create and enable an event object for the "Frame saved" event:

```
HANDLE hEvent = CreateEvent( NULL, TRUE, FALSE, "" );
if ( hEvent != NULL )
{
    isavi_InitEvent( AviDest, hEvent, IS_AVI_SET_EVENT_FRAME_SAVED );
    isavi_EnableEvent( AviDest, IS_AVI_SET_EVENT_FRAME_SAVED );
    if ( WaitForSingleObject( hEvent, 1000 ) == WAIT_OBJECT_0 )
    {
      //Frame was captured successfully...
      }
    isavi_DisableEvent( AviDest, IS_AVI_SET_EVENT_FRAME_SAVED );
    isavi_ExitEvent( AviDest, IS_AVI_SET_EVENT_FRAME_SAVED );
    isavi_ExitEvent( AviDest, IS_AVI_SET_EVENT_FRAME_SAVED );
}
```

4.4.14 isavi_OpenAVI

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_OpenAVI (INT nAviID, const char* strFileName)

Description

 $\texttt{isavi_OpenAVI()}$ opens a new or existing AVI file.

Note

The functions <u>isavi_OpenAVI()</u> and isavi_GetAVIFileName() do not support UNICODE strings. For this purpose you use the functions <u>isavi_OpenAVIW()</u> and <u>isavi_GetAVIFileNameW()</u>.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [365] function.
pFileName	Pointer to the name to be assigned to the AVI file. If NULL is passed, the "Open File" dialog is displayed.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_CAPTURE_RUNNING	Another capturing operation is in progress or an AVI file is still open.
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.
IS_AVI_ERR_NEW_FAILED	No memory could be allocated for the AVI file.
IS_AVI_ERR_CREATESTREAM	No AVI stream could be created.

- <u>isavi_GetAVIFileName()</u> 364
- isavi_CloseAVI()
- isavi_InitAVI() 369
- isavi_ExitAVI() 362

4.4.15 isavi_OpenAVIW

E	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_OpenAVIW (INT nAviID, const wchar_t* strFileName)

Description

 $\texttt{isavi_OpenAVIW()}$ opens a new or existing AVI file.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
pFileName	Pointer to the name to be assigned to the AVI file. The file name is passed as UNICODE string. If NULL is passed, the "Open File" dialog is displayed.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_CAPTURE_RUNNING	Another capturing operation is in progress or an AVI file is still open.
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.
IS_AVI_ERR_NEW_FAILED	No memory could be allocated for the AVI file.
IS_AVI_ERR_CREATESTREAM	No AVI stream could be created.

- isavi_GetAVIFileNameW()
- isavi_CloseAVI()
- isavi_InitAVI() 369
- isavi_ExitAVI() 362

4.4.16 isavi_ResetFrameCounters

H	Δ
USB 2.0	-
USB 3.0	

Syntax

INT isavi_ResetFrameCounters (INT nAviID)

Description

isavi_ResetFrameCounters() resets the counters for saved and discarded images.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
--------	---

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].

- isavi_GetnCompressedFrames() 367
- isavi_GetnLostFrames()

4.4.17 isavi_SetFrameRate

E	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_SetFrameRate (INT nAviID, double fr)

Description

isavi_SetFrameRate() sets the frame rate for AVI capturing. You can set the frame rate after opening the AVI file. This value does not have to be equal to the frame rate set for the DCx camera.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
fr	The frame rate to be set. Default = 25.0

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_WRITE_INFO	The AVI file could not be modified.
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.

- isavi_SetImageQuality() 375
- isavi_SetImageSize() 376

4.4.18 isavi_SetImageQuality

	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_SetImageQuality (INT nAviID, INT q)

Description

 $isavi_SetImageQuality()$ indicates the quality for the frames to be compressed. You can change the image quality at any time; it then applies to all subsequent frames. For compression, the system uses the JPEG algorithm.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [369] function.
đ	Image quality [1 = lowest 100 = highest]

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> 3621.
IS_AVI_ERR_INVALID_VALUE	The q parameter is outside the range of 1100.
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.

- isavi_SetFrameRate() 374
- <u>isavi_SetImageSize()</u> 376

4.4.19 isavi_SetImageSize

Syntax

INT isavi_SetImageSize (INT nAviID, INT cMode, INT Width, INT Height, INT PosX, INT PosX, INT LineOffset)

Description

isavi_SetImageSize() sets the size and position of the area of interest which will be saved to the AVI file. Only the defined area of interest of each frame will be saved. In addition, this function specifies the input color format of the frames. You define these settings only once for the entire video.

Note

The supported input color formats are RGB32, RGB24, Y8 and raw Bayer. The output file will always be in RGB24 format, regardless of the input data format. For further information on the structure of the different color formats, see the <u>Appendix: Color and memory formats</u> [502] section.

Attention

When an area of interest is used, the width (Width) and height (Height) of the AOI must be at least 16 pixel. The AOI width must be a multiple of 8.

Input parameters

nAviID	Instance ID set by the <u>isavi_InitAVI()</u> [365] function.
cMode	Color format of the input frames captured by the DCx Camera.
Width	Width of the entire frame or of the area of interest.
Height	Height of the entire frame or of the area of interest.
PosX	X position (offset) of the area of interest.
Posy	Y position (offset) of the area of interest.
LineOffset	Line increment. The line increment is the difference between the width of the entire frame (in pixel) and the area of interest (in pixel).

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.
IS_AVI_ERR_CAPTURE_RUNNING	Another capturing operation is in progress or an AVI file is still open.
IS_AVI_ERR_ALLOC_MEMORY	No memory could be allocated.
IS_AVI_ERR_INVALID_CM	The submitted color mode is not supported for AVI capturing.
IS_AVI_ERR_INVALID_SIZE	The submitted size is invalid.
IS_AVI_ERR_INVALID_POSITION	The submitted position is invalid.

- isavi_SetFrameRate() 374
- isavi_SetImageQuality() 375

Example

4.4.20 isavi_StartAVI

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_StartAVI (INT nAviID)

Description

isavi_StartAVI() starts the image capture thread.

Input parameters

nAviID	

Instance ID set by the isavi_InitAVI() and function.

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.
IS_AVI_ERR_PLAY_RUNNING	A playback is already running.

- isavi_StopAVI() 378
- isavi_InitEvent() 370
- isavi_ExitAVI() 362

4.4.21 isavi_StopAVI

H	۵
USB 2.0	-
USB 3.0	

Syntax

INT isavi_StopAVI (INT nAviID)

Description

isavi_StopAVI() stops the image capture thread. Subsequent calls of <u>isavi_AddFrame()</u> will be ignored.

Input parameters

Return values

IS_AVI_NO_ERR	Function executed successfully.
IS_AVI_ERR_CAPTURE_NOT_RUNNING	No capturing operation is running or no AVI file is opened.
IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.
IS_AVI_ERR_PLAY_NOT_RUNNING	No playback is running.

- isavi_StartAVI() 377
- isavi_InitEvent() 370
- isavi_ExitAVI() 362

4.5 **Obsolete Functions**

We are continuously extending and enhancing the uc480 API. The resulting product upgrades sometimes require replacing obsolete functions with new ones. We recommend against using the obsolete functions. They will continue to be supported for reasons of backward compatibility, but they will not be documented any longer.

Note

Older functions

If it is necessary to continue working with the older functions, it is possible to add the $uc480_deprecated.h$ header file additionally to the $uc480_h$ header file. The $uc480_deprecated.h$ header file contains all obsolete function definitions and constants which are no longer part of the $uc480_h$ header file.

The following table lists the obsolete functions and indicates the recommended alternatives. See also <u>History of</u> <u>API functions</u> **516**.

Obsolete function	Recommended alternative	No longer documented since driver version
is_ConvertImage()	is_Convert() 188	
is_DisableDDOverlay() 383 is_EnableDDOverlay() 384	is_DirectRenderer() 198	
is_GetCameraType()	is_GetCameraInfo()	
is_GetCaptureErrorInfo() 386	is_CaptureStatus()	
is_GetDC()		
is_GetDDOvlSurface() 389	15_DirectRenderer() [198]	
is_GetExposureRange	is_Exposure() 216	
is_GetGlobalFlashDelays()	<u>is_IO()</u> 280	
is_GetLastMemorySequence()		
is_GetMemorySequenceWindow()	I he uc480 memory board is not supported any longer.	3.30
<pre>is_GetNumberOfMemoryImages()</pre>		
is_GetPixelClockRange() 332	is_PixelClock() 294	
is_GetRevisionInfo()	is_GetCameraInfo() 231	3.20
is_GetHWGain()	is_SetAutoParameter() 303	3.31
is_HideDDOverlay() 393	is_DirectRenderer()	
is_IsMemoryBoardConnected()	The uc480 memory board is not supported any longer.	3.30
is_LoadBadPixelCorrectionTable()	is_HotPixel() 260	
is_LoadImage() 395	is_ImageFile()	
is_LoadParameters()	is_ParameterSet() ^[292]	
is_LockDDMem()	is DirectRenderer() [198]	
is_LockDDOverlayMem() 401		
is_MemoryFreezeVideo()	The uc480 memory board is not supported any longer.	3.30
is_ReleaseDC() 403	is_DirectRenderer() 198	
is_ResetCaptureErrorInfo()	is_CaptureStatus()	
is_ResetMemory()	The uc480 memory board is not supported any longer.	3.30
is_SaveBadPixelCorrectionTable()	is_HotPixel() 260	

DCx Cameras

Obsolete function	Recommended alternative	No longer documented since driver version
is_SaveImage() 406 is_SaveImageEx() 407 is_SaveImageMem() 409 is_SaveImageMemEx() 410	is_ImageFile() ^[264]	
is_SaveParameters() 412	is_ParameterSet() 292	
is_SetAOI() 414	<u>is_AOI()</u> 159	
is_SetBadPixelCorrection()	is HotPixel() 260	
is_SetBadPixelCorrectionTable()		
is_SetBayerConversion() 420	is_SetColorConverter() 315	
is_SetBlCompensation() 421	is_Blacklevel() 176	
is_SetBrightness()	is_SetGamma() 332 is_Blacklevel() 170	3.40
<pre>is_SetContrast()</pre>	is_SetExposureTime() is_SetHardwareGain() 333	3.40
is_SetConvertParam() 423	is_Convert() 188	
is_SetDDUpdateTime() 425	is_DirectRenderer()	
is_SetEdgeEnhancement() 426	is_EdgeEnhancement()	
is_SetExposureTime() 427	is_Exposure() 216	
is_SetFlashDelay() 429	<u>is_IO()</u> [280]	
is_SetHwnd() 433	is_DirectRenderer()	
is_SetImageAOI() 434		
is_SetImageSize() 438	is_AOI() 159	
is_SetImagePos() 435		
is_SetIO() 440	is_IO() [280]	
is_SetIOMask() 441		
is_SetKeyColor() 442	is_DirectRenderer()	
is_SetLED() 443	is_IO() [280]	
is_SetMemoryMode()	The uc480 memory board is not supported any longer.	3.30
is_SetPixelClock() 444	is_PixelClock()	
is_SetWhiteBalance()		0.04
is_SetWhiteBalanceMultipliers()	<u>is_SetAutoParameter()</u> ໜັງ	3.31
is_ShowDDOverlay() 446		
is_StealVideo() 447	1S_DirectRenderer() 198	
is_TransferImage()	The uc480 memory board is not supported any	3 30
is_TransferMemorySequence()	longer.	0.00
is_UnlockDDMem() 448		
is_UnlockDDOverlayMem()	is_DirectRenderer()	
is_UpdateDisplay() 450		

Attention

The is_SetWhiteBalance() and is_SetWhiteBalanceMultipliers() functions have been completely replaced by the <u>is_SetAutoParameter()</u> [303] function and are no longer supported by the uc480 API.

4.5.1 is_ConvertImage

Syntax

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_Convert()</u> function instead (see also <u>Obsolete functions</u>).

 $is_ConvertImage()$ converts a raw Bayer image to the desired format. This conversion is done in the PC. You can use $is_SetConvertParam()$ and a_{23} to define the conversion settings.

Input parameters

hCam	Camera handle
pcSource	Pointer to the input image
nIDSource	Memory ID of the input image
ppcDest	Pointer to the output image In case a NULL value is passed, a new memory is allocated internally.
nIDDest	Memory ID of the output image
reserved	Reserved. NULL must be passed here.

Return values

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

Related functions

- <u>is_SetConvertParam()</u> 423
- is_SetColorMode() 319
- is_SetBayerConversion() 420

4.5.2 is_DisableDDOverlay

H	Δ
USB 2.0	-

Syntax

INT is_DisableDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

In DirectDraw BackBuffer mode, $is_DisableDDOverlay()$ disables overlay mode and releases the memory allocated to the overlay. This results in discarding of the overlay data.

Input parameters

	hCam C	Camera handle
--	--------	---------------

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_EnableDDOverlay() 384
- is HideDDOverlay() 393
- is_SetDisplayMode() 322
- is_ShowDDOverlay() 446
- is_GetDDOvlSurface()

4.5.3 is_EnableDDOverlay

Syntax

INT is_EnableDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[378]).

In DirectDraw BackBuffer mode, is_EnableDDOverlay() enables live overlay mode. The overlay cannot be displayed directly, but needs to be visualized before by calling <u>is_ShowDDOverlay()</u> [446]. The overlay uses black as the so-called key color, so that overlay graphics may not contain any black color.

Input parameters

hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SetDisplayMode() 322
- is_DisableDDOverlay() 383
- is_ShowDDOverlay() 446
- is_HideDDOverlay() 393
- is_GetDDOvlSurface() 389

4.5.4 is_GetCameraType

Ħ	۵
USB 2.0	USB 2.0

Syntax

INT is_GetCameraType (HIDS hCam)

Description

is_GetCameraType() returns the camera type.

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_GetCameraInfo()</u> [231] function instead (see also <u>Obsolete functions</u> [379]).

Input parameters

InCam Camera handle	hCam	Camera handle
---------------------	------	---------------

Return values

IS_CAMERA_TYPE_UEYE_USB_SE	DCU223x, DCU224x and DCC1240xUSB camera
IS_CAMERA_TYPE_UEYE_USB_LE	DCC1545M / DCC1645CUSB camera
IS_CAMERA_TYPE_UEYE_USB3_CP	DCC3240x camera

4.5.5 is_GetCaptureErrorInfo

Ĥ	۵
USB 2.0	USB 2.0

Syntax

INT is_GetCaptureErrorInfo (HIDS hCam, UEYE_CAPTURE_ERROR_INFO* CaptureErrorInfo,

UINT SizeCaptureErrorInfo)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_CaptureStatus()</u> 174 function instead (see also <u>Obsolete functions</u> 379).

 $is_GetCaptureErrorInfo()$ returns detail information on errors that occurred during an image capture process. The function lists all errors that occurred since the last call of the $is_ResetCaptureErrorInfo()$ function.

Input parameters

hCam	Camera handle
CaptureErrorInfo	Structure of the UC480_CAPTURE_ERROR_INFO type that is filled by the uc480 driver. This structure then contains the error list.
SizeCaptureErrorInfo	Indicates the size of the CaptureErrorInfo structure.

Contents of the UC480_CAPTURE_ERROR_INFO structure

DWORD	dwCapErrCnt_Total	Returns the total number of errors occurred since the last reset.
BYTE	reserved[60]	Reserved for an internal function
DWORD	adwCapErrCnt _Detail[CapErr]	This array returns the current count for each possible error. The possible errors are listed below. To query the counter of a specific error type, pass its definition in the CapErr parameter.

Possible CapErr Error Types

Definition	Description	#
IS_CAPERR_API_NO_DEST_MEM	There is no destination memory for copying the finished image.	1
IS_CAPERR_API_CONVERSION_FAILED	The current image could not be processed correctly.	2
IS_CAPERR_API_IMAGE_LOCKED	The destination buffers are locked and could not be written to.	3
IS_CAPERR_DRV_OUT_OF_BUFFERS	No free internal image memory is available to the driver. The image was discarded.	4
IS_CAPERR_DRV_DEVICE_NOT_READY	The camera is no longer available. It is not possible to access images that have already been transferred.	5
IS_CAPERR_USB_TRANSFER_FAILED	The image was not transferred over the USB bus.	6
IS_CAPERR_DEV_TIMEOUT	The maximum allowable time for image capturing in the camera was exceeded.	7

4 Programming (SDK)

#	Possible cause	Remedy
1	Not enough destination memory allocated or all destination buffers locked by the application	 Release locked destination memory Allocate more destination memory Reduce the frame rate so that there is more time to process the filled destination memory
2	Internal error during internal processing of the image	-
3	All destination buffers locked by the application	 Release locked destination memory Allocate more destination memory Reduce the frame rate so that there is more time to process the filled destination memory
4	The computer takes too long to process the images in the uc480 API (e.g. color conversion)	 Reduce the frame rate so that there is more time to process the filled image memory of the driver Disable resource-intensive API image pre- processing functions (e.g. edge enhancement, color correction, choose smaller filter mask for software color conversion)
5	The camera has been disconnected or closed	-
6	Not enough free bandwidth on the USB bus for transferring the image	 Reduce the pixel clock frequency Operate fewer cameras simultaneously on a USB bus Check the quality of the USB cabling and components
7	The selected timeout value is too low for image capture	Reduce the exposure timeIncrease the timeout
8	The selected data rate of the sensor is too high	Reduce the pixel clock frequencyReduce the frame rateReduce the image size
9	The camera's frame rate is too high or the bandwidth on the network is insufficient to transfer the image	 Reduce the frame rate Increase the value for the receive descriptors in the network card settings

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

Related functions

- is_ResetCaptureErrorInfo() 404
- is_GetError() 239
- is_CameraStatus() 172
- is_SetErrorReport() 326

See also:

• Troubleshooting 499

4.5.6 is_GetDC

Syntax

INT is_GetDC (HIDS hCam, HDC* phDC)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[378]).

In DirectDraw BackBuffer mode, is_GetDC() returns the device context handle of the overlay buffer. Using this handle, it is possible to access the overlay using the Windows GDI functionality. Thus, all Windows graphics commands such as Line, Circle, Rectangle, TextOut, ... are available. You should release the device context handle as early as possible using the <u>is_ReleaseDC()</u> function. While a GetDC...ReleaseDC block is executed, the overlay buffer on the screen will not be updated.

Input parameters

hCam	Camera handle
phDC	Pointer to the variable that is supposed to contain the device context handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_ReleaseDC() 403
- <u>is_ShowDDOverlay()</u> 446
- is_DisableDDOverlay() 383
- is_EnableDDOverlay() 384
- is_GetDDOvlSurface() 389
- is_SetDisplayMode() 322

4.5.7 is_GetDDOvlSurface

Ĥ	۵
USB 2.0	-

Syntax

INT is_GetDDOvlSurface (HIDS hCam, void** ppDDSurf)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{DirectRenderer()}$ [198] function instead (see also <u>Obsolete functions</u>[379]).

In DirectDraw BackBuffer mode, is_GetDDOvlSurface() returns the pointer to the internal DirectDraw surface. Thus, the functionality provided by the DirectDraw Surface interface can be used.

Input parameters

hCam	Camera handle
ppDDSurf	Contains the pointer to the DirectDraw Surface interface

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SetDisplayMode() 322
- is_DisableDDOverlay() 383
- is_EnableDDOverlay() 384
- is_ShowDDOverlay() 446
- is_HideDDOverlay() 393

4.5.8 is_GetExposureRange

E	۵
USB 2.0	USB 2.0

Syntax

INT is_GetExposureRange (HIDS hCam, double* min,double* max, double* intervall)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_Exposure()}$ function instead (see also <u>Obsolete functions</u> \overline{srg}).

Using is_GetExposureRange(), you can query the exposure values (in milliseconds) available for the currently selected timing (pixel clock, frame rate). The available time values are comprised between min and max and can be set in increments defined by the intervall parameter.

Attention

The increments for setting the exposure time (intervall) depend on the sensor's current timing settings (pixel clock, frame rate). The smallest increment always corresponds to the duration of one pixel row, which is the time it takes the sensor to read out one pixel row.

Input parameters

hCam	Camera handle
min	Returns the minimum available exposure time.
max	Returns the maximum available exposure time.
intervall	Returns the increment you can use to change the image exposure time.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SetExposureTime() 427
- is_PixelClock() 294
- <u>is_GetFrameTimeRange()</u> 241
- is_GetFramesPerSecond() 240
- is_SetFrameRate() 329

4.5.9 is_GetGlobalFlashDelays

8	۵
USB 2.0	USB 2.0

Syntax

INT is_GetGlobalFlashDelays (HIDS hCam, ULONG* pulDelay, ULONG* pulDuration)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the \underline{is}_{280} function instead (see also <u>Obsolete functions</u> 378).

• Rolling shutter cameras:

Using is_GetGlobalFlashDelays(), you can determine the times required to implement a global flash function for rolling shutter cameras. This way, a rolling shutter camera can also be used as a global shutter camera provided that no ambient light falls on the sensor outside the flash period.

If the exposure time is set too short so that no global flash operation is possible, the function returns $IS_NO_SUCCESS$.

Note

To use a rolling shutter camera with the global start function, call the <code>is_SetGlobalShutter()</code> function before <code>is_GetGlobalFlashDelays()</code>. Otherwise, incorrect values will be returned for <code>Delay</code> and <code>Duration</code>.

• Global shutter cameras:

In freerun mode, the exposure of global shutter cameras is delayed if the exposure time is not set to the maximum value. $is_GetGlobalFlashDelays()$ determines the required delay in order to synchronize exposure and flash operation. In triggered mode, the return values for delay and flash duration are 0, since no delay is necessary before exposure starts.

For further information, please refer to the Camera basics: Shutter methods 30 chapter.

Input parameters

hCam	Camera handle
pulDelay	Pointer to the variable that returns the flash delay in μ s.
pulDuration	Pointer to the variable that returns the flash duration in μ s.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- <u>is_SetFlashStrobe()</u> [431]
- is_SetFlashDelay() 429
- is_SetTriggerDelay() 352

4.5.10 is_GetPixelClockRange

E	\$
USB 2.0	USB 2.0

Syntax

INT is_GetPixelClockRange (HIDS hCam, INT* pnMin, INT* pnMax)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_PixelClcok()}$ function instead (see also <u>Obsolete functions</u> $\overline{379}$).

is_GetPixelClockRange() returns the adjustable pixel clock range.

The pixel clock limit values can vary, depending on the camera model and operating mode. For detailed information on the pixel clock range of a specific camera model, please refer to the <u>Camera and sensor data</u> chapter.

Input parameters

hCam	Camera handle
pnMin	Returns the lower limit value.
pnMax	Returns the upper limit value.

Return values

IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_PixelClock() 294
- is_GetFramesPerSecond()²⁴⁰
- is_GetFrameTimeRange() 241
- is_Exposure() 216

4.5.11 is_HideDDOverlay

Ĥ	۵
USB 2.0	-

Syntax

INT is_HideDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{DirectRenderer()}$ [198] function instead (see also <u>Obsolete functions</u>[379]).

In DirectDraw BackBuffer mode, is_HideDDOverlay() hides the overlay. Only the contents of the image buffer will be displayed. This way, the frame rate is higher on some systems than with the overlay shown. By hiding the overlay, its data is not lost.

Input parameters

hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_ShowDDOverlay() 446
- is_DisableDDOverlay() 383
- is_EnableDDOverlay() 384
- is_GetDDOvlSurface() 389
- is_SetDisplayMode() 322

4.5.12 is_LoadBadPixelCorrectionTable

B	۵
USB 2.0	USB 2.0

Syntax

INT is_LoadBadPixelCorrectionTable (HIDS hCam, const IS_CHAR* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_HotPixel()}$ function instead (see also <u>Obsolete functions</u> $\overline{379}$).

 $is_LoadBadPixelCorrectionTable()$ loads a list of sensor hot pixel coordinates that was previously saved using the $is_SaveBadPixelCorrectionTable()$ function.

Input parameters

hCam	Camera handle
File	Pointer to a string which contains the name of the file where the coordinates are stored. You can either pass an absolute or a relative path. If NULL is passed, the "Open File" dialog opens.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SaveBadPixelCorrectionTable()
- is_SetBadPixelCorrection() 417
- is_SetBadPixelCorrectionTable() 418
4.5.13 is_LoadImage

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_LoadImage (HIDS hCam, char* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_ImageFile()}$ function instead (see also <u>Obsolete functions</u> $\overline{379}$).

 $is_LoadImage()$ loads an image from a file. The image must have been saved in BMP format. It is loaded into the active image memory.

Input parameters

hCam	Camera handle
File	Pointer to a filename You can either pass an absolute or a relative path. If NULL is passed, the "Open File" dialog opens.

Return values

IS_FILE_READ_INVALID_BMP_ID	The specified file is not a valid bitmap file.
IS_FILE_READ_INVALID_BMP_SIZE	The bitmap size is not correct (bitmap too large).
IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_SUCCESS	Function executed successfully

- Is_ImageFile() 264
- is_GetImageMem() 247
- is_SetImageMem() 337

4.5.14 is_LoadImageMem

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_LoadImageMem (HIDS hCam, char* File, char** ppcImgMem, int* pid)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_ImageFile()}$ function instead (see also <u>Obsolete functions</u> \overline{srg}). $\underline{is_LoadImageMem()}$ loads an image from a file. The image must have been saved in BMP format. The image, together with its color format and color depth properties, is loaded into a newly allocated image memory.

Using the is_FreeImageMem() [222] function, you can release the image memory again.

Input parameters

hCam	Camera handle
File	File name You can either pass an absolute or a relative path. If NULL is passed, the "Open File" dialog opens.
ppcImgMem	Pointer to a variable containing the starting address
pid	Pointer to a variable containing the memory ID

Return values

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_CLEANUP_MEMORY	The driver could not release the allocated memory.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_FILE_READ_INVALID_BMP_ID	The specified file is not a valid bitmap file.
IS_FILE_READ_INVALID_BMP_SIZE	The bitmap size is not correct (bitmap too large).
IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

- is_ImageFile() 264
- is_GetImageMem() 247
- is_SetImageMem() 337

4.5.15 is_LoadParameters

E	۵
USB 2.0	USB 2.0

Syntax

INT is_LoadParameters (HIDS hCam, char* pFilename)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{ParameterSet()}$ function instead (see also <u>Obsolete functions</u> [379]).

is_LoadParameters() loads the parameters for a camera from a uc480 ini file or from the camera EEPROM. Using the is_SaveParameters() [412] function, you can save camera parameters in an ini file or in the camera.

Only camera-specific ini files can be loaded. The <u>uc480 parameter file</u> section in the appendix describes the structure of a uc480 ini file.

Attention

When loading an ini file, make sure that the image size (AOI) and color depth parameters in the ini file match those in the allocated memory. Otherwise, display errors may occur.

Input parameters

hCam	Camera handle
pFilename	Pointer to a filename. You can either pass an absolute or a relative path. For the internal camera parameter sets, these would be "\\cam\\set1" or "/cam/set1", or "\\cam\\set2" or "/cam/set2", respectively. If NULL is passed, the "Open File" dialog is displayed.

You can load the parameter sets stored in the camera EEPROM using specific filenames:

🖃 pFilename	
"\\cam\\set1" or "/cam/set1"	Parameter set 1
"\\cam\\set2" or "/cam/set2"	Parameter set 2

Return values

IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CRC_ERROR	A CRC error-correction problem occurred while reading the settings.
IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera

	operating mode (free run, trigger or standby).
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_PARAMETER_SET_NOT_PRESENT	Parameter set is not present.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

Related functions

• is_ParameterSet() 292

4.5.16 is_LockDDMem

Syntax

INT is_LockDDMem (HIDS hCam, void** ppMem, INT* pPitch)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[378]).

 $is_LockDDMem()$ enables access to the image memory in DirectDraw mode and returns the pointer to the image memory. In most cases, the image memory is located on the graphics card. Using the pointer, you have direct access to the image memory. Make sure to release the memory as early as possible using the <u>is_UnlockDDMem</u> () [448] function.

Calling is_LockDDMem() will not interrupt the process of digitizing an image and saving it to the memory area.

While a LockDDMem ... UnlockDDMem block is executed in DirectDraw BackBuffer mode, the contents of the back buffer will not be refreshed on the screen.

Input parameters

hCam	Camera handle
pMem	Pointer to the variable that holds the address pointer
pPitch	Pointer to the variable that holds the pitch value

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_UnlockDDMem() 448
- is_LockDDOverlayMem() 401
- is_UnlockDDOverlayMem() 449
- is_LockSeqBuf() 289
- is_UnlockSeqBuf() 354
- is_UpdateDisplay() [450]

4.5.17 is_LockDDOverlayMem

E	۵
USB 2.0	-

Syntax

INT is_LockDDOverlayMem(HIDS hCam, void** ppMem, INT* pPitch)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

In DirectDraw BackBuffer mode, is_LockDDOverlayMem() enables access to the overlay memory and returns the pointer to the starting address of the overlay buffer. This way, you can write data directly to the overlay buffer without the need to use the Windows GDI functions.

pPitch returns the line offset (in bytes) from the beginning of a line to the beginning of the next line. Make sure to release the memory again as early as possible using the $is_UnlockDDOverlayMem()$ [49] function.

While a LockDDOverlayMem ... UnlockDDOverlayMem block is executed, the contents of the overlay buffer will not be refreshed on the screen.

Input parameters

hCam	Camera handle
ppMem	Pointer to the variable that holds the address pointer
pPitch	Pointer to the variable that holds the pitch value

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_UnlockDDOverlayMem() 449
- is_LockDDMem() 400
- is_UnlockDDMem() 448
- is_LockSeqBuf() 289
- is_UnlockSeqBuf() 354

4.5.18 is_PrepareStealVideo

1	۵
USB 2.0	-

Syntax

INT is_PrepareStealVideo (HIDS hCam, INT Mode, ULONG StealColorMode)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

is_PrepareStealVideo() enables steal mode during DirectDraw display. Using the <u>is_StealVideo()</u> (447) command, you can remove or copy an image from the DirectDraw video data stream. There are two different steal modes:

Normal steal

This option redirects a single frame from a DirectDraw video data stream to the active user memory. The frame will not be displayed with DirectDraw.

· Copy steal

This option displays the frame with DirectDraw and copies it to the currently active image memory.

Input parameters

hCam	Camera handle
Mode	
IS_SET_STEAL_NORMAL	Normal mode
IS_SET_STEAL_COPY	Copy mode
StealColorMode	reserved

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_StealVideo() 447
- is_SetDisplayMode() 322
- is_AllocImageMem()
- is_SetImageMem() 337

4.5.19 is_ReleaseDC

Ĥ	Δ
USB 2.0	-

Syntax

INT is_ReleaseDC (HIDS hCam, HDC hDC)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

In DirectDraw BackBuffer mode, is_ReleaseDC() releases the device context handle of the overlay buffer. If overlay display is enabled using the <u>is_ShowDDOverlay()</u> [446] function, the contents of the overlay buffer will be updated on the screen after the handle release.

Input parameters

hCam	Camera handle
hDC	Device context handle returned by <u>is_GetDC()</u> [388]

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_GetDC() 388
- is_ShowDDOverlay() [446]
- is_DisableDDOverlay() 383
- is_EnableDDOverlay() 384
- is_GetDDOvlSurface() 389
- is_SetDisplayMode() 322

4.5.20 is_ResetCaptureErrorInfo

E	٨
USB 2.0	USB 2.0

Syntax

INT is_ResetCaptureErrorInfo (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{CaptureStatus()}$ function instead (see also <u>Obsolete functions</u> $\overline{379}$).

 $is_ResetCaptureErrorInfo()$ deletes the list of errors that occurred while images were being captured. You can retrieve this list using the $is_GetCaptureErrorInfo()$ and function.

Input parameters

hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- <u>is_GetCaptureErrorInfo()</u> 386
- is_GetError() 239
- is_CameraStatus()

4.5.21 is_SaveBadPixelCorrectionTable

3	۵
USB 2.0	USB 2.0

Syntax

INT is_SaveBadPixelCorrectionTable (HIDS hCam, const IS_CHAR* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_HotPixel()</u> 260 function instead (see also <u>Obsolete functions</u> 379).

is_SaveBadPixelCorrectionTable() saves the user-defined hot pixel list to the specified file.

Note

You can only save the hot pixel list if you have previously added user-defined pixels with the $is_SetBadPixelCorrectionTable()$ function.

Input parameters

hCam	Camera handle
File	Pointer to a string which contains the name of the file where the coordinates are stored. You can either pass an absolute or a relative path. If NULL is passed, the "Save as" dialog will be displayed.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_LoadBadPixelCorrectionTable()
- is_SetBadPixelCorrection() 417
- is_SetBadPixelCorrectionTable() 418

4.5.22 is_SaveImage

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SaveImage (HIDS hCam, const IS_CHAR* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_ImageFile()</u> 1264 function instead (see also <u>Obsolete functions</u> 379).

is_SaveImage() saves an image in bitmap (*.BMP) format to a file. The images are read out from the current image memory. The bitmap is stored with the color depth that was used when allocating the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode).

Note

In Direct3D mode, overlay data are not saved.

Input parameters

hCam	Camera handle
File	Pointer to a string containing the BMP filename You can either pass an absolute or a relative path.
	If NULL is passed, the "Save as" dialog will be displayed.

Return values

IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

- is_ImageFile() 264
- <u>is_GetImageMem()</u> 247
- is_SetImageMem() 337

4.5.23 is_SaveImageEx

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SaveImageEx (HIDS hCam, const IS_CHAR* File, INT fileFormat, INT Param)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_ImageFile()</u> 1264 function instead (see also <u>Obsolete functions</u> 379).

is_SaveImageEx() saves an image in bitmap (*.BMP), JPEG (*.JPG), or PNG format to a file. The images are read out from the current image memory. The bitmap is stored with the color depth that was used when allocating the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode).

Notes

- You can save images with a bit depth of more than 8 bit in the PNG format. 12 bit formats are converted into 16 bit.
- In Direct3D mode, overlay data are not saved.

Input parameters

hCam	Camera handle
File	Pointer to a string containing the BMP filename You can either pass an absolute or a relative path. If NULL is passed, the "Save as" dialog will be displayed.
fileFormat	Specifies the output format of the file.
IS_IMG_BMP	Bitmap format
IS_IMG_JPG	JPEG format
IS_IMG_PNG	PNG format
Param	When you use IS_IMG_JPG or IS_IMG_PNG to specify the file format, you can set the quality by specifying a value between 1 and 100 for Param. If Param=0, the system uses the default quality (75). If you use IS_IMG_BMP, Param does not take effect.

Return values

IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

- is_ImageFile() 264
- is_GetImageMem() 247
- is_SetImageMem() 337

4.5.24 is_SaveImageMem

Ħ	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SaveImageMem (HIDS hCam, const IS_CHAR* File, char* pcMem, int nID)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_ImageFile()</u> 264 function instead (see also <u>Obsolete functions</u> 379).

is_SaveImageMem() saves an image in bitmap (*.BMP) format to a file. The images are read out from the specified image memory. The bitmap is stored with the color depth that was used when allocating the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode).

Note

In Direct3D mode, overlay data are not saved.

Input parameters

hCam	Camera handle
File	Pointer to a string containing the BMP filename You can either pass an absolute or a relative path. If NULL is passed, the "Save as" dialog will be displayed.
pcMem	Pointer to the image memory
nID	Image memory ID

Return values

IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

- is_ImageFile()
- is_GetImageMem() 247
- is_SetImageMem() 337

4.5.25 is_SaveImageMemEx

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_ImageFile()</u> 1264 function instead (see also <u>Obsolete functions</u> 379).

is_SaveImageMemEx() saves an image in bitmap (*.BMP), JPEG (*.JPG), or PNG format to a file. The images are read out from the specified image memory. The bitmap is stored with the color depth that was used when allocating the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode). JPEG files are always saved with a color depth of 8 or 24 bits.

Notes

- You can save images with a bit depth of more than 8 bit in the PNG format. 12 bit formats are converted into 16 bit.
- In Direct3D mode, overlay data are not saved.

Input parameters

hCam	Camera handle
File	Pointer to a string containing the BMP filename. You can either pass an absolute or a relative path. If NULL is passed, the "Save as" dialog will be displayed
pcMem	Pointer to the image memory
nID	Image memory ID
fileFormat	Specifies the output format of the file.
IS_IMG_BMP	Bitmap format
IS_IMG_JPG	JPEG format
IS_IMG_PNG	PNG format
Param	When you use IS_IMG_JPG or IS_IMG_PNG to specify the file format, you can set the quality by specifying a value between 1 and 100 for Param. If Param=0, the system uses the default quality (75). If you use IS_IMG_BMP, Param does not take effect.

Return values

IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_OUT_OF_MEMORY	No memory could be allocated.
IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
IS_SUCCESS	Function executed successfully

- is_ImageFile() 264
- is_GetImageMem()
- is_SetImageMem() 337

4.5.26 is_SaveParameters

H	۵
USB 2.0	USB 2.0

Syntax

INT is_SaveParameters (HIDS hCam, const IS_CHAR* pFilename)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{ParameterSet()}$ function instead (see also <u>Obsolete functions</u> $\overline{379}$).

 $is_SaveParameters()$ saves the current camera parameters to an ini file or to the EEPROM of the camera. You can load saved parameters using the $is_LoadParameters()$ [398] function. The <u>uc480 parameter file</u> [504] section in the appendix describes the structure of a uc480 ini file.

Input parameters

hCam	Camera handle
pFileName	Pointer to a filename You can either pass an absolute or a relative path. For internal parameter sets, these are "\\cam\\set1" or "/cam/set1", or "\\cam\\set2" or "/cam/set2", respectively. If NULL is passed, the "Save as" dialog will be displayed

You can save two parameter sets in the non-volatile EEPROM of the camera using specific filenames:

pFileName	
"\\cam\\set1" Of "/cam/set1"	Parameter set 1
"\\cam\\set2" or "/cam/set2"	Parameter set 2

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_CRC_ERROR	A CRC error-correction problem occurred while reading the settings.
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- is_ParameterSet() 292
- <u>is_CameraStatus()</u> 172

4.5.27 is_SetAOI

E	۵
USB 2.0	USB 2.0

Syntax

INT is_SetAOI (HIDS hCam, INT type, INT* pXPos, INT* pYPos, INT* pWidth, INT* pHeight)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}AOI()$ function instead (see also <u>Obsolete functions</u>).

is_SetAOI() can be used to set the size and position of an area of interest (AOI) within an image. The following AOIs can be defined:

- Image AOI display of an image portion
- Auto brightness AOI reference area of interest for automatic brightness control
- Auto whitebalance AOI reference area of interest of automatic white balance control

Attention

By default, the window size for auto AOIs is always maximum, i.e. it corresponds to the current image AOI.

After a change to the image geometry (by resetting an image AOI, by binning or sub-sampling), the auto AOIs will always be reset to the image AOI value (i.e. to maximum size). This means that it might be necessary to set the AOIs for the auto features again manually.

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing $is_SetAOI()$, calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_SetExposureTime() 427
- If you are using the DCx Camera's flash function: <u>is_IO()</u> [280]

Input parameters

The pXPos and pYPos parameters represent an offset with respect to the upper left image corner. The cut window is copied to the start position in the memory. If you want the image to be copied to the same offset within the memory, you can link the new position with a logical OR to the IS_SET_IMAGEPOS_X_ABS and IS_SET_IMAGEPOS_Y_ABS parameters (Example 416).

hCam	Camera handle
🗉 type	
IS_SET_IMAGE_AOI	Sets an image AOI.
IS_GET_IMAGE_AOI	Returns the current image AOI.
IS_SET_AUTO_BRIGHT_AOI	Sets average AOI values for auto gain and auto shutter.
IS_GET_AUTO_BRIGHT_AOI	Returns the current auto brightness AOI.
IS_SET_AUTO_WB_AOI	Sets an auto white balance AOI.
IS_GET_AUTO_WB_AOI	Returns the current auto white balance AOI.
pXPos	Pointer to the horizontal position of the AOI Returns the current setting when used together with the IS_GET parameters.
0XPosMax IS_SET_IMAGEPOS_X_ABS	Applies the absolute position to the memory as well.
pYPos	Pointer to the vertical position of the AOI Returns the current setting when used together with the IS_GET parameters.

4 Programming (SDK)

0YPosMax IS_SET_IMAGEPOS_Y_ABS	Applies the absolute position to the memory as well.
pWidth	Pointer to the width of the AOI Returns the current setting when used together with the IS_GET parameters.
pHeight	Pointer to the height of the AOI Returns the current setting when used together with the IS_GET parameters.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SetImagePos() 435
- is_SetBinning() 310
- is_SetSubSampling() 347
- is_SetAutoParameter()

Example

4.5.28 is_SetBadPixelCorrection

E	Δ
USB 2.0	USB 2.0

Syntax

INT is_SetBadPixelCorrection (HIDS hCam, INT nEnable, INT threshold)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_HotPixel()</u> 260 function instead (see also <u>Obsolete functions</u> 379).

is_SetBadPixelCorrection() enables/disables the software correction of sensor hot pixels.

Attention

This correction will not work while sub-sampling or binning are enabled or raw Bayer mode is used.

Input parameters

hCam	Camera handle	
🖃 nEnable		
IS_BPC_DISABLE	Disables the correction function.	
IS_BPC_ENABLE_SOFTWARE	Enables software correction based on the hot pixel list stored in the EEPROM.	
IS_BPC_ENABLE_USER	Enables software correction based on user-defined values. First, the <u>is_SetBadPixelCorrectionTable</u> () [418] function must be called.	
IS_GET_BPC_MODE	Returns the current mode.	
IS_GET_BPC_THRESHOLD	Returns the current threshold value.	
threshold	Currently not used	

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_BPC_MODE	Current mode
When used with IS_GET_BPC_THRESHOLD	Current threshold value

- is_LoadBadPixelCorrectionTable() 394
- is_SaveBadPixelCorrectionTable() 405
- is_SetBadPixelCorrectionTable() 418

4.5.29 is_SetBadPixelCorrectionTable

E	\$
USB 2.0	USB 2.0

Syntax

INT is_SetBadPixelCorrectionTable (HIDS hCam, INT nMode, WORD* pList)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_HotPixel()</u> $1 \le 1000$ function instead (see also <u>Obsolete functions</u> 379).

is_SetBadPixelCorrectionTable() can be used to set the table containing the hot pixel positions which will be used by the user-defined hot pixel correction function. You can enable hot pixel correction by calling <u>is_SetBadPixelCorrection()</u> [417]. Each value in the table consists of a 2-byte word data type. The first value indicates the number of pixel coordinates in the table, the coordinates are listed subsequently (first X, then Y).

A table with 3 hot pixels must be structured as follows:

3	X1	Y1	X2	Y2	Х3	Y3
-					-	-

Input parameters

hCam	Camera handle
🗏 nMode	
IS_SET_BADPIXEL_LIST	Sets a new user-defined list. The $pList$ parameter points to a list which has the format described above.
IS_GET_LIST_SIZE	Returns the number of pixel coordinates included in the user-defined list. If the list contains no coordinates, the return value is -1.
IS_GET_BADPIXEL_LIST	Copies the user-defined list to the pList parameter. Make sure to allocate the memory accordingly.
pList	Pointer to the starting address of the hot pixel table

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_LIST_SIZE	Number of coordinates in the list If the list contains no coordinates, the return value is -1.

- <u>is_LoadBadPixelCorrectionTable()</u> 394
- is_SaveBadPixelCorrectionTable()
- is_SetBadPixelCorrection() [417]

Example

WORD *pList = NULL;

```
// Number of coordinates in the list
INT nCount = is_SetBadPixelCorrectionTable (hCam, IS_GET_LIST_SIZE, NULL);
if (nCount > 0)
{
    // Allocate memory for the entire list
    pList = new WORD[1 + 2 * nCount];
    // Read out list
    is_SetBadPixelCorrectionTable (hCam, IS_GET_BADPIXEL_LIST, pList);
    // Release the list again
    delete [] pList;
}
else
{
    // No hot pixel list programmed
}
```

4.5.30 is_SetBayerConversion

E	۵
USB 2.0	USB 2.0

Syntax

INT is_SetBayerConversion (HIDS hCam, INT nMode)

Description

is_SetBayerConversion() enables you to select one of two algorithms for the Bayer conversion. These algorithms vary in the obtainable quality and in the required computer load.

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_SetColorConverter</u> () [315] function instead (see also <u>Obsolete functions</u> [376]).

Note

This function can be used only for the 24 bit, 32 bit and Y8 color formats (color cameras).

Input parameters

hCam	Camera handle
🖃 nMode	
IS_SET_BAYER_CV_BETTER	Good quality, minor color artifacts, lower computational load
IS_SET_BAYER_CV_BEST	Best quality and edge acuity, higher computational load
IS_GET_BAYER_CV_MODE	Returns the current setting.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_BAYER_CV_MODE	Current setting

- is_SetColorConverter() 315
- is_SetColorMode() 319
- is_SetColorCorrection() 317

4.5.31 is_SetBlCompensation

H	۵
USB 2.0	USB 2.0
USB 3.0	USB 3.0

Syntax

INT is_SetBlCompensation (HIDS hCam, INT nEnable, INT offset, INT reserved)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_Blacklevel()</u> 170 function instead (see also <u>Obsolete functions</u> 379).

is_SetBlCompensation() enables the black level correction function which might improve the image quality under certain circumstances. By default, the sensor adjusts the black level value for each pixel automatically. If the environment is very bright, it can be necessary to adjust the black level manually by the offset parameter.

Input parameters

hCam	Camera handle
🖃 nEnable	
IS_BL_COMPENSATION_DISABLE	Disables automatic black level correction. The offset value is used as black level instead. This mode is only supported by sensors of the <u>UI-154x/UI-554x</u> 464 series.
IS_BL_COMPENSATION_ENABLE	Enables automatic black level correction. The offset value is added to the automatic black level value.
IS_GET_BL_COMPENSATION	Returns the current mode.
IS_GET_BL_OFFSET	Returns the currently set value for offset.
IS_GET_BL_DEFAULT_MODE	Returns the default mode.
IS_GET_BL_DEFAULT_OFFSET	Returns the default value for offset.
IS_GET_BL_SUPPORTED_MODE	Returns the supported modes. Possible values: IS_BL_COMPENSATION_ENABLE The sensor supports automatic black level correction. IS_BL_COMPENSATION_OFFSET For the sensor used, it is also possible to set the offset manual.
IS_IGNORE_PARAMETER	The nEnable parameter is ignored.
offset	Contains the offset value used for compensation. Valid values are between 0 and 255.
IS_IGNORE_PARAMETER	The offset parameter is ignored.
reserved	Reserved. 0 must be passed.

Return values

When used together with IS_GET_BL_SUPPORTED_MODE	Supported modes
When used together with IS_GET_BL_COMPENSATION	Current mode
When used together with IS_GET_BL_OFFSET	Current offset
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

4.5.32 is_SetConvertParam

Ĥ	Δ
USB 2.0	USB 2.0

Syntax

INT is_SetConvertParam (HIDS hCam, BOOL ColorCorrection, INT BayerConversionMode, INT ColorMode, INT Gamma, double* WhiteBalanceMultipliers)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_Convert() [188] function instead (see also <u>Obsolete functions</u> 379).

Using is_SetConvertParam(), you can set the parameters for converting a raw Bayer image to a color image. To convert the image, use the is_ConvertImage() [382] function.

Input parameters

hCam	Camera handle
ColorCorrection	Enables/disables color correction.
BayerConversionMode	Sets the Bayer conversion mode.
IS_SET_BAYER_CV_BETTER	Normal quality
IS_SET_BAYER_CV_BEST	Best quality (higher CPU load)
ColorMode	Sets the color mode for the output image. For a list of all available color formats and the associated input parameters, see the <u>Appendix: Color</u> and memory formats [502] section.
Gamma	Gamma value multiplied by 100. Range: [11000]
WhiteBalanceMultipliers	Pointer to an array containing the red, green and blue gain values

Return values

IS_INVALID_COLOR_FORMAT	Invalid color format
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_ConvertImage() 382
- is_SetColorMode() 319
- is_SetColorConverter() 315

Example

Conversion of a raw Bayer image to RGB24. The memory is allocated automatically.

```
INT nRet;
char * pcSource;
INT nIDSource;
INT nX,nY,nBits,nPitch;
// Create raw Bayer test image
is_AllocImageMem (hCam, 256, 256, 8, &pcSource, &nIDSource);
is_InquireImageMem (hCam, pcSource, nIDSource, &nX ,&nY, &nBits, &nPitch);
for (int j = 0; j<nY; j++)</pre>
{
    for (int i = 0; i<nX; i++)</pre>
    {
         pcSource[i + j * nPitch] = i;
    }
}
// Define conversion parameters (example)
INT Gamma = 120;
double rgbGains[3];
rgbGains[0] = 1.0 ; // Red channel gain
rgbGains[1] = 3.0 ; // Green channel gain
rgbGains[2] = 1.0 ; // Blue channel gain
char* pcDest; // Pointer to the newly allocated image memory
INT nIDDest; // ID of the newly allocated image memory
// Set conversion parameters
nRet = is_SetConvertParam(hCam, TRUE, IS_SET_BAYER_CV_BETTER, IS_CM_RGB8_PACKED, Gamma, rgbGains);
// Convert image
if (nRet == IS_SUCCESS)
{
    pcDest = NULL;
    is_ConvertImage(hCam, pcSource, nIDSource, &pcDest, &nIDDest, 0);
}
// Release allocated image memory
is_FreeImageMem (hCam, pcSource, nIDSource);
is_FreeImageMem (hCam, pcDest, nIDDest);
```

4.5.33 is_SetDDUpdateTime

B	۵
USB 2.0	-

Syntax

INT is_SetDDUpdateTime (HIDS hCam, INT ms)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

 $\texttt{is_SetDDUpdateTime() sets the timer interval used for the video image update cycle in DirectDraw BackBuffer mode.}$

Input parameters

hCam	Camera handle
ms	Time in milliseconds. Valid range: 202000 ms

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SetDisplayMode() 322
- is_UpdateDisplay() [450]

4.5.34 is_SetEdgeEnhancement

H	۵
USB 2.0	USB 2.0

Syntax

INT is_SetEdgeEnhancement (HIDS hCam, INT nEnable)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_EdgeEnhancement}()$ $\underline{1206}$ function instead (see also <u>Obsolete functions</u> $\underline{1376}$).

is_SetEdgeEnhancement() enables a software edge filter. Due to Bayer format color conversion, the original edges of a color image may easily become blurred. By enabling the digital edge filter, you can optimize edge representation. This function causes a higher CPU load.

Input parameters

hCam	Camera handle
nEnable	
IS_EDGE_EN_DISABLE	Disables the edge filter.
IS_EDGE_EN_STRONG	Enables strong edge enhancement.
IS_EDGE_EN_WEAK	Enables weaker edge enhancement.
IS_GET_EDGE_ENHANCEMENT	Returns the current setting.

Return values

When used together with IS_GET_EDGE_ENHANCEMENT	Current setting
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_NO_SUCCESS	General error message
IS_SUCCESS	Function executed successfully

- is_SetColorMode() 319
- is_SetColorConverter() 315

4.5.35 is_SetExposureTime

Ĥ	۵
USB 2.0	USB 2.0

Syntax

INT is_SetExposureTime (HIDS hCam, double EXP, double* newEXP)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_Exposure()</u> 216 function instead (see also <u>Obsolete functions</u> 379).

Using is_SetExposureTime(), you can set the exposure time (in milliseconds). Since this value depends on the sensor timing, the exposure time actually used may slightly deviate from the value set here. The actual exposure time is returned by the newEXP parameter.

In free-running mode ($\underline{is_CaptureVideo()}$, any modification of the exposure time will only become effective when the next image but one is captured. In trigger mode ($\underline{is_SetExternalTrigger()}$, the modification will be applied to the next image.

For minimum and maximum exposure times as well as other sensor-based dependencies, please refer to <u>Camera</u> and <u>sensor data</u> chapter.

Notes

1. New Driver Versions

Newer driver versions sometimes allow an extended value range for the exposure time setting. We recommend to query the value range every time and set the exposure time explicitly.

2. Settings with Influence on Exposure Time

The use of the following functions will affect the exposure time:

- is_PixelClock() 294
- is_SetOptimalCameraTiming() 338
- is_SetFrameRate() [329] (if the new image duration is shorter that the exposure time)
- is_AOI() [159] (if the image size is changed)
- is_SetSubSampling() 347
- is_SetBinning() 310

Changes made to the window size, the frame rate or the read-out timing (pixel clock frequency) also affect the defined exposure time. For this reason, you need to call is_SetExposureTime() again after such changes.

3. Exposure Time Increment

The increments for setting the exposure time (IS_GET_EXPOSURE_INCREMENT) depend on the sensor's current timing settings (pixel clock, frame rate). The smallest increment always corresponds to the duration of one pixel row, which is the time it takes the sensor to read out one pixel row.

Some sensors allow setting the exposure time with a finer increment (IS_GET_EXPOSURE_FINE_INCREMENT). This function is currently only supported by the sensors of the DCC1240x / DCC3240x and DCC3240

4. Rounding Errors

When calculating a new exposure time based on the ..._INCREMENT parameter, please note that calculations with floating point values in the PC will always be subject to rounding errors. Therefore, an addition or subtraction of an n*INCREMENT value might not always produce the exact desired result. In this case, the uc480 API rounds down the floating point value and sets the exposure time to the next lower value.

You can avoid this behavior by additionally adding or subtracting the value INCREMENT/2.f (half intervall) when calculating with n*INCREMENT. This ensures that the desired value will be set even after rounding.

Input parameters

hCam	Camera handle
EXP	New desired exposure time For EXP=0.0, the exposure time is 1/frame rate.
IS_GET_EXPOSURE_TIME	Returns the current exposure time in the newEXP parameter.
IS_GET_DEFAULT_EXPOSURE	Returns the default exposure time.
IS_SET_ENABLE_AUTO_SHUTTER	Enables the auto exposure function (see also is_SetAutoParameter() [303]).
IS_GET_EXPOSURE_MIN_VALUE	Returns the minimum available exposure time.
IS_GET_EXPOSURE_MAX_VALUE	Returns the maximum available exposure time.
IS_GET_EXPOSURE_INCREMENT	Returns the increment you can use to change the image exposure time.
IS_GET_EXPOSURE_FINE_INCREMENT	Returns a finer exposure time increment for some sensors.
newEXP	When setting a new exposure time via EXP: Returns the exposure time actually set (may deviate from desired exposure time) When passing other parameters via EXP: Returns the queried value (e. g. current exposure time)

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.

- <u>is_SetFrameRate()</u> 329
- is_Exposure() 216
- is_PixelClock()
- <u>is_SetOptimalCameraTiming()</u> 338
- is_SetAutoParameter()

4.5.36 is_SetFlashDelay

Ĥ	۵
USB 2.0	USB 2.0

Syntax

INT is_SetFlashDelay (HIDS hCam, ULONG ulDelay, ULONG ulDuration)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{10()}$ function instead (see also <u>Obsolete functions</u> 379).

is_SetFlashDelay() sets a delay for driving the flash output. In addition, you can specify the flash duration.

This allows the implementation of a global flash functionality which exposes all rows of a <u>rolling shutter sensor</u>. In addition, it is possible, for a camera with <u>global shutter sensors</u>, and to set the flash start in free-run mode to the start time of the exposure window.

For further information, please refer to the Digital in-/output (trigger/flash) 4 and Shutter methods 3 chapters.

Note

Accuracy of Flash Synchronization

The following parameters have an influence on the camera's internal timing:

- Image geometry 144 (CMOS and CCD sensors)
- <u>Pixel clock</u> (CMOS and CCD sensors)
- Exposure time 216 (CCD sensors)

If you change any of these parameters, you will have to set the flash duration and flash delay parameters once again.

Input parameters

hCam	Camera handle
ulDelay	Time by which the flash start is delayed (in µs) 0: No delay For 0 < ulDelay < 40 the driver automatically sets ulDelay = 40
IS_GET_FLASH_DELAY	Returns the currently set delay time.
IS_GET_FLASH_DURATION	Returns the currently set flash duration.
IS_GET_MIN_FLASH_DELAY	Returns the minimum value for the delay.
IS_GET_MIN_FLASH_DURATION	Returns the minimum value for the flash duration.
IS_GET_MAX_FLASH_DELAY	Returns the maximum value for the delay.
IS_GET_MAX_FLASH_DURATION	Returns the maximum value for the flash duration.
IS_GET_FLASH_DELAY_GRANULARITY	Returns the increment of the adjustable delay time.
IS_GET_FLASH_DURATION_GRANULARITY	Returns the increment of the adjustable flash duration.
ulDuration	Time during which the flash is on (in μ s). If 0 is passed, the flash output will be active until the end of the exposure time. For sensors with Global Start Shutter this is the time until the end of exposure of the last sensor row

DCx Cameras

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_FLASH_DELAY IS_GET_FLASH_DURATION	Current setting

- is_IO() 280
- is_SetExternalTrigger()
- is_SetTriggerDelay() 352
4.5.37 is_SetFlashStrobe

Ĥ	۵
USB 2.0	USB 2.0

Syntax

INT is_SetFlashStrobe (HIDS hCam, INT nMode, INT nLine)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{10()}$ function instead (see also <u>Obsolete functions</u> 379).

 $is_SetFlashStrobe()$ controls the DCx Camera's digital outputs and defines the flash strobe behavior. The digital outputs can be used in both freerun mode and trigger mode. You can synchronize the output level to the exposure time or set it statically.

For details on flash timing, see the Digital input/output (trigger/flash) 47 and Operating modes 17 chapters.

Notes

Duration and Trigger Delay

You can set the flash duration and flash delay using the <u>is_SetFlashDelay()</u> function. The <u>is_GetGlobalFlashDelays()</u> returns the values required for precisely synchronizing the flash signal to the current timing settings.

Accuracy of Flash Synchronization

The following parameters have an influence on the camera's internal timing:

- Image geometry 144 (CMOS and CCD sensors)
- <u>Pixel clock</u> [294] (CMOS and CCD sensors)
- Exposure time 216 (CCD sensors)

If you change any of these parameters, you will have to set the flash duration and flash delay parameters once again.

Input parameters

hCam	Camera handle
■ nMode (Flash mode)	
Flash strobe with exposure time synchronization	
IS_SET_FLASH_OFF	Disables the digital output.
IS_SET_FLASH_LO_ACTIVE	Enables the flash strobe in trigger mode. LO_ACTIVE: The digital output is set to low level for the flash duration.
IS_SET_FLASH_HI_ACTIVE	Enables the flash strobe in trigger mode. HI_ACTIVE: The digital output is set to high level for the flash duration.
IS_SET_FLASH_LO_ACTIVE_FREERUN	Enables the flash strobe in freerun mode. LO_ACTIVE: The digital output is set to low level for the flash duration.
IS_SET_FLASH_HI_ACTIVE_FREERUN	Enables the flash strobe in freerun mode. HI_ACTIVE: The digital output is set to high level for the flash duration.
IS_GET_FLASHSTROBE_MODE	Returns the current mode.
IS_SET_FLASH_IO_1	Additionally enables the flash strobe via the first general purpose I/O (GPIO 1) if supported by the camera model.
IS_SET_FLASH_IO_2	Additionally enables the flash strobe via the second general purpose I/O (GPIO 2) if supported by the

DCx Cameras

hCam	Camera handle	
	camera model.	
IS_GET_SUPPORTED_FLASH_IO_PORTS	Returns which of the general purpose I/Os (GPIO) can be used for the flash strobe	
Statically setting the output level		
IS_SET_FLASH_HIGH	Statically sets the digital output to high level (HIGH).	
IS_SET_FLASH_LOW	Statically sets the digital output to low level (LOW).	
nLine	Currently not used	

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_FLASHSTROBE_MODE	Current setting
When used with IS_GET_SUPPORTED_FLASH_IO_PORTS	Returns the supported ports linked by a logical OR. IS_SET_FLASH_IO_1 IS_SET_FLASH_IO_2

Related functions

- is_SetFlashDelay() 429
- <u>is_IO()</u> 280
- is_SetExternalTrigger() 327
- is_SetTriggerDelay() 352
- is_CaptureVideo()

Example

```
//Software trigger mode, HI_ACTIVE flash mode
is_SetExternalTrigger (hCam, IS_SET_TRIGGER_SOFTWARE);
is_SetFlashStrobe (hCam, IS_SET_FLASH_HI_ACTIVE, 0);
is_FreezeVideo (hCam, IS_WAIT);
// Flash additionally on second GPIO output
is_SetFlashStrobe (hCam, IS_SET_FLASH_HI_ACTIVE | IS_SET_FLASH_IO_2, 0);
```

// Flash only on normal flash output
is_SetFlashStrobe (hCam, IS_SET_FLASH_HI_ACTIVE, 0);

Sample programs

- uc480 Flash Strobe (C++)
- uc480 IO (C++)

4.5.38 is_SetHwnd

Ĥ	۵
USB 2.0	

Syntax

INT is_SetHwnd (HIDS hCam, HWND hwnd)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{DirectRenderer()}$ [198] function instead (see also <u>Obsolete functions</u>[379]).

 $is_SetHwnd()$ sets a new window handle for image output in DirectDraw mode. The new handle and the image output will only be effective when $is_SetDisplayMode()$ is called for the next time.

Input parameters

hCam	Camera handle
hwnd	Window handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

Related functions

• is_SetDisplayMode() 322

4.5.39 is_SetImageAOI

Ĥ	۵
USB 2.0	USB 2.0

Syntax

INT is_SetImageAOI (HIDS hCam, INT xPos, INT yPos, INT width, INT height)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{AOI()}$ function instead (see also <u>Obsolete Functions</u> 378).

Input parameters

hCam	Camera handle
xPos	X position of the upper left corner.
yPos	Y position of the upper left corner.
width	Image width
height	Image height

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
IS_INVALID_MODE	Camera is in standby mode, function not allowed

- <u>is_AOI()</u> 159
- is_SetBinning() 310
- is_SetSubSampling() 347

4.5.40 is_SetImagePos

H	۵
USB 2.0	USB 2.0

Syntax

INT is_SetImagePos (HIDS hCam, INT x, INT y)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_AOI()</u> function instead (see also <u>Obsolete functions</u>).

 $is_SetImagePos()$ determines the position of an area of interest (AOI) in the display window. When used together with the $is_SetAOI()$ function, you can cut out an area of interest of the full video image.

To avoid a positional mismatch between the display area and the image area, make sure to call the functions in the correct order. Starting from the original image, it is mandatory to keep to the following order:

1. is_SetAOI() 414

2.is_SetImagePos()

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing $is_SetImagePos()$, calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_SetExposureTime() 427
- If you are using the DCx Camera's flash function: is_SetFlashStrobe() [431]

Input parameters

The x and y parameters represent an offset with respect to the upper left image corner. The cut window is copied to the start position in the memory. If you want the image to be copied to the same offset within the memory, you can link the new position with a logical OR to the IS_SET_IMAGE_POS_X_ABS and IS_SET_IMAGE_POS_Y_ABS parameters.

hCam	Camera handle
x	
0xMax	Sets the horizontal position
0xMax IS_SET_IMAGE_POS_X_ABS	Applies the absolute position to the memory as well.
IS_GET_IMAGE_POS_X	Returns the current x position.
IS_GET_IMAGE_POS_X_MIN	Returns the minimum value for the horizontal AOI position.
IS_GET_IMAGE_POS_X_MAX	Returns the maximum value for the horizontal AOI position.
IS_GET_IMAGE_POS_X_INC	Returns the increment for the horizontal AOI position.
IS_GET_IMAGE_POS_X_ABS	Returns the absolute horizontal position in the memory.
IS_GET_IMAGE_POS_Y	Returns the current Y position.
IS_GET_IMAGE_POS_Y_MIN	Returns the minimum value for the vertical AOI position.
IS_GET_IMAGE_POS_Y_MAX	Returns the maximum value for the vertical AOI position.
IS_GET_IMAGE_POS_Y_INC	Returns the increment for the vertical AOI position.
IS_GET_IMAGE_POS_Y_ABS	Returns the absolute vertical position in the memory.

DCx Cameras

E

Э У	
0yMax	Sets the vertical position
0yMax IS_SET_IMAGE_POS_Y_ABS	Applies the absolute position to the memory as well.
0	When returning settings via parameter x (s. above)

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
When used with IS_GET_IMAGE_POS parameters	Current setting
IS_INVALID_MODE	Camera is in standby mode, function not allowed

- is_AOI() 159
- is_ImageFormat()

Example

Examples for is_SetImagePos

4.5.41 is_SetImageSize

E	٨
USB 2.0	USB 2.0

Syntax

INT is_SetImageSize (HIDS hCam, INT x, INT y)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_AOI()</u> function instead (see also <u>Obsolete functions</u>.

In conjunction with the <u>is_SetImagePos()</u> 435 settings, is_SetImageSize() determines the size of the captured area of interest (AOI).

To avoid a positional mismatch between the display area and the image area, make sure to call the functions in the correct order. Starting from the original image, it is mandatory to keep to the following order:

1.is_SetImageSize()

2.is_SetImagePos() 435

Hint

 $is_SetAOI()$ and size of an area of interest using a single function call.

Note

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing $is_SetImageSize()$, calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_Exposure()²¹⁶
- If you are using the DCx Camera's flash function: is_IO() [280]

Input parameters

hCam	Camera handle
🖬 x	
1xMax	Sets the image width
IS_GET_IMAGE_SIZE_X	Returns the current image width.
IS_GET_IMAGE_SIZE_X_MIN	Returns the minimum AOI image width.
IS_GET_IMAGE_SIZE_X_MAX	Returns the maximum AOI image width.
IS_GET_IMAGE_SIZE_X_INC	Returns the increment for the AOI image width.
IS_GET_IMAGE_SIZE_Y	Returns the current image height.
IS_GET_IMAGE_SIZE_Y_MIN	Returns the minimum AOI image height
IS_GET_IMAGE_SIZE_Y_MAX	Returns the maximum AOI image height
IS_GET_IMAGE_SIZE_Y_INC	Returns the increment for the AOI image height
Ξ Y	
1yMax	Sets the image height
0	Return settings

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_IMAGE_SIZE parameters	Current setting
IS_INVALID_MODE	Camera is in standby mode, function not allowed

Related functions

• <u>is_AOI()</u> 159

4.5.42 is_SetIO

E	۵
USB 2.0	USB 2.0

Syntax

INT is_SetIO (HIDS hCam, INT nIO)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{10()}$ function instead (see also <u>Obsolete functions</u>).

is_SetIO() sets the additional digital outputs (GPIOs) of the DCx Camera or returns their current states. Using is_SetIOMask() [44], you can define each GPIO as a digital input or output.

Attention

To be able to set the Status of a GPIO you must first configure the GPIO as output using $\underline{is_SetIOMask()}$ [41]. If only one GPIO is configured as output the command $is_SetIO()$ has no effect on the other GPIO.

The GPIOs are not provided with optocouplers and use TTL voltages. For information on GPIO wiring, please refer to the <u>Electrical Specifications</u> chapter.

Note

To connect and control a flash (strobe) unit for the DCx Cameras, it is recommended to use the flash output provided (see <u>is_SetFlashStrobe()</u> [43]).

Input parameters

hCam	Camera handle
nIO	Bit mask for outputs
0x00 (00)	Sets both outputs to 0.
0x01 (01)	Sets the first output to 1, the second one to 0.
0x02 (10)	Sets the first output to 0, the second one to 1.
0x03 (11)	Sets both outputs to 1.
IS_GET_IO	Reads the states of the GPIOs. If a GPIO is configured as input this reads the signal applied to the GPIO.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_IO	Current setting

- is_SetIOMask() 441
- is_GetImageInfo() 244
- is_SetFlashStrobe() [431]
- is_SetExternalTrigger() 327

4.5.43 is_SetIOMask

H	Δ
USB 2.0	USB 2.0

Syntax

INT is_SetIOMask (HIDS hCam, INT nMask)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is}_{10()}$ function instead (see also <u>Obsolete functions</u> 379).

Using $is_SetIOMask()$, you can configure the general purpose I/Os (GPIO) of some DCx Camera models as an input or output. The $is_SetIO()$ [40] function sets or returns the current GPIO states.

The GPIOs are not provided with optocouplers and use TTL voltages. For information on GPIO wiring, please refer to the <u>Electrical Specifications</u> chapter.

Note

To use hardware triggering with the DCx Cameras, we suggest that you use the trigger input provided for this purpose (see <u>is_SetExternalTrigger()</u> [327]). To connect and control a flash (strobe) unit for the DCx Cameras, it is recommended to use the flash output provided (see <u>is_SetFlashStrobe()</u> [431]). Input parameters

hCam	Camera handle
nMask	Bit mask for inputs/outputs.
0x00 (00)	Use both GPIOs as inputs.
0x01 (01)	Use the first GPIO as output, the second one as input.
0x02 (10)	Use the first GPIO as input, the second one as output.
0x03 (11)	Use both GPIOs as outputs.
IS_GET_IO_MASK	Returns the current bit mask.
IS_GET_INPUT_MASK	Returns the IOs to be used as inputs.
IS_GET_OUTPUT_MASK	Returns the IOs to be used as outputs.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
Wen used with IS_GET_IO	Current setting
When used with IS_GET_INPUT_MASK IS_GET_OUTPUT_MASK	Bit masks of the IOs to be used.

- is_SetIO() 440
- is_GetImageInfo() 244
- is_SetFlashStrobe() 431
- is_SetExternalTrigger() 327

4.5.44 is_SetKeyColor

Syntax

INT is_SetKeyColor (HIDS hCam, INT r, INT g, INT b)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[378]).

Using is_SetKeyColor(), you define the key color for DirectDraw Overlay Surface mode.

This function can also be used to return the key color. Use the r parameter to specify the color value to be returned. Depending on the call type, the function returns either a value reflecting the color content (0...255) or the corresponding RGB value (0 ... 16777215).

Input parameters

hCam	Camera handle
r	Red content of the key color (0255).
IS_GET_KC_RED	The function returns the red content value.
IS_GET_KC_GREEN	The function returns the green content value.
IS_GET_KC_BLUE	The function returns the blue content value.
IS_GET_KC_RGB	The function returns the RGB color.
g	Green content of the key color (0255).
ď	Blue content of the key color (0255).

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message
When used with IS_GET_KC_RGB IS_GET_KC_RED IS_GET_KC_GREEN IS_GET_KC_BLUE	Color value

- <u>is_SetDisplayMode()</u> 322
- is_ShowDDOverlay() 446
- is_HideDDOverlay() 393
- is_DisableDDOverlay() 383
- is_EnableDDOverlay() 384
- is_GetDDOvlSurface() 389
- is_SetColorMode() 319

4.5.45 is_SetLED

H	۵
USB 2.0	USB 2.0

Syntax

INT is_SetLED (HIDS hCam, INT nValue)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the \underline{is}_{280} function instead (see also <u>Obsolete functions</u> $\overline{379}$).

Using is_SetLED(), you can toggle the color of the LED on the back of the USB DCx camera housing.

Note

The $is_SetLED()$ function is only supported by DCU22x and DCC1240x

Input parameters

hCam	Camera handle
- nValue	
IS_SET_LED_OFF	Switches LED to red.
IS_SET_LED_ON	Switches LED to green.
IS_SET_LED_TOGGLE	Toggles between red and green.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_IO() 280
- is_SetExternalTrigger() 327

4.5.46 is_SetPixelClock

E	٨
USB 2.0	USB 2.0

Syntax

INT is_SetPixelClock (HIDS hCam, INT Clock)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the $\underline{is_PixelClock()}$ function instead (see also <u>Obsolete functions</u> \overline{srg}).

is_SetPixelClock() sets the frequency used to read out image data from the sensor (pixel clock frequency). Due to an excessive pixel clock for USB cameras, images may get lost during the transfer. If you change the pixel clock on-the-fly, the current image capturing process will be aborted.

Note

Some sensors allow a higher pixel clock setting when if binning or subsampling is activated. If you set a higher pixel clock and then reduce the binning/subsampling factors again, the driver will automatically select the highest possible pixel clock for the new settings.

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After executing $is_SetPixelClock()$, calling the following functions is recommended in order to keep the defined camera settings:

- is_SetFrameRate() 329
- is_Exposure()²¹⁶
- If you are using the DCx Camera's flash function: is_IO()

Input parameters

hCam	Camera handle
Clock	Pixel clock frequency to be set (in MHz)
IS_GET_PIXEL_CLOCK	Returns the current pixel clock
IS_GET_DEFAULT_PIXEL_CLK	Returns the default pixel clock
IS_GET_PIXEL_CLOCK_INC	Returns the pixel clock increment

Return values

When used with IS_GET_PIXEL_CLOCK	Current setting
When used with IS_GET_DEFAULT_PIXEL_CLK	Default setting
IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
IS_INVALID_CAMERA_HANDLE	Invalid camera handle
IS_INVALID_MODE	Camera is in standby mode, function not allowed
IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file

	(uc480_usb.sys) do not match.
IS_NO_SUCCESS	General error message
IS_NOT_CALIBRATED	The camera does not contain any calibration data.
IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
IS_NULL_POINTER	Invalid array
IS_SUCCESS	Function executed successfully
IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.

- is_SetOptimalCameraTiming() 338
- is_SetFrameRate() 329
- is_Exposure() 216
- is_SetAutoParameter()
- is_SetBinning() 310
- is_SetSubSampling() 347
- is_AOI() 159

4.5.47 is_ShowDDOverlay

Syntax

INT is_ShowDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[378]).

In DirectDraw BackBuffer mode, is_ShowDDOverlay() displays the overlay, i.e. the most recent data stored in the overlay buffer. With some graphics cards, overlay display may reduce the frame rate.

Input parameters

hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_HideDDOverlay() 393
- is_DisableDDOverlay() 383
- is_EnableDDOverlay() 384
- is_GetDDOvlSurface() 389
- is_SetDisplayMode() 322

4.5.48 is_StealVideo

Ĥ	Δ
USB 2.0	-

Syntax

INT is_StealVideo (HIDS hCam, INT Wait)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

Using is_StealVideo(), you can initiate the extraction of an image from the DirectDraw image data stream. The extracted image is written to the active image memory. The data includes the color format set with the $is_SetColorMode()$ and function.

You can use the <u>is_PrepareStealVideo()</u> function to specify to remove the image from the DirectDraw data stream or to copy it. If you set the copy option, the image will both be displayed using DirectDraw and copied to the currently active image memory.

See also the Events in Live Mode figure in the Event handling section.

Attention

This function is not supported in Direct3D mode.

Input parameters

hCam	Camera handle
🖃 Wait	
IS_WAIT	The function waits until the image save is complete.
IS_DONT_WAIT	The function returns immediately.

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_PrepareStealVideo() 402
- is_SetDisplayMode() 322
- is_SetColorMode() 319
- is_AllocImageMem()
- is_SetImageMem() 337
- is_SetAllocatedImageMem() 301

4.5.49 is_UnlockDDMem

Syntax

INT is_UnlockDDMem (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[379]).

Using $is_UnlockDDMem()$, you can unlock the image memory in the DirectDraw modes. This results in a refresh of the BackBuffer contents on the screen.

Input parameters

hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_LockDDMem() 400
- is_LockDDOverlayMem()
- is_UnlockDDOverlayMem() 449
- is_LockSeqBuf() 289
- is_UnlockSeqBuf() 354
- is_UpdateDisplay() 450

4.5.50 is_UnlockDDOverlayMem

E	۵
USB 2.0	-

Syntax

INT is_UnlockDDOverlayMem (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u> [379]).

Using is_UnlockDDOverlayMem(), you can unlock the overlay buffer in DirectDraw BackBuffer mode. This results in an overlay buffer refresh on the screen, provided that the overlay display was enabled using $is_{\text{ShowDDOverlay}()}$

Input parameters

hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_LockDDOverlayMem()
- is_UnlockDDOverlayMem() 449
- is_LockDDMem() 400
- is_UnlockDDMem() 448
- is_LockSeqBuf() [289]
- is_UnlockSeqBuf() 354
- is_UpdateDisplay() [450]

4.5.51 is_UpdateDisplay

Syntax

INT is_UpdateDisplay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the <u>is_DirectRenderer()</u> [198] function instead (see also <u>Obsolete functions</u>[378]).

Using $is_UpdateDisplay()$, you can manually update the screen output in the DirectDraw modes. In normal operation, the driver performs updates automatically. There may be cases, however, where a manual update of the screen output is necessary.

Input parameters

hCam Camera handle		
	hCam	Camera handle

Return values

IS_SUCCESS	Function executed successfully
IS_NO_SUCCESS	General error message

- is_SetDisplayMode() 322
- is_LockDDOverlayMem()
- is_UnlockDDOverlayMem()
- is_LockDDMem() 400
- is_UnlockDDMem() 448

4.6 Programming Notes

Note

Parameter Validity

Functions that refer to an initialized camera have the camera handle HIDS hCam as the first parameter. All parameters that are set using these functions remain valid for as long as the handle is valid, that is, until you close the corresponding camera or exit the program. The next time you open the camera, it is initialized with the defaults again.

Attention

All input parameters of a function have to be initialized with valid values before the function is called; this also applies to parameters that are not used. Variables can be preset with '0', for example. For unused parameters, the NULL pointer has to be passed.

The uc480.h header file

The uc480.h header file contains all the definitions and constants needed for the uc480 API. After the installation of the uc480 drivers you will find this file in the directory:

- Windows: C:\Program Files\Thorlabs\DCx Cameras\Develop\include
- Linux: /usr/include

Note

Note on older functions

If it is necessary to continue working with the older functions, it is possible to add the $uc480_deprecated.h$ header file additionally to the $uc480_h$ header file. The $uc480_deprecated.h$ header file contains all obsolete function definitions and constants which are no longer part of the $uc480_h$ header file.

See also:

- Programming in C / C++ 451
- Programming in C# 452
- Programming in VB.NET 452
- Programming in Delphi 452
- Programming with ActiveX 453
- Thread programming 453

4.6.1 Programming in C/C++

For programming with the uc480 API, we suggest to use the C/C++ programming language. This programming language offers efficient access to all functions of the uc480 API. Enabling access to image memory contents through pointers, C/C++ is especially suitable for image processing applications.

Most of the uc480 sample programs were created in Microsoft Visual Studio using the C++ programming language.

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

Required Files

In order to access the uc480 API, make sure to include the following files in your project:

- Header file: uc480.h
- Lib file: uc480_api.lib
- Function library (DLL): uc480_Api.dll

In order to access the DCx Camera AVI functions, make sure to include the following files in your project:

- Header file: uc480_tools.h
- Lib file: uc480_tools.lib

DCx Cameras

• Function library (DLL): uc480_tools.dll

In order to access the uc480 DirectShow functions, make sure to include the following files in your project:

- Header file: uc480CaptureInterface.h
- DirectShow interface: uc480capture.ax

Note

Programming under Linux

In order to access the uc480 API, make sure to include the following files in your project:

- Header file: uc480.h
- Library: libuc480_api.so

4.6.2 Programming in C#

We suggest to use the C# programming language for the creation of visualization applications. While it is possible to access image memory contents, doing so is more tedious than in C/C++ due to the 'managed code'. To access image memory contents in C#, you can use 'unsafe code' or the 'Marshall class'. Some system-level functions, such as Windows event handling, can be integrated using the Windows API.

The uc480 SDK includes sample programs for programming with Microsoft Visual Studio in the C# programming language.

Required Files

In order to access the uc480 API in C#, make sure to include the following files in your project:

- Header file: uc480.cs
- Function library (DLL): uc480_Api.dll

In order to access the uc480 AVI functions in C#, make sure to include the following files in your project:

- Header file: uc480_tools.cs
- Function library (DLL): uc480_tools.dll

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

4.6.3 Programming in VB.NET

We suggest to use the Visual Basic programming language for the creation of applications which are exclusively used for visualization purposes. The access to image memory contents is extremely tedious due to the missing pointer arithmetics.

We suggest to use the <u>uc480 ActiveX component</u> when programming in VB.Net. The uc480 SDK includes a sample program for programming with Microsoft Visual Studio in the VB.NET programming language using the uc480 ActiveX component.

The constants can be looked up in the uc480.h file.

4.6.4 Programming in Delphi

The uc480 SDK does not provide direct integration of the uc480 API for the Delphi programming language. In order to use the uc480 API in Delphi, you need to create separate header files. We suggest to use the uc480 ActiveX component (see also <u>Programming with ActiveX</u>) when programming in Delphi.

Attention

To use the uc480_api.dll in Delphi, the <code>cdecl</code> calling convention has to be used.

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

4.6.5 **Programming with ActiveX**

The uc480 SDK comes with an ActiveX component that allows you to use almost all functions of the DCx Camera. Programming the uc480 ActiveX component is described in the uc480 ActiveX Manual. After the installation, you will find this manual in the C:\Programs\uc480\Help directory.

Note

ActiveX is only available on Windows systems.

Required Files

In order to access the uc480 ActiveX component, make sure to include the following file in your project:

• ActiveX control: uc480Cam.ocx

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

4.6.6 Thread Programming

In general, the uc480 API is thread-safe. This means that the uc480 API can be accessed by multiple threads simultaneously. Simultaneous attempts to call the same function are recognized and prevented by the driver.

Note

Multi-threading

We recommend that you call the following functions from one thread per camera in order to avoid unpredictable behavior of the application.

- is_InitCamera() 273
- is_SetDisplayMode() 322
- is_ExitCamera() 213

Attention

Using USB cameras under Windows

The following events require a Windows message loop. This message loop has to be executed by the thread that loads the uc480 API. The message loop is usually provided by the application window. In some cases, the message loop might not be created automatically (e.g. in console applications). In this case you will need to implement the message loop yourself.

This applies to the following uc480 events:

- IS_SET_EVENT_REMOVED
- IS_SET_EVENT_REMOVAL
- IS_SET_EVENT_DEVICE_RECONNECTED
- IS_SET_EVENT_NEW_DEVICE

If no message loop exists, a USB camera will not be automatically detected after reconnecting.

4.7 Lists

- Complete list of all return values 454
- Error codes of AVI functions 457
- Linux: not supported functions
 457

4.7.1 Complete List of All Return Values

No	Error	Description
-1	IS_NO_SUCCESS	General error message
0	IS_SUCCESS	Function executed successfully
1	IS_INVALID_CAMERA_HANDLE	Invalid camera handle Most of the uc480 SDK functions expect the camera handle as the first parameter.
2	IS_IO_REQUEST_FAILED	An IO request from the uc480 driver failed. Possibly the versions of the uc480_api.dll (API) and the driver file (uc480_usb.sys) do not match.
3	IS_CANT_OPEN_DEVICE	An attempt to initialize or select the camera failed (no camera connected or initialization error).
11	IS_CANT_OPEN_REGISTRY	Error opening a Windows registry key
12	IS_CANT_READ_REGISTRY	Error reading settings from the Windows registry
15	IS_NO_IMAGE_MEM_ALLOCATED	The driver could not allocate memory.
16	IS_CANT_CLEANUP_MEMORY	The driver could not release the allocated memory.
17	IS_CANT_COMMUNICATE_WITH_DRIVER	Communication with the driver failed because no driver has been loaded.
18	IS_FUNCTION_NOT_SUPPORTED_YET	The function is not supported yet.
32	IS_INVALID_CAPTURE_MODE	The function can not be executed in the current camera operating mode (free run, trigger or standby).
49	IS_INVALID_MEMORY_POINTER	Invalid pointer or invalid memory ID
50	IS_FILE_WRITE_OPEN_ERROR	File cannot be opened for writing or reading.
51	IS_FILEREAD_OPEN_ERROR	The file cannot be opened.
52	IS_FILE_READ_INVALID_BMP_ID	The specified file is not a valid bitmap file.
53	IS_FILE_READ_INVALID_BMP_SIZE	The bitmap size is not correct (bitmap too large).
108	IS_NO_ACTIVE_IMG_MEM	No active image memory available. You must set the memory to active using the is_SetImageMem () function or create a sequence using the is_AddToSequence() function.
112	IS_SEQUENCE_LIST_EMPTY	The sequence list is empty and cannot be deleted.
113	IS_CANT_ADD_TO_SEQUENCE	The image memory is already included in the sequence and cannot be added again.
117	IS_SEQUENCE_BUF_ALREADY_LOCKED	The memory could not be locked. The pointer to the buffer is invalid.
118	IS_INVALID_DEVICE_ID	The device ID is invalid. Valid IDs start from 1 for USB cameras, and from 1001 for GigE cameras.
119	IS_INVALID_BOARD_ID	The board ID is invalid. Valid IDs range from 1 through 255.
120	IS_ALL_DEVICES_BUSY	All cameras are in use.
122	IS_TIMED_OUT	A timeout occurred. An image capturing process could not be terminated within the allowable period.
123	IS_NULL_POINTER	Invalid array

No	Error	Description
125	IS_INVALID_PARAMETER	One of the submitted parameters is outside the valid range or is not supported for this sensor or is not available in this mode.
127	IS_OUT_OF_MEMORY	No memory could be allocated.
129	IS_ACCESS_VIOLATION	An internal error has occured.
139	IS_NO_USB20	The camera is connected to a port which does not support the USB 2.0 high-speed standard. Cameras without a memory board cannot be operated on a USB 1.1 port.
140	IS_CAPTURE_RUNNING	A capturing operation is in progress and must be terminated before you can start another one.
145	IS_IMAGE_NOT_PRESENT	The requested image is not available in the camera memory or is no longer valid.
148	IS_TRIGGER_ACTIVATED	The function cannot be used because the camera is waiting for a trigger signal.
151	IS_CRC_ERROR	A CRC error-correction problem occurred while reading the settings.
152	IS_NOT_YET_RELEASED	This function has not been enabled yet in this version.
153	IS_NOT_CALIBRATED	The camera does not contain any calibration data.
154	IS_WAITING_FOR_KERNEL	The system is waiting for the kernel driver to respond.
155	IS_NOT_SUPPORTED	The camera model used here does not support this function or setting.
156	IS_TRIGGER_NOT_ACTIVATED	The function is not possible as trigger is disabled.
157	IS_OPERATION_ABORTED	The dialog was canceled without a selection so that no file could be saved.
158	IS_BAD_STRUCTURE_SIZE	An internal structure has an incorrect size.
159	IS_INVALID_BUFFER_SIZE	The image memory has an inappropriate size to store the image in the desired format.
160	IS_INVALID_PIXEL_CLOCK	This setting is not available for the currently set pixel clock frequency.
161	IS_INVALID_EXPOSURE_TIME	This setting is not available for the currently set exposure time.
162	IS_AUTO_EXPOSURE_RUNNING	This setting cannot be changed while automatic exposure time control is enabled.
163	IS_CANNOT_CREATE_BB_SURF	The BackBuffer surface cannot be created.
164	IS_CANNOT_CREATE_BB_MIX	The BackBuffer mix surface cannot be created.
165	IS_BB_OVLMEM_NULL	The BackBuffer overlay memory cannot be locked.
166	IS_CANNOT_CREATE_BB_OVL	The BackBuffer overlay memory cannot be created.
167	IS_NOT_SUPP_IN_OVL_SURF_MODE	Not supported in BackBuffer Overlay mode.
168	IS_INVALID_SURFACE	Back buffer surface invalid.
169	IS_SURFACE_LOST	Back buffer surface not found.
170	IS_RELEASE_BB_OVL_DC	Error releasing the overlay device context.
171	IS_BB_TIMER_NOT_CREATED	The back buffer timer could not be created.
172	IS_BB_OVL_NOT_EN	The back buffer overlay was not enabled.
173	IS_ONLY_IN_BB_MODE	Only possible in BackBuffer mode.
174	IS_INVALID_COLOR_FORMAT	Invalid color format
175	IS_INVALID_WB_BINNING_MODE	Mono binning/mono sub-sampling do not support automatic white balance.

DCx Cameras

No	Error	Description
176	IS_INVALID_I2C_DEVICE_ADDRESS	Invalid I ² C device address
177	IS_COULD_NOT_CONVERT	The current image could not be processed.
178	IS_TRANSFER_ERROR	Transfer error. Frequent transfer errors can mostly be avoided by reducing the pixel rate.
179	IS_PARAMETER_SET_NOT_PRESENT	Parameter set is not present.
180	IS_INVALID_CAMERA_TYPE	The camera type defined in the .ini file does not match the current camera model.
181	IS_INVALID_HOST_IP_HIBYTE	Invalid HIBYTE of host address
182	IS_CM_NOT_SUPP_IN_CURR_DISPLAYMODE	The color mode is not supported in the current display mode.
183	IS_NO_IR_FILTER	No IR filter available
184	IS_STARTER_FW_UPLOAD_NEEDED	The camera's starter firmware is not compatible with the driver and needs to be updated.
185	IS_DR_LIBRARY_NOT_FOUND	The DirectRenderer library could not be found.
186	IS_DR_DEVICE_OUT_OF_MEMORY	Not enough graphics memory available.
187	IS_DR_CANNOT_CREATE_SURFACE	The image surface or overlay surface could not be created.
188	IS_DR_CANNOT_CREATE_VERTEX_BUFFER	The vertex buffer could not be created.
189	IS_DR_CANNOT_CREATE_TEXTURE	The texture could not be created.
190	IS_DR_CANNOT_LOCK_OVERLAY_SURFACE	The overlay surface could not be locked.
191	IS_DR_CANNOT_UNLOCK_OVERLAY_SURFACE	The overlay surface could not be unlocked.
192	IS_DR_CANNOT_GET_OVERLAY_DC	Could not get the device context handle for the overlay.
193	IS_DR_CANNOT_RELEASE_OVERLAY_DC	Could not release the device context handle for the overlay.
194	IS_DR_DEVICE_CAPS_INSUFFICIENT	Function is not supported by the graphics hardware.
195	IS_INCOMPATIBLE_SETTING	Because of other incompatible settings the function is not possible.
196	IS_DR_NOT_ALLOWED_WHILE_DC_IS_ACTIVE	A device context handle is still open in the application.
197	IS_DEVICE_ALREADY_PAIRED	The device is already paired.
198	IS_SUBNETMASK_MISMATCH	The subnet mask of the camera and PC network card are different.
199	IS_SUBNET_MISMATCH	The subnet of the camera and PC network card are different.
200	IS_INVALID_IP_CONFIGURATION	The configuration of the IP address is invalid.
201	IS_DEVICE_NOT_COMPATIBLE	The device is not compatible to the drivers.
202	IS_NETWORK_FRAME_SIZE_INCOMPATIBLE	The settings for the image size of the camera are not compatible to the PC network card.
203	IS_NETWORK_CONFIGURATION_INVALID	The configuration of the network card is invalid.
204	IS_ERROR_CPU_IDLE_STATES_CONFIGURATION	The configuration of the CPU idle has failed.
205	IS_DEVICE_BUSY	The camera is busy ad cannot transfer the requested image.

No.	Error	Description
300	IS_AVI_NO_ERR	Function executed successfully.
301	IS_AVI_ERR_INVALID_FILE	The file has no valid AVI format.
302	IS_AVI_ERR_NEW_FAILED	No memory could be allocated for the AVI file.
303	IS_AVI_ERR_CREATESTREAM	No AVI stream could be created.
304	IS_AVI_ERR_PARAMETER	One of the submitted parameters is outside the valid range.
305	IS_AVI_ERR_NO_CODEC_AVAIL	The maximum number of instances allowed in this system has been reached. It is not possible to create another instance.
306	IS_AVI_ERR_INVALID_ID	The indicated AVI instance could not be found. Either the AVI ID is invalid or the instance has already been deleted using <u>isavi_ExitAVI()</u> [362].
307	IS_AVI_ERR_COMPRESS	The last image compression failed.
309	IS_AVI_ERR_CAPTURE_RUNNING	Another capturing operation is in progress or an AVI file is still open.
310	IS_AVI_ERR_CAPTURE_NOT_RUNNING	No capturing operation is running or no AVI file is opened.
311	IS_AVI_ERR_PLAY_RUNNING	A playback is already running.
312	IS_AVI_ERR_PLAY_NOT_RUNNING	No playback is running.
313	IS_AVI_ERR_WRITE_INFO	The AVI file could not be modified.
314	IS_AVI_ERR_INVALID_VALUE	The q parameter is outside the range of 1100.
315	IS_AVI_ERR_ALLOC_MEMORY	No memory could be allocated.
316	IS_AVI_ERR_INVALID_CM	The submitted color mode is not supported for AVI capturing.
317	IS_AVI_ERR_COMPRESSION_RUN	The current image could not be processed since compression is still in progress.
318	IS_AVI_ERR_INVALID_SIZE	The submitted size is invalid.
319	IS_AVI_ERR_INVALID_POSITION	The submitted position is invalid.
320	IS_AVI_ERR_INVALID_UEYE	No DCx camera was found.
321	IS_AVI_ERR_EVENT_FAILED	The event could not be initialized. The Windows SetEvent function failed.

4.7.2 Error Codes of AVI Functions

4.7.3 Linux: Not Supported Functions

The following uc480 API functions are not supported by the Linux driver version 4.20 and older:

is_DirectRenderer()
is_GetColorDepth()
is_GetDC() 388
is_ReleaseDC()
is_RenderBitmap()
is_SetDisplayMode()
is_SetDisplayPos()
is_SetHwnd() 433
is_SetOptimalCameraTiming()
is_UpdateDisplay()

5 Specifications

This chapter lists the specifications of the available DCx camera models.

- Model comparison
- Camera and sensor data 460
- Mechanical specifications
 472
- Electrical specifications
- <u>Accessories</u> 497

5.1 Model Comparison

The following table outlines the key features of DCx camera series for direct comparison (see also the \underline{DCx} <u>Camera Family</u> 14 chapter).

	DCC1545M DCC1645C	DCU223x DCU224x	DC1240x	DC3240x
Sensor Type	CMOS	CCD	CMOS	CMOS
Objective Mount	CS (C*)	С	С	С
EMC compliance	CE B FCC B	CE A FCC A	CE B FCC A	CE A FCC A
WxHxD [mm] (CCD size)	44 x 44 x 25.6	32 x 34 x 30.2 (37.2)	32 x 34 x 30.2	29 x 29 x 29
Mounting holes bottom top side	1 0 0	2 3 3	2 3 3	2 3 3
Thread diameter	1/4" (#8-32, M4)*)	#8-32, M4	#8-32, M4	1/4" (#8-32, M4)*)
Adjustable flange back distance	+	-	-	-
IP protection class 509	30	30	30	30
Interface	USB 2.0	USB 2.0	USB 2.0	USB 3.0 USB 2.0
Power supply	USB	USB	USB	USB
Lockable connector	-	+	+	+
I/O connector	10-pin connector	9-pin micro D-SUB	9-pin micro D-SUB	8-pin HR25
Optocoupler for I/O	-/-	1/1	1/1	1/1
Optocoupler speed	-	100 µs	100 µs	High (trigger)
Max. cable length (m)	5	5	5	5
Dig. I/O/GPIO	0/0/0	1/1/0	1/1/0	1/1/2
PWM	-	-	-	+
RS-232	-	-	-	+ (GPIO)
I ² C bus	-	-	-	-
Hot pixel correction	Software	Software	Software	Hardware
Color calculation	Software	Software	Software	Hardware
Hardware: Dig. Subsampling/Binning	-	-	-	+
Bit depth: Internal/ transferred	8/8	8/8	8/8	16/16
LUT: Internal/ transferred	-	-	-	12/12
Max. pixel clock (MHz) at full resolution	43	43	43	480
Max. data rate (MBytes/s)	38	38	38	300

*) with supplied adapter

5.2 Model Naming Conventions

In the table below, you will find an overview of all the models in the DCx camera series.

			DC	х	##	#	х
Short for "Digital Camera							
C CMOS							
U CCD							
Sensor and shutter type							
12 15/16 22 32	CMOS Global Shutter CMOS Rolling Shutter CCD Progressive Scan CMOS Global Shutter, USB3						
Resolution							
3 4, 40, 45	XGA SXGA	1024 x 768 (0.78 MPixel) 1280 x 1024 (1.30 MPixel)					
	Color / Mono						
M C N	Monochrome sensor Color sensor Near Infrared sensor						

5.3 Camera and Sensor Data

In this chapter the technical properties of the sensors are listed. You can look up e.g. binning factors. Also you will find the parameters for the different interfaces.

Cameras with CMOS sensors

- <u>DCC1240x / DCC3240x</u> 461
- <u>DCC1545M</u> 464
- <u>DCC1645C</u> 466

Cameras with CCD sensors

- <u>DCU223x</u> 468
- <u>DCU224x</u> 470

Note:

The diagrams shown in the sensor specifications section indicate the **relative** sensitivities of the DCx Cameras in the spectral range. Therefore, the characteristic curves cannot be compared to each other.

5.3.1 DCC1240x / DCC3240x

Sensor specification	
Sensor type	CMOS
Shutter system	Electronic global and rolling shutter
Characteristic	Linear
Readout mode	Progressive scan
Resolution class	SXGA
Resolution	1280 x 1024 pixels (1.3 Megapixel)
Aspect ratio	5:4
Bit depth 4h	10 bits *8
Optical sensor class	1/1.8 inch
Exact sensitive area	6.784 mm x 5.427 mm
Exact optical sensor diagonal	8.69 mm (1/1.84 inch)
Pixel size	5.30 µm, square
Micro lens shift 25	12°
Sensor name, monochrome	e2v EV76C560ABT
Sensor name, color	e2v EV76C560ACT
Sensor name, NIR *7	e2v EV76C661ABT
Special features	 Automatic hotpixel correction in the sensor, see <u>is_HotPixel()</u> [260] Multi AOI with 2 or 4 AOI, see <u>Camera basics: AOI</u> [35] Sequence AOI Sensor internal image scaler, downscaling by factor 14, see <u>is_SetSensorScaler()</u> [340] and <u>uc480 Viewer: Size</u> [97]) Allows to switch between global and rolling shutter readout, see <u>is_DeviceFeature()</u> [192]
Gain	

Monochrome model (master gain)	4x			
Color model (master / RGB)	4x / 3.96x			
Gain boost		2x		
Camera timing		DCC1240x	DCC3240x	
Pixel clock range (allowed/ recommended)	MHz	7 to 35 / 35*1	5 to 85 / 85*1	
Max. pixel clock with subsampling/ binning	MHz	85 ^{*1}	85 ^{*1}	
Frame rate (freerun mode)	fps	25.8 ^{*2}	60.0 ^{*2}	
Frame rate (trigger mode, 1 ms exposure)	fps	24.7 ^{*2}	56.9 ^{*2}	
Exposure time in freerun mode	ms	0.009 ^{*2} to 2000 ^{*3}	0.009 ^{*2} to 2000 ^{*3}	
Exposure time in trigger mode	ms	0.009 ^{*2} to 2000 ^{*3}	0.009 ^{*2} to 2000 ^{*3}	
AOI				
Mode		Horizontal	+ Vertical ^{*4}	
AOI image width, step width	Pixels	16 to 1280, 4	16 to 1280, 4	
AOI image height, step width	Pixels	4 to 1024, 2	4 to 1024, 2	
AOI position grid horizontal, vertical	Pixels	2, 2	2, 2	
AOI frame rate, 640 x 480 pixels (VGA)	fps	52.0	123.0	
AOI frame rate, 320 x 240 pixels (CIF)	fps	98.0	229.0	

Binning				
Mode		Horizontal + Vertical*4		
Method		H + V combined, mono/color binning, H: additive. V: averaging		
Factors		2x		
Frame rate with 2x binning, 640 x 480 pixels (VGA)	fps	60.0	64.0	
Subsampling				
Mode		Scaler		
Hardware trigger				
Mode		Asynchronous	Asynchronous	
Trigger delay with rising edge	μs	20 ±0.25	3 ±0.25 ^{*6}	
Trigger delay with falling edge	μs	33 ±0.25	21 ±0.25 ^{*6}	
Additive trigger delay (optional)	μs	15 µs4 s	15 µs4 s	
Power consumption ^{*5}				
	W	0.3 to 0.7	1.3 ^{*5}	

** Not yet defined.

*1 The maximum possible pixel clock frequency depends on the PC hardware used.

*² Requires maximum pixel clock frequency.
 *³ Requires minimum pixel clock frequency.

*4 Use of this function increases the frame rate.

*⁵ The power consumption depends on the sensor model and the pixel clock setting.

*6 Not yet confirmed

*7 DCC3240N only

*8 Only for USB3.0 transmission (DCC3240x), with USB2.0 - bit depth is 8 bit.

Please see also the DCC1240x / DCC3240x Application Notes 63 chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCC1240M (monochrome) / DCC3240x (monochrome and NIR)

Sensor sensitivity of the DCC1240C / DCC3240C

5.3.2 DCC1545M

Sensor specification				
Sensor type	CMOS			
Shutter system	Electronic rolling shutter			
Readout mode	Progressive scan			
Resolution class		SXGA		
Resolution		1280 x 1024 pixels (1.31 Megapixel)		
Aspect ratio		5:4		
<u>Bit depth</u> ₄ħ		10 bits		
Optical sensor class		1/2 inch		
Exact sensitive area		6.656 x 5.325 mm		
Exact optical sensor diagonal		8.52 mm (1/1.88 inch)		
Pixel size		5.20 µm, square		
Sensor name		Aptina MT9M001 (monochrome)		
Gain				
Monochrome model (master gain)		13x		
Analog gain boost		1.5x		
Camera timing				
Pixel clock range	MHz	5 to 43 ^{*1}		
Max. pixel clock with subsampling/ binning	MHz	48 ^{*1}		
Frame rate (freerun mode)	fps	25.0 ^{*2}		
Frame rate (trigger mode, 1 ms exposure)	fps	25.0 ^{*2}		
Exposure time in freerun mode	ms	0.037 ^{*2} to 983 ^{*2}		
Exposure time in trigger mode	ms	0.037 ^{*2} to 983 ^{*2}		
AOI				
Mode	Horizontal ^{*4} + Vertical ^{*4}			
AOI image width, step width	Pixels	32 to 1280, 4		
AOI image height, step width	Pixels	4 to 1024, 2		
AOI position grid horizontal, vertical	Pixels	4, 2		
AOI frame rate, 640 x 480 pixels (VGA)	fps	84		
Binning				
Mode		none		
Subsampling				
Mode		Horizontal ^{*4} + Vertical ^{*4}		
Method		H + V: Color subsampling		
Factor		2x, 4x, 8x		
Frame rate w/ 2x subsampling, 640 x 480 pixels	fps	94		
Frame rate w/ 4x subsampling, 320 x 240 pixels	fps 258			
Hardware trigger				
Mode		Asynchronous		
Trigger delay with rising edge	μs	22.0 ±0.25		
Trigger delay with falling edge	μs	40.3 ±0.25		

Additive trigger delay (optional)	μs	15 µs4 s		
Power consumption ^{*5}				
	W	0.5 to 1.0		

*1 The maximum possible pixel clock frequency depends on the PC hardware used.

*2 Requires maximum pixel clock frequency.

*³ Requires minimum pixel clock frequency.

*4 Use of this function increases the frame rate.

*⁵ The power consumption depends on the sensor model and the pixel clock setting.

Please see also the DCC1545M Application Notes 6th chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCC1545M (monochrome)

5.3.3 DCC1645C

Sensor specification			
Sensor type	CMOS		
Shutter system	Electronic rolling shutter		
Characteristic	Linear		
Readout mode		Progressive scan	
Resolution class		SXGA	
Resolution		1280 x 1024 pixels (1.31 Megapixel)	
Aspect ratio		5:4	
Bit depth 41		10 bits	
Optical sensor class		1/3 inch	
Exact sensitive area		4.608 x 3.686 mm	
Exact optical sensor diagonal		5.90 mm (1/2.71 inch)	
Pixel size		3.60 µm, square	
Micro lens shift 25		25°	
Sensor name		Aptina MT9M131 (color)	
Gain			
Color model (master/RGB)		4.27x / 3.1x	
Analog gain boost		2.0x	
Camera timing			
Pixel clock range	MHz	5 to 40 ^{*1}	
Max. pixel clock with subsampling/binning	MHz	40 ^{*1}	
Frame rate (freerun mode)	fps	25.0 ^{*2}	
Frame rate (trigger mode, 1 ms exposure)	fps	24.9 ^{*2}	
Exposure time in freerun mode	ms	0.037 ^{*2} to 10122 ^{*3}	
Exposure time in trigger mode	ms	0.037 ^{*2} to 10122 ^{*3}	
AOI			
Mode		Horizontal*4 + Vertical*4	
AOI image width, step width	Pixels	32 to 1280, 4	
AOI image height, step width	Pixels	4 to 1024, 2	
AOI position grid horizontal, vertical	Pixels	4, 2	
AOI frame rate, 1280 x 720 pixels (HD 720)	fps	34	
AOI frame rate, 800 x 600 pixels (SVGA)	fps	61	
Binning			
Mode		none	
Subsampling			
Mode		Horizontal*4 + Vertical*4	
Method		H + V: Color subsampling	
Factor		2x, 4x	
Frame rate w/ 2x subsampling, 640 x 480 pixels	fps	89	
Frame rate w/ 4x subsampling, 320 x 240 pixels	fps	263	
Hardware trigger			
Mode		Asynchronous	
5 Specifications

Trigger delay with rising edge	μs	180.9 ±0.25			
Trigger delay with falling edge	μs	199.3 ±0.25			
Additive trigger delay (optional)	μs	ls 15 μs4 s			
Power consumption ^{*5}					
	W	0.3 to 0.8			

*1 The maximum possible pixel clock frequency depends on the PC hardware used.

*2 Requires maximum pixel clock frequency.

*³ Requires minimum pixel clock frequency.
*⁴ Use of this function increases the frame rate.

 *5 The power consumption depends on the sensor model and the pixel clock setting. Please see also the <u>DCC1645C Application Notes</u> 66 chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCC1645C

5.3.4 DCU223x

Sensor specification				
Sensor type		CCD		
Shutter system	Electronic global shutter			
Characteristic	Linear			
Readout mode		Progressive scan		
Resolution class		XGA		
Resolution		1024 x 768 pixels (0.79 Megapixel)		
Aspect ratio		4:3		
Bit depth 41		12 bits		
Optical sensor class		1/3 inch		
Exact sensitive area		4.762 x 3.571 mm		
Exact optical sensor diagonal		5.95 mm (1/2.69 inch)		
Pixel size		4.65 µm, square		
Sensor name, monochrome		Sony ICX204AL		
Sensor name, color		Sony ICX204AK		
Gain				
Monochrome model (master gain)		10.47x		
Color model (master/RGB)		7.59x/4.0x		
Analog gain boost		2.0x (monochrome model only)		
Camera timing				
Pixel clock range (allowed/ recommended)	MHz	5 to 30 / 10 to 20*1		
Pixel clock for optimal image quality	MHz	15 ^{*1}		
Max. pixel clock with subsampling/ binning	MHz	30 ^{*1}		
Frame rate (freerun mode)	fps	30.0 ^{*2}		
Frame rate (trigger mode, 1 ms exposure)	fps	28.7 ^{*2}		
Exposure time in freerun mode	ms	0.030 ^{*2} to 773 ^{*3}		
Exposure time in trigger mode	ms	0.030 ^{*2} to 10 min ^{*3}		
AOI				
Mode		Horizontal + Vertical ^{*4}		
AOI image width, step width	Pixels	16 to 1024, 4		
Mono: AOI image height, step width	Pixels	120 to 768, 1		
Color: AOI image height, step width	Pixels	120 to 768, 2		
Mono: AOI position grid horizontal, vertical	Pixels	1, 1		
Color: AOI position grid horizontal, vertical	Pixels	2, 2		
AOI frame rate, 800 x 600 pixels (SVGA)	fps	37		
AOI frame rate, 640 x 480 pixels (VGA)	fps	45		
AOI frame rate, 320 x 240 pixels (CIF)	fps	78		
Binning				
Mode		Vertical ^{*4}		

Method		V: Monochrome binning, additive
Factor		2x, 3x, 4x
Frame rate with 2x binning, 1024 x 384 pixels	fps	53
Frame rate with 3x binning, 1024 x 256 pixels	fps	71
Frame rate with 4x binning, 1024 x 192 pixels	fps	85
Subsampling		
Mode		-
Hardware trigger		
Mode		Asynchronous
Trigger delay with rising edge	μs	39.5 ±2.6
Trigger delay with falling edge	μs	57.9 ±2.6
Additive trigger delay (optional)	μs	15 μs4 s
Power consumption ^{*5}		
	W	1.0 to 1.7

^{*1} The maximum possible pixel clock frequency depends on the PC hardware used.

*² Requires maximum pixel clock frequency.
 *³ Requires minimum pixel clock frequency.

*4 Use of this function increases the frame rate.

*5 The power consumption depends on the sensor model and the pixel clock setting. Please see also the DCU223x Application Notes 6 chapter.

Relative sensor sensitivity

5.3.5 DCU224x

Sensor specification				
Sensor type		CCD		
Shutter system	Electronic global shutter			
Characteristic	Linear			
Readout mode		Progressive scan		
Resolution class		SXGA		
Resolution		1280 x 1024 pixels (1.31 Megapixel)		
Aspect ratio		5:4		
Bit depth 4h		12 bits		
Optical sensor class		1/2 inch		
Exact sensitive area		5.952 x 4.762 mm		
Exact optical sensor diagonal		7.62 mm (1/2.1 inch)		
Pixel size		4.65 µm, square		
Sensor name, monochrome		Sony ICX205AL		
Sensor name, color		Sony ICX205AK		
Gain				
Monochrome model (master gain)		13.66x		
Color model (master/RGB)		8.9/4.0x		
Analog gain boost	2.0x (monochrome model only)			
Camera timing				
Pixel clock range (allowed/ recommended)	MHz	5 to 30 / 10 to 20*1		
Pixel clock for optimal image quality	MHz	14*1		
Max. pixel clock with subsampling/ binning	MHz	30*1		
Frame rate (freerun mode)	fps	15.0 ^{*2}		
Frame rate (trigger mode, 1 ms exposure)	fps	17.0 ^{*2}		
Exposure time in freerun mode	ms	0.066 ^{*2} to 1360 ^{*3}		
Exposure time in trigger mode	ms	0.066 ^{*2} to 10 min ^{*3}		
AOI				
Mode		Horizontal + Vertical*4		
AOI image width, step width	Pixels	16 to 1280, 4		
Mono: AOI image height, step width	Pixels	120 to 1024, 1		
Color: AOI image height, step width	Pixels	120 to 1024, 2		
Mono: AOI position grid horizontal, vertical	Pixels	1, 1		
Color: AOI position grid horizontal, vertical	Pixels	2, 2		
AOI frame rate, 1024 x 768 pixels (XGA)	fps	18		
AOI frame rate, 640 x 480 pixels (VGA)	fps	28		
AOI frame rate, 320 x 240 pixels (CIF)	fps 38			
Binning				
Mode		Vertical ^{*4}		
Method		V: Monochrome binning, additive		

í literatura de la companya de						
Factor		2x, 3x, 4x				
Frame rate with 2x binning, 1280 x 512 pixels	fps	23				
Frame rate with 3x binning, 1280 x 340 pixels	fps	28				
Frame rate with 4x binning, 1280 x 256 pixels	fps	31				
Subsampling						
Mode		Vertical ^{*4}				
Method		V: Color subsampling				
Factor		4x				
Frame rate w/ 4x subsampling, 1280 x 256 pixels	fps	31				
Hardware trigger						
Mode		Asynchronous				
Trigger delay with rising edge	μs	39.9 ±2.5				
Trigger delay with falling edge	μs	57.7 ±2.5				
Additive trigger delay (optional)	μs					
Power consumption ^{*5}						
	W	1.1 to 2.1				

*1 The maximum possible pixel clock frequency depends on the PC hardware used.

*2 Requires maximum pixel clock frequency.

*3 Requires minimum pixel clock frequency.

*4 Use of this function increases the frame rate.

*5 The power consumption depends on the sensor model and the pixel clock setting.

Please see also the DCU224x Application Notes 66 chapter.

Relative sensor sensitivity

IR-Cut-Filter 650nm

Sensor sensitivity of the DCU224M (monochrome)

5.4 Mechanical Specifications

- <u>DCU223x, DCU224x</u> 473
- <u>DCC1545M, DCC1645C</u> 476
- <u>DCC1240x</u>, <u>DCC3240x</u> 474

General

- Flange back distance
- Position accuracy of the sensor
- Filter glasses 480
- Ambient conditions
 486

5.4.1 DCU223x, DCU224x

all dimensions are mm all threads M3, unless otherwise noted

5.4.2 DCC1240x

3,0mm [0,12in] 12,9mm [0,51in] Ш Ð 1 1 7,5mm [0,69in] 20,5mm [0,81in] 27,4mm [1,08in] ⁻ 41 ,5mm [1,63in] 0°26 SEA_ROHT ł Ð Ð 15,6mm [0,61in] 1 Î 17,0mm [0,67in] 11,1mm [0,44in] ACTIVE SENSOR AREA

DETAIL A SCALE 2 : 1

5.4.3 DCC3240x

DETAIL A SCALE 2 : 1 REAR VIEW

5.4.4 DCC1545M, DCC1645C

5.4.5 Flange Back Distance

- <u>Calculating the flange back distance 477</u>
- Maximum immersion depth for lenses 478

5.4.5.1 Calculating the Flange Back Distance

To correctly determine the flange back distance of a DCx camera, you need to consider the distance between the lens flange and the active area of the sensor and, additionally, the type and thickness of any materials inserted into the optical path.

The "distance in air" between the threaded flange and the active area is 17.526 mm with C-mount lenses and 12.526 mm with CS-mount lenses.

This "mechanical distance" can change due to the material-specific refractive index of the inserted materials. The glass cover of the sensor and all filters inserted into the optical path (see <u>Filter types</u> 480 table) must be taken into account in the calculation.

Calculating the flange back distance (schematic illustration)

Designation	Description
а	Distance from threaded flange to active sensor area (flange back distance) 17.526 mm ^{*1} for C-mount 12.526 mm ^{*1} for CS-mount
x	Distance from threaded flange to PCB
е	Distance from active sensor area to PCB
d	Thickness of the glass cover of the sensor
f	Filter thickness (optional)
n	Refractive index
h	Maximum sensor height above the PCB

*1 This distance describes the equivalent in air (see introduction above)

Hint

You can use the following formula to calculate the mechanical flange back distance:

$$x = a + \frac{d \times (n_{glass} - 1)}{n_{glass}} + \frac{f \times (n_{filter} - 1)}{n_{filter}} + e$$

The tolerances for the position accuracy of DCx camera sensors are given in the Position accuracy 480 chapter.

Calculating the flange back distance for DCx Cameras with C-mount

Camera model	Thickness sensor glass [mm]	Active sensor area to PCB [mm]	Flange to active sensor area without filter glass [mm]	Flange to active sensor area with filter glass [mm]	Sensor height above the PCB [mm]
Designation	d	е	X'	х	h
CMOS					
DCC1240x / DCC3240x 461	0.550	1.130	18.840	19.190	2.530
CCD					
DCU223x 468	0.750	2.810	20.590	20.930	4.780
DCU224x 470	0.750	2.810	20.590	20.930	4.830

Calculation example: UI-154x-xx with IR-cut filter

(a = 17.526 mm, d = 0.525 mm, nGlass = 1.50, f = 1mm, nFilter = 1.53; see Filter types table)

 $x = 17.526 \,\mathrm{mm} + \frac{0.525 \,\mathrm{mm} \times (1.50 - 1)}{1.50} + \frac{1.00 \,\mathrm{mm} \times (1.53 - 1)}{1.53} + 1.27 \,\mathrm{mm} = 19.32 \,\mathrm{mm}$

Calculating the flange back distance for DCC1545M and DCC1645C cameras with CS-mount

Note

For these cameras with CS-mount, the flange back distance is only 12.526 mm.

Camera model	Thickness sensor glass [mm]	Active sensor area to PCB [mm]	Threaded flange to active sensor area	Flange to active sensor area without filter glass[mm]	Flange to active sensor area with filter glass [mm]	Sensor height above the PCB [mm]
Designation	d	е	а	x	x'	h
DCC1545M 464	0.525	1.270	13.23	15.95	17.50	2.480
DCC1645C 466	0.550	1.400	13.10	16.08	17.63	2.500

5.4.5.2 Maximum Immersion Depth for Lenses

Some C-mount lenses reach deep into the camera flange. This may cause the lens to push against the back of the filter glass inside the camera or even make it impossible to screw in the lens.

The table below indicates the maximum possible immersion depth for each DCx camera model. The actual immersion depth of a lens is given in the relevant data sheet. As lens parts with a small diameter are allowed to reach deeper into the camera flange, the immersion depths are specified based on the diameter.

Beside the immersion depth also the back focal length has to be considered, that means the distance between the last lens and the sensor (named "bfl" in the image below). The back focal length can be calculated for C-mount with the following formula:

$$bfl = 17,526 - x$$

x stands for the maximum immersion depth (see table below).

Note

Front Panel of the DCU223x / DCU224x housing

Models introduced before 2008 have a different front panel. On these models, the filter glass is held in the C-mount lens connector by two screws. This front panel version is indicated by (V2) in the table below.

Camera	Туре	Thread depth	for diameter at lens end	resulting max. immersion depth (mm)		min. required back focal length (mm)	
			(Ø A, B, C in mm)	CMOS	CCD	CMOS	CCD
DCU223X			24.0	6.9	6.4		
DCU224X	C-mount	5 mm	20.0	9.4	8.9	6.4	6.9
DCC1240X			14.1	11.1	10.6		
DCU223X		5 mm	24.0	-	8.4	-	7.8
(V2) DCU224X	C-mount		17.1	-	9.2		
(V2)			14.1	-	9.7		
	CS-mount	4 mm	24.0	6.1	-	4.9	-
DCC1545M			14.6	7.6	-		
DCC1645C	C-mount with extension ring	4 mm ^{*1}	22.0 ^{*1}	11.1	-		
			14.6 ^{*1}	12.6	-		
DCC3240x			24.0	7.2	-	6.8	
	C-mount	5 mm	20.4	9.7	-		-
			14.6	10.7	-		

*1 May vary depending on the inside diameter of the extension ring used

*2 Without IR cut filter

Note

The data given in the table include the following tolerances as a safety clearance:

- Immersion depth: 0.2 mm
- Diameter: 0.2 mm

5.4.6 Position Accuracy of the Sensor

The following illustration shows the tolerance margins of the sensor position relative to the camera housing. A maximum error in all directions (rotation, translation) cannot occur simultaneously.

Position accuracy of the sensor (2)

Position accuracy inside the camera housing, in each direction	±0.3	mm
Horizontal/vertical rotation ()	±1.0	
Translational rotation ()	±1.0	
Flange back distance	±0.05	mm

Note

C-mount lenses can also be subject to inaccuracies of the flange back distance. The tolerance usually is ± 0.05 mm. In some cases, however, the inaccuracies of camera and lens might add up, resulting in a total error > 0.05 mm.

5.4.7 Filter Glasses

- Filter types 480
- Mounting the filter 484
- Cleaning the filter glasses 485

5.4.7.1 Filter Types

Each DCx camera has a filter glass in the front flange to prevent the entry of dust particles. Color cameras by default use an IR cut filter, which is required to ensure correct color rendering. The default filter glass in monochrome cameras has no filter effect. Every camera model is available with different filter variants such as daylight cut filters (type DL).

The following table shows an overview of the different optical filters used in the DCx Cameras:

Filter type	Name	Refractive index (n _{Filter})	Glass type	Thickness (f)	Cut-off wavelength	Non- reflective
IR cut filter (old)	BG	1.53	BG40	1 mm	650 nm	-
IRcut filter (new)	HQ	1.53	D263	1 mm	650 nm	On one side
Daylight cut filter	DL	1.53	RG665	1 mm	695 nm	-
Glass	GL	1.53	D263	1 mm	380 nm	On both sides

Notes

- All sensors have a D263 type cover glass. This glass is opaque to wavelengths below 330 nm.
- You can tell the filter type from visually by its coloration:
 - Reddish glass: HQ filter
 - Bluish glass: BG filter
 - Opaque glass: DL filter
 - · Plain glass: GL filter
- New DCx color cameras use an IR cut filter of the type HQ by default. This filter offers an improved accuracy of the infrared content. HQ filters achieve a higher image brightness and better color rendering compared with the BG filter.
- uc480 drivers of version V3.24 and higher determine automatically which the IR filter is used in a camera. The corresponding <u>color correction</u> is selected automatically.

Infrared cut filter (type BG)

Infrared cut filter (type HQ)

Daylight cut filter (type DL)

Plain glass filter (type GL)

Note

A different scale is used for the Y-axis of the glass filter curve, to show the curves between 400 nm and 1100 nm better.

5.4.7.2 Mounting the Filter

Attention

It is recommended to have the filter changed under clean room conditions, otherwise dust might enter the sensor area and become visible in images.

When completely removing the adjustment ring and the filter glass, the rubber gasket should also be removed. Due to expansion of the rubber gasket during installation, it's difficult to reinstall then the filter glass.

The threaded ring presses the filter glass on a rubber gasket. A properly mounted threaded ring will seal off the sensor. The threaded ring is screwed into the adjusting ring from the front with a torque of 0.2 Nm.

Threaded ring

Notes

- A special tool is required for adjusting the threaded ring!
- Some DCx camera models have a different design with a separate filter glass that is secured by two screws.

5.4.7.3 Cleaning the Filter Glasses

When using the DCx camera with it's lens removed, the filter glass may become soiled from outside. This might be visible in captured images. In such case, the filter glass needs cleaning.

Note

It is strongly recommended to return the cameras to manufacturer for professional cleaning. The manufacturer is not liable for any damage resulting from cleaning the filter glasses. This even applies if the following instructions have been observed.

Instructions for cleaning DCx camera filter glasses

- The filter glasses can be cleaned only from outside. If remove the filter glasses, the sensor might become soiled. Thorlabs is not liable for any damage to the sensor resulting from removal of the filter glasses.
- First, remove dirt particles on the glass using compressed air. Do not use compressed air from compressors or spray cans since it often contains oil droplets or droplets of other liquids. For best results, use purified nitrogen from nitrogen bottles.
- Only use lint-free wipes or cotton-free swabs for cleaning. Never touch the filter glasses with bare fingers it's mostly difficult to remove fingerprints completely!
- We recommend to use pure alcohol for cleaning. 100% isopropyl alcohol evaporates without leaving any residues. Only add small quantities of alcohol to the wipe. Never pour alcohol directly onto the camera.

Attention

Never use cleaning agents containing acetone for cleaning the filter glasses! Acetone may damage the filter glass coating and may deteriorate the optical quality of the glasses.

Cameras with fixed filter glass

Use a wipe to remove dust particles in a single sweep over the edge of the filter glass (see figure below).

Cleaning fixed DCx filter glasses

Cameras with replaceable filter glass

Use a wipe to remove dust particles in a circular sweep (see figure below).

Cleaning interchangeable DCx filter glasses

5.4.8 Ambient Conditions

Attention

- Avoid high air humidity levels and rapid temperature changes when using DCx Cameras.
- Temperatures below +4 °C (39 °F) combined with excessive relative air humidity levels can cause icing.
- At ambient temperatures above 45 °C (113 °F), the image quality could be reduced due to increased thermal noise. It is recommended to mount the camera to a heat-dissipating unit when high ambient temperatures prevail.

Note

The temperature values given above refer to the ambient temperature. The internal camera temperature is usually higher than the ambient temperature and must not exceed than 70 °C (158 °F).

	Min.	Max.	
Ambient temperature	-5 22	50 122	°C °E
	23	122	F
Storage temperature	-20 -4	60 140	°F
Relative humidity ^{*1}	20	80	%

*1 Non-condensing

Note

Non-condensing means that the relative air humidity must be below 100 %. Otherwise, moisture will form on the camera surface. If, for example, air has a relative humidity of 40 % at 35 °C (95 °F), the relative humidity will increase to over 100 % if the air cools down to 19.5 °C (67 °F); condensation begins to form.

Vibration and shock resistance

Vibration and shock resistance of the USB DCx Cameras were tested as specified in DIN EN 60068-2-6(1996-05), DIN EN 60068-2-27(1995-03) and DIN EN 60068-2-29(1995-03). The mechanical shock was at 80 g; the vibration testing was performed with sinusoidal vibration at a frequency between 30 Hz-500 Hz and an amplitude of 10 g.

5.5 Camera Interface

This section of the manual contains information on connecting the cameras and wiring IOs.

For information on a **camera's power consumption**, please refer to the <u>Camera and sensor data</u> section. This section contains information on all camera models sorted by sensor type.

- <u>DCU223x, DCU224x, DCC1240x</u> [487]
- <u>DCC3240x</u> 491
- EEPROM Specification 496

5.5.1 DCU223x, DCU224x, DCC1240x

In this section the additional digital input / output of these cameras is described in detail:

- <u>I/O Connector Pin Assignment</u> 487
- Digital Input (Trigger) Circuit
- Digital Output (Flash) Circuit 489

5.5.1.1 I/O Connector - Pin Assignment

Attention

USB cables with non-standard connectors must be connected to the camera first and then to the PC. Otherwise the camera might not be recognized correctly.

9-pin micro D-Sub socket

Pin	Description	
1	Digital output (-)	
2	Digital input (+)	
3	Shielding	9
4	USB power supply (VCC) 5 V	6
5	USB ground (GND)	
6	Digital output (+)	Micro D-Sub socket male, camera
7	Digital input (-)	rear view
8	USB data (+)	
9	USB data (-)	

Pin assignment of the CAB-DCU-Tx cable for USB 2.0, trigger and flash

Pin	Description	Cable color	\bigcirc
1	Digital output (-)	green	5
2	Digital input (+)	white	
6	Digital output (+)	yellow	DCU22xX / DCC1240X
7	Digital input (-)	brown	Micro D-Sub connector female, connecting side view

For a comprehensive list of all cables and connectors available for DCU22xX / DCC1240X cameras, please refer to the DCU22xX / DCC1240X Accessories 497 section.

5.5.1.2 Digital Input (Trigger) Circuit

Digital input specifications

USB board revision *)	1.2		2.0 or higher		
	Min.	Max.	Min.	Max.	
Level low	0	2	0	2	V
Level high	9	24	5	24	V
Voltage range	0	30	0	30	V
Trigger pulse width (edge)	100	-	100	-	μs
Trigger edge steepness	35		35		V/ms
Breakdown voltage		50		50	V
Input current	10	-	10	-	mA

Note

*) For information on how to determine the USB board revision, please refer to the <u>DCx Driver Compatibility</u> [58] chapter.

For interpreting the trigger signal, either the negative or the falling edge can be used. The digital input is galvanically isolated using an opto coupler to protect the camera and the PC against surges. Only DC voltages may be applied to the digital input.

Digital input wiring

5.5.1.3 Digital Output (Flash) Circuit

Digital output specifications

USB board revision *)	1.2	2.0 or higher	
	Max.	Max.	
Output current (short-time)	50	500	mA
Output current (permanent)	15	150	mA
Output voltage	30	30	V
Breakdown voltage	50	50	V
Collector power dissipation	100	125	mW

NOTE

*) For information on how to determine the USB board revision, please refer to the DCx Driver Compatibility shapter.

The digital output is galvanically isolated using an opto coupler to protect the camera and the PC against surges. Only DC voltages may be applied to the digital input.

The output of the opto coupler can be used as an open collector or open emitter output. This means that the output signal can be connected to ground or to the supply voltage. The output signal is active if the collector-emitter switch is closed (software setting: Flash high active, see also the <u>Camera Properties: Input/Output</u> section).

Digital output wiring

The following figures show examples of how the digital output is wired.

5.5.2 DCC3240x

- <u>I/O connector Pin Assignment</u> 491
- <u>GPIO Interface</u> 492
- Digital Input (Trigger) Circuit
- Digital Output (Flash) Circuit 494
- <u>RS-232 Serial Interface</u> 495

5.5.2.1 I/O Connector Pin Assignment

Attention

The General Purpose IO are not potential-free and have no protective circuit. Faulty wiring (overvoltage, undervoltage or inverting the wiring when used as serial interface) can result in a damage in the electronics.

During operation as serial interface only LVCMOS levels are allowed to the connector pins. To get a serial RS-232 compliant interface, an external level shifter (LVCMOS/RS-232) is required.

Applying RS-323 levels directly to the pins as well as mixing up the signals RxD and TxD can destroy the camera electronics!

Pin Description **Cable color** 1 Ground (GND) gray 2 Flash output, opto-decoupled (-) green 3 GPIO 1, 3.3 V LVCMOS blue 4 Trigger input, opto-decoupled (-) brown 5 Flash output, opto-decoupled (+) yellow 6 GPIO 2, 3.3 V LVCMOS red Hirose connector male, 7 Trigger input, opto-decoupled (+) white camera rear view 8 Output supply voltage, 5 V (100 mA) pink

Pin assignment of the 8-pin Hirose connector HR25 for trigger, flash and GPIO

For a comprehensive list of all cables and connectors available for DCC3240X cameras, please refer to the DCC3240X Accessories section.

5.5.2.2 GPIO Interface

GPIO specifications

The two GPIOs (General Purpose I/O) can be used as inputs or outputs. This selection is made by software using the corresponding SDK API functions. Please observe the following criteria:

- Input: 3.3 V LVCMOS, max. input voltage 4.0 V
- Output: 3.3 V LVCMOS, max. 10 mA

Attention

The General Purpose IO are not potential-free and have no protective circuit. Faulty wiring (overvoltage, undervoltage or inverting the wiring when used as serial interface) can result in a damage in the electronics.

During operation as serial interface only LVCMOS levels are allowed to the connector pins. To get a serial RS-232 compliant interface, an external level shifter (LVCMOS/RS-232) is required.

Applying RS-323 levels directly to the pins as well as mixing up the signals RxD and TxD can destroy the camera electronics!

GPIO wiring as input

The following figures illustrate GPIO wiring examples.

	Min.	Max.	
Signal level "Low"	0	0.8	V
Signal level "High"	2.0	4.0	V

GPIO wiring as output

	Min.	Max.	
Signal level "Low"	0	0.8	V
Signal level "High"	2.4	3.3	V
Output current	0	8.0	mA

5.5.2.3 Digital Input (Trigger) Circuit

Digital input specifications

	Min.	Max.	
Level low	0	1	V
Level high	5	24	V
Voltage range	0	-	V
Trigger pulse width (edge)	10	-	μs
Trigger edge steepness	35	-	V/ms
Breakdown voltage	-	50	V
Input current	10	-	mA

For interpreting the trigger signal, either the negative or the falling edge can be used. The digital input is galvanically isolated using an optocoupler to protect the camera and the PC against surges. Only DC voltages may be applied to the digital input.

Digital input wiring

5.5.2.4 Digital Output (Flash) Circuit

Digital output specifications

	Max.	
Output current (short-time)	500	mA
Output current (permanent)	150	mA
Output voltage	30	V
Breakdown voltage	50	V
Collector power dissipation	125	mW

The digital output is galvanically isolated using an optocoupler to protect the camera and the PC against surges. Only DC voltages may be applied to the digital output.

The output of the optocoupler can be used as an open collector or open emitter output. This means that the output signal can be connected to ground or to the supply voltage. The output signal is active if the collector-emitter switch is closed (software setting: Flash high active, see also the <u>Camera properties: Input/output 104</u> section).

Digital output wiring

The following figures show examples of how the digital output is wired.

Wiring of the digital output as an open collector output

5.5.2.5 RS-232 Serial Interface

Attention

The General Purpose IO are not potential-free and have no protective circuit. Faulty wiring (overvoltage, undervoltage or inverting the wiring when used as serial interface) can result in a damage in the electronics.

During operation as serial interface only LVCMOS levels are allowed to the connector pins. To get a serial RS-232 compliant interface, an external level shifter (LVCMOS/RS-232) is required.

Applying RS-323 levels directly to the pins as well as mixing up the signals RxD and TxD can destroy the camera electronics!

Serial interface specification

Minimum output voltage		Min.	Max.	
	Signal level "Low"	0	0.8	V
	Signal level "High"	2.0	4.0	V
Maximum input voltage		Min.	Max.	
	Signal level "Low"	0	0.8	V
	Signal level "High"	2.0	4.0	V
Supported Baud rates	9.600			baud
	19.200			
	38.400			
	57.600			
	115.200			
Transmission mode	Full duplex, 8N1			
Data bits	8			
Stop bits	1			
Parity	None	None		

Note

With the 8N1 mode, the maximum payload data rate achievable is 80% of the selected baud rate.

Serial interface wiring (UART)

The following figure shows the wiring of the serial interface with GPIO 1 as camera-side output (TxD) and GPIO 2 as camera-side input (RxD). The GPIO must be configured accordingly (see $is_{10}()$ as ()

Serial interface wiring (RS-232)

5.5.3 Camera EEPROM Specification

DCx Cameras have an EEPROM memory where the camera manufacturer, type, and serial number are stored. A 64 byte memory space can be used freely by the user.

EEPROM Specifications				
Data retention	10 years			
Read/write cycles	100,000			
Size of user data space	64 bytes			

5.6 Accessories for DCx cameras

Lenses

Thorlabs also supplies a wide variety of lenses and <u>objectives</u> from leading manufacturers. Please contact <u>Thorlabs</u> for technical support and a detailed quote tailored to your needs.

USB cables

All Thorlabs DCx cameras are shipped with a 1.5m USB2.0, A to Mini B, cable.

5.6.1 Accessories for DCU22xX / DCC1240X

For information on the pin assignment of the cables and connectors see chapter Pin Assignment I/O Connector 4871.

USB Cables with Cables for digital I/Os

CAB-DCU-T1 (angled Micro D SUB camera connector; trigger in / out)

CAB-DCU-T2 (straight Micro D SUB camera connector, trigger in only)

Туре	Length	Cable Type	Function	Connector Camera Side	Connector PC Side
CAB-DCU-T1	3 m	<u>USB cable</u> , AWG 28, single shielded, additional cable for	USB & Trigger in / out	Micro D-Sub for screw-mounting, angled	USB 2.0
CAB-DCU-T2	3 m	<u>digital I/Os</u> , 4-wire, open wires	USB & Trigger in	Micro D-Sub for screw-mounting, straight	Туре А

5.6.2 Accessories for DCC1x45X

For USB cables and accessories see also <u>Accessories for all DCx cameras</u> [497].

DCC1545M and DCC1645C CS mount cameras are delivered with both CS / C objective mount adapter and CS / SM1 1" optics adapters.

5.6.3 Accessories for DCC3240x

CONNECTOR: HIROSE HR25-7TP-8S(72)

Туре	Length	Cable Type	Function	Connector Camera Side
CAB-DCU-T3	3 m	Shielded high-flexible control cable 8 x0.1mm, Ø 4.9mm	GPIO digital in (trigger) digital out (flash)	Hirose 8 pin (HR25)

Pin assignment of the 8-pin Hirose connector HR25 for trigger, flash and GPIO

Pin	Description	Cable color
1	Ground (GND)	gray
2	Flash output, opto-decoupled (-)	green
3	GPIO 1, 3.3 V LVCMOS	blue
4	Trigger input, opto-decoupled (-)	brown
5	Flash output, opto-decoupled (+)	yellow
6	GPIO 2, 3.3 V LVCMOS	red
7	Trigger input, opto-decoupled (+)	white
8	Output supply voltage, 5 V (100 mA)	pink

6 Appendix

- Troubleshooting/FAQ 499
- Status LED on USB DCx Cameras 501
- <u>Color and memory formats</u>
- uc480 parameter file (ini file) 504
- History of uc480 software versions 509
- History of API functions 516

6.1 Troubleshooting/FAQ

Installation and connection

■ Installation of the uc480 software fails.

You need administrator privileges to install the software. Operating the cameras, however, does not require administrator privileges.

The camera is connected to the PC, but cannot be opened in uc480 Viewer.

Check the LED on the camera 501:

- LED is **red:** Camera detection failed. Check whether the uc480 driver software has been installed. Disconnect and reconnect the camera to the USB cable. The camera should then be correctly recognized. If the camera is still not listed in the <u>uc480 Camera Manager</u> (a), open the Windows Device Manager to check whether the camera has been correctly recognized. If recognition was successful, you will find an entry in the format "uc480.....cameras" under "Universal Serial Bus Controllers." A question mark or exclamation mark before the entry indicates that camera was not correctly recognized. You can remove the entry using the shortcut menu (right-click). Disconnect and reconnect the camera. The Found New Hardware Wizard will detect it as a new device and install the appropriate drivers. The camera should then be correctly recognized.
- LED is green: The camera is fully operational. Check whether the camera has been opened in a different application.
- LED is **off:** No power supply to the camera. Check the cable, the connectors and, if applicable, the power supply to the hubs. In case of a DCU22xX or DC1240X camera, check whether any pins of the micro D-sub connector ^[487] have been bent.
- LED flashes: A fault has occurred in the camera hardware. Please contact the Thorlabs 518.

USB DCx camera operation

The camera can be opened in the software, but captures images sporadically or not at all.

Check the status bar 79 in the uc480 Viewer software. If the status bar indicates transfer errors, the camera speed settings are too high for the system you are using. Check the following:

- Use only USB 2.0 (USB 3 in case of DCC3240x) certified cables and hubs.
- Do not use any passive extension cables.
- Do not connect the camera to the USB ports on the front of the PC, but to the ones directly on the main board. You will find those USB ports at the back of the PC.

In addition, check the following camera settings in the software:

- Pixel clock frequency: Reduce the pixel clock 4 if data transfer errors occur. When you are operating more than one USB camera on one port, the pixel clock of all the cameras added together should not exceed about 40 MHz.
- Is it possible to operate an older USB camera with Windows 7?
- Look for the serial number to see if your camera can be operated with Windows 7:
- The support for Windows 7 was introduced with driver version 3.50. This driver can be used with cameras from serial number 400 26 27000 on.

Using the uc480 Viewer software

I have added comments and drawings to a camera image. How can I save the image with this data?

To save a camera image with all the included text and drawings, select "Save window" from the <u>Draw/Measure</u> rent menu. The menu also provides an option for saving only the drawings, so you can load them again later.

6.1.1 PCs with Energy Saving CPU Technology

This application note is related to all DCx USB cameras connected to PC systems using current CPU models that implement modern energy saving technologies.

Symptoms:

- Low USB bandwidth provided by the PC system
- TransferFailed errors occurring even at moderate pixel clock settings
- Camera operates at low speed only

Summary:

Current CPUs with modern energy saving features can cause bandwidth limitations on USB. The only available approach to this issue is to disable CPU sleep states. Unfortunately this is not possible for all systems.

Detailed explanation:

Modern CPUs like Intel i5 & i7 and others make use of advanced energy saving technologies ensuring a low power consumption and long battery life for mobile

devices. Additionally those CPU implement features for increasing the performance of single cores if there is enough thermal headroom available when other cores have little load.

A basic idea to achieve this is to put a CPU core to sleep while there is nothing to do for it. Various different activity states of CPU cores are available in modern CPUs. These CPU states are referred to as "C-states". C0 is the working state of a core.

Increasing numbers refer to less activity and longer wake up times. Current CPU fall down to variations of the C3 state which are referred to as "Sleep", "Deep Sleep" and similar.

Unfortunately negative effects of the sleep states have shown up. It is observed that the available bandwidth of PC busses drops significantly when part of the CPU enters these states.

The operation of DCx USB cameras is affected by the sleep states because they reduce the speed of the USB system. The available bandwidth on the USB may drop down to around 30% of the maximum bandwidth when the CPU, or one of its cores, enters sleeping states.

One would expect that a CPU core will not fall into a sleep state while it is obviously needed for the operation of the USB. But obviously USB data transfers do not prevent the CPU from falling to sleep. If the code execution load of a CPU core is low enough it will fall asleep and immediately reduce the USB bus speed.

For operation at high frame rates DCx cameras require an adequate USB bandwidth which might not be available when CPU cores are in sleep states.

Advice:

If you seem to be running into this low bandwidth issue please check and try the following. These first hints are general recommendations for issues with the USB

data transfer. You can check the USB performance with the "Optimum" pixel clock settings checkbox in uc480 Demo software. A good USB system should be able to reach a pixel clock setting near the maximum value.

- Please remove other USB devices from the system (USB keyboard and mouse are fine). Run tests with only one camera connected at once.
- Make sure using a USB port directly on the mainboard. Front panel or other ports are connected to the mainboard with poor cabling quality frequently.
- Make sure to use USB2.0 certified cables to connect the camera.
- If you are using USB hubs or extensions: Run a test without these devices, connect the camera directly to the PC.
- Disable other equipment that is connected via USB. For example WLAN and Bluetooth adapters might use USB to connect.
- If you are using a mobile PC: run it on mains power, not battery.
- Check your energy saving options in the operating system. Disable energy saving features and set the available features to "full performance" or similarly named options.

If you checked the above and still observe low USB performance you might be experiencing the issue with CPU sleep states.

6.2 Status LED on USB DCx Cameras

DCU223x, DCU224x and DCC1240x

The LED on the rear side of the USB DCx camera indicates whether

- the DCx camera is powered on LED lights up red (only USB board rev. 2.0 or higher).
- the uc480 driver has been loaded and the camera is operational LED lights up green
- an error has occurred green LED flashes:
- 2x flash: unknown sensor, please contact our Thorlabs [518] team.

If the LED does not light up green, please check the following:

- Has the camera been connected correctly?
- Have the driver and the camera been installed properly in the uc480 Camera Manager of on the host PC?
- Does the host PC meet all system requirements 56?

Revision 1.2 (green Status LED)

Revision 2.0 (red/green LED)

DCC3240x

The LED on the DCC3240x flashes 2x green if the camera is connected to a USB 2.0 port. If the camera is connected to a USB 3.0 port the LED flashes 3x green.

6.3 Color and Memory Formats

Attention

Obsolete parameters

The following parameters for color formats are obsolete and should no longer be used (see also $is_SetColorMode()$]:

- IS_SET_CM_RGB32
- IS_SET_CM_RGB24
- IS_SET_CM_RGB16
- IS_SET_CM_RGB15
- IS_CM_UYVY_MONO_PACKED
- IS_CM_UYVY_BAYER_PACKED
- IS_CM_BAYER_RG8 (identical to IS_CM_SENSOR_RAW8)
- IS_CM_BAYER_RG12 (identical to IS_CM_SENSOR_RAW12)
- IS_CM_BAYER_RG16 (identical to IS_CM_SENSOR_RAW16)
- IS_CM_BGR555_PACKED (has been renamed to IS_CM_BGR5_PACKED)

Each color format supported by the DCx camera defines a different memory format. The following table shows the byte arrangement in memory:
API constant	Description	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
IS_CM_SENSOR_RAW16	Raw Bayer (16)	0 70		10 25	24 31	52 58	10 17	40 55	30 03
	Odd row	16	*	16	5* •	1	6 * C *	1	6*
	Even row	16		10	0-	-	6	1	6
IS_CM_SENSOR_RAW12	Odd row	12		12		12		12	
	Even row	12		12		12		12	
IS_CM_SENSOR_RAW8	Raw Bayer (8)				and the second				
	Odd row	8	8	8	8	8	8	8	8
	Lventow	0	U	0	0	0	0	0	0
IS_CM_MONO16	Grey value (16)	16	*	16	5*	1	6 *	1	6 *
IS_CM_MONO12	Grey value (12)	12		12		12		12	
IS_CM_MONO8	Grey value (8)	8	8	8	8	8	8	8	8
IS_CM_RGBA12_PACKED	RGB48 (12 12 12)	12		12		12			
IS_CM_RGB12_PACKED	RGB36 (12 12 12)	12		12		12		12	
IS_CM_RGB10_PACKED	RGB30 (10 10 10)	10	10		10	10	1(10
IS_CM_RGBA8_PACKED	RGB32 (8 8 8)	8	8	8		8	8	8	
IS_CM_RGBY8_PACKED	RGBY (8 8 8 8)	8	8	8	8	8	8	8	8
IS_CM_RGB8_PACKED	RGB24 (8 8 8)	8	8	8	8	8	8	8	8
IS_CM_BGRA12_PACKED	BGR48 (12 12 12)	12		12		12			
IS_CM_BGR12_PACKED	BGR36 (12 12 12)	12		12		12		12	
IS_CM_BGR10_PACKED	BGR30 (10 10 10)	10	10		10	10	10)	10
IS_CM_BGRA8_PACKED	BGR32 (8 8 8)	8	8	8		8	8	8	
IS_CM_BGR8_PACKED	BGR24 (8 8 8)	8	8	8	8	8	8	8	8
IS_CM_BGRY8_PACKED	BGRY (8 8 8)	8	8	8	8	8	8	8	8
IS_CM_BGR565_PACKED	BGR16 (5 6 5)	5 6	5	5 (<mark>6 5</mark>	5	<mark>6</mark> 5	5	65
IS_CM_BGR5_PACKED	BGR15 (5 5 5)	5 5	5	5 5	5	5	5 <mark>5</mark>	5	5 5
IS_CM_UYVY_PACKED	YUV 4:2:2 (8 8)	8	8	8	8	8	8	8	8
IS_CM_UYVY_MONO	YUV 4:2:2 (8 8)	8	8	8	8	8	8	8	8
IS_CM_UYVY_BAYER	YUV 4:2:2 (8 8)	8	8	8	8	8	8	8	8
IS_CM_CBYCRY_PACKED	YCbCr 4:2:2 (8 8)	8	8	8	8	8	8	8	8
	Color codes	Re	ed channe	el	Y/gre	ey channel		Cr compor	nent
		G	reen char		U com	iponent		Co compo	nent
		BI	ue chann	el	V com	ponent		Unused (0)

Colour and memory formats

Note

An asterisk (*) identifies formats which are filled starting with the most significant bit (MSB) but which may have less than the indicated number of payload bits, depending on the camera model.

For the RGB16 and RGB15 data formats, the MSBs of the internal 8-bit R, G and B colors are used.

The first pixel in the first line with the index (0,0) is always a red pixel at color cameras.

The list above does not contain the IS_CM_RGB8_PLANAR color format. In planar RGB the image is saved as 8 bit RGB. The channels red, green, and blue are stored separately, i.e. first all red information, then all green information and at last all blue information are saved.

6.4 uc480 Parameter File (ini file)

Using the <u>is_ParameterSet()</u> function, you can save the currently set DCx camera parameters to a file in the ini format (*.ini) or load an ini file.

Attention

Only camera-specific ini files can be loaded.

The ini file you want to load has to match the paired camera model.

When loading an ini file, make sure that the image size (AOI) and color depth parameters in the ini file match those in the allocated memory. Otherwise, display errors may occur.

uc480 parameter files can also be created and edited manually. The following table shows the structure of the parameter file. The entries in square brackets [] indicate sections. If a section does not exist in the ini file, the corresponding camera parameters will not be modified when you load the file.

Hint

You can use wildcards in the ini file:

If you specify * as first character, then the highlighted characters will be interpreted in the camera name only, e.g. ***DCU**224**C**. Thus this string applies for DCU223C and DCU224C.

Parameter	Description	Value range	
[Versions]			
uc480_api.dll	File version of the uc480 API	-	4.00.0000
uc480_eth.sys	(Not applicable to DCx Cameras)	-	4.00.0000
uc480_usb.sys	File version of the USB uc480 driver	-	4.00.0000
uc480_boot.sys	File version of the USB uc480 boot loader	-	4.00.0000
[Sensor]			
Sensor	Full name of the camera model	-	DCC3240C
[Image size]	Image size settings		
Start X	Start point (X coordinate) in AOI mode	0(max. width ^{*1} -Width)	100
Start Y	Start point (Y coordinate) in AOI mode	0(max. height ^{*1} -Height)	100
Start X absolute	Activate absolute AOI positioning in the memory (see <u>is_AOI()</u> [158])	0, 1	1
Start Y absolute	Activate absolute AOI positioning in the memory (see <u>is_AOI()</u> [159])	0, 1	1
Width	Width of the AOI	Sensor-dependent ^{*1}	2460
Height	Height of the AOI	Sensor-dependent ^{*1}	1820
Binning	Activate binning mode and select factor	Sensor-dependent*2	0
Subsampling	Activate subsampling mode and select factor	Sensor-dependent*2	0
[Scaler]	The internal image scaling is only supported by sensors of the DCC1240x / DCC3240x camera series.		
Mode	Enable/disable scaling	0 = Scaling off 1 = Scaling on	0
Factor	Scaling factor		

Structure of a uc480 parameter file

Parameter	Description	Value range	Example
[Multi AOI]			
Enabled	Activate/deactivate multi AOI	0 = Multi AOI off 1 = Multi AOI on	0
Mode	Mode of multi AOI Currently only IS_AOI_MULTI_MODE_AXES is supported		
x1x4, y1y4	Axis for multi AOI mode		
[Shutter]			
Mode	Shutter mode	Sensor-dependent (only supported by DCC1240x / DCC3240x models) 1 = Rolling shutter 2 = Global shutter 4 = Fast linescan 64 = Rolling shutter with global start 128 = Global shutter (alternative timing)	1
Linscan number	Line which is used in the linescan mode. The maximum possible line number depends on the height of the selected AOI.	Sensor-dependent (only supported by DCC1240x / DCC3240x models)	512
[Log Mode]			
Mode	Log mode (only supported by DCC1240x / DCC3240x models)	0 = Factory-default with anti- blooming 1 = Off (no anti-blooming) 2 = Manual Log mode	0
Manual value	Log mode value	Only in combination with manual	
Manual gain	Log mode gain	Log mode	
[Timing]	Timing parameter settings		
Pixelclock	Current pixel clock of the camera	Sensor-dependent ^{*1}	103
Framerate	Current frame rate	Depends on Pixelclock and image geometry	15.104458
Exposure	Current exposure time	Depends on Framerate	0.334059
Long exposure	Activates long exposure If the long exposure is active, then the range of exposure changes.	Not supported by DCx cameras	0
[Selected Converter]	Sets the type of Bayer conversion cameras (see <u>is_SetColorCor</u> formats, see the <u>Color and memory</u>	n for the specified color format wh nverter() (315)). For a description ory formats [502] section.	en using color of all color
IS_SET_CM_RGB32	Color format	0, 1, 2, 4	2
IS_SET_CM_RGB24	Color format	0, 1, 2, 4	2
IS_SET_CM_RGB16	Color format	0, 1, 2, 4	2
IS_SET_CM_RGB15	Color format	0, 1, 2, 4	2
IS_SET_CM_Y8	Color format	0, 1, 2, 4	2
IS_SET_CM_RGB8	Color format	0, 1, 2, 4	2
IS_SET_CM_BAYER	Color format	0, 1, 2, 4	8
IS_SET_CM_UYVY	Color format	0, 1, 2, 4	2

DCx Cameras

Parameter	Description	Value range	Example
IS_SET_CM_UYVY_MONO	Color format	0, 1, 2, 4	2
IS_SET_CM_UYVY_BAYER	Color format	0, 1, 2, 4	2
IS_CM_CBYCRY_PACKED	Color format	0, 1, 2, 4	8
IS_SET_CM_RGBY	Color format	0, 1, 2, 4	8
IS_SET_CM_RGB30	Color format	0, 1, 2, 4	8
IS_SET_CM_Y12	Color format	0, 1, 2, 4	8
IS_SET_CM_BAYER12	Color format	0, 1, 2, 4	8
IS_SET_CM_Y16	Color format	0, 1, 2, 4	8
IS_SET_CM_BAYER16	Color format	0, 1, 2, 4	8
IS_CM_RGBA8_PACKED	Color format	0, 1, 2, 4	2
IS_CM_RGB8_PACKED	Color format	0, 1, 2, 4	2
IS_CM_RGBY8_PACKED	Color format	0, 1, 2, 4	8
IS_CM_RGB10V2_PACKED	Color format	0, 1, 2, 4	8
[Parameters]	Additional image parameter settir	ngs	
Colormode	Sets the current color mode	See Color and memory formats	11
Brightness	Software correction of image brightness ^{*3}	0255	100
Contrast	Software correction of image contrast ^{*3}	0511	215
Gamma	Software correction of the gamma value	0.0110.0	1.000000
Hardware Gamma	Sensor-based hardware correction of the gamma value	0, 1	0
Blacklevel Mode	Mode for black level correction of the sensor	0, 1, 32 ^{*2}	1
Blacklevel Offset	Manual offset for black level correction of the sensor	0255	0
Hotpixel Mode	Mode for hot pixel correction	0, 1, 2, 4*2	2
Hotpixel Threshold	Not used	-	0
Sensor Hotpixel	Activates the sensor-internal hot pixel correction	Sensor-dependent ^{*1} 1 = on 0 = off	0
GlobalShutter	Enables the Global Start shutter of the sensor	0, 1 Not supported by DCx models, they return "7" (not supported).	0
[Gain]	Sets the sensor gain control for in	mage brightness	
Master	Master gain	0100	0
Red	Red gain	0100	6
Green	Green gain	0100	0
Blue	Blue gain	0100	6
GainBoost	Activate gain boost	0, 1	0
[Processing]	Parameters for image pre-processing in the driver		
EdgeEnhancementFactor	Enable edge enhancement	02	0
RopEffect	Image geometry change (Rop = raster operation), e.g. mirroring	0, 8, 16, 32, 64*2	0
Whitebalance	Enable software white balance	0, 1, 2, 4*2	0
Whitebalance Red	Red factor for software white	double value	1.000000

6 Appendix

Parameter	Description	Value range	Example
	balance		
Whitebalance Green	Green factor for software white balance	double value	1.000000
Whitebalance Blue	Blue factor for software white balance	double value	1.000000
Color correction	Enable color correction	0, 1, 2, 4, 80 ^{*2}	1
Color_correction_facto r	Set the color correction factor	0.01.0	1.000000
Color_correction_satU	Saturation-U (see also <u>is_SetSaturation()</u> 342)	0200 100 = Saturation 1.0 200 = Saturation 2.0	0
Color_correction_satV	Saturation-V (see also <u>is_SetSaturation()</u> [342])	0200 100 = Saturation 1.0 200 = Saturation 2.0	0
Bayer Conversion	Sets the size of the Bayer conversion mask for the current color format when using color cameras	1, 2 ^{*2}	1
[Auto features]	Sets the parameters for automati	c image control	
Auto Framerate control	Enable frame rate control	0, 1	0
Brightness exposure control	Enable exposure time control	0, 1	0
Brightness gain control	Enable sensor gain control	0, 1	0
Auto Framerate Sensor control	Enable the senor-internal control for frame rates (see also <u>is_SetAutoParameter()</u>	0 = off 1 = on	0
Brightness exposure Sensor control	Enable the sensor-internal brightness control	0 = off 1 = on	0
Brightness gain Sensor control	Enable the sensor-internal gain control	0 = off 1 = on	0
Brightness exposure Sensor control photometry	Not supported by DCx cameras		
Brightness gain Sensor control photometry	Not supported by DCx cameras		
Brightness control once		0, 1	0
Brightness reference	Reference value for brightness control	0255	128
Brightness speed	Brightness control speed	0100	50
Brightness max gain	Maximum gain for brightness control	0100	100
Brightness max exposure	Maximum exposure time for brightness control	Depends on Pixelclock and image geometry	66.082816
Brightness Aoi Left	X start point of reference AOI for brightness control	0(max. width ^{*1} -Aoi Width)	0
Brightness Aoi Top	Y start point of reference AOI for brightness control	0(max. height ^{*1} -Aoi Height)	0
Brightness Aoi Width	Width of reference AOI for brightness control	Sensor-dependent*1	2560
Brightness Aoi Height	Height of reference AOI for	Sensor-dependent*1	1920

DCx Cameras

Parameter	Description	Value range	Example
	brightness control		
Brightness Hysteresis	Hysteresis value for auto exposure and gain (see IS_SET_AUTO_HYSTERESIS 306)	010	2
Brightness Skip Frames	Number of images that will be not analyzed for the control (see IS_SET_AUTO_SKIPFRAMES 305)	01000	4
Auto WB control	Enable white balance control	0, 1	0
Auto WB type	White balance mode		
Auto WB RGB color mode	Color space of white balance (only active, if the mode "Auto (Kelvin)" is set)		
Auto WB offsetR	Red offset for white balance control	0100	0
Auto WB offsetB	Blue offset for white balance control	0100	0
Auto WB gainMin	Minimum gain for white balance control	0 <= gainMin <= gainMax <= 100	0
Auto WB gainMax	Maximum gain for white balance control	0 <= gainMin <= gainMax <= 100	100
Auto WB speed	White balance control speed	0100	50
Auto WB Aoi Left	X start point of reference AOI for white balance control	0(max. width ^{*1} -Aoi Width)	0
Auto WB Aoi Top	Y start point of reference AOI for white balance control	0(max. height*1-Aoi Height)	0
Auto WB Aoi Width	Width of reference AOI for white balance control	Sensor-dependent ^{*1}	2560
Auto WB Aoi Height	Height of reference AOI for white balance control	Sensor-dependent ^{*1}	1920
Auto WB Once	Carry out white balance control once	0, 1	0
Auto WB Hysteresis	Hysteresis value for auto white balance (see IS_SET_AUTO_WB_HYSTERES IS 307)	010	2
Auto WB Skip Frames	Number of images that will not be analyzed for control (see IS_SET_AUTO_WB_SKIPFRAM ES 307)	01000	4
[Trigger and Flash]	Sets the digital inputs/outputs		
Trigger mode	Trigger mode		
Trigger timeout	Timeout value for triggered image capture in 10 ms steps		
Trigger delay	Delay of triggered image capture in µs	Sensor-dependent*1	15
Trigger debounce mode	Not supported by DCx cameras		
Trigger debounce delay time	Not supported by DCx cameras		10
Trigger burst size	Not supported by DCx cameras		
Flash strobe	Activate flash output	06*2	0

Parameter	Description	Value range	Example
Flash delay	Delay of the flash signal in µs	Depends on sensor setting, can be queried using is_{10}	0
Flash duration	Duration of the flash signal in μ s	Depends on sensor setting, can be queried using <u>is_IO()</u> 280	200
PWM mode	PWM mode	See <u>is_IO()</u> 280	
PWM frequency	Frequency of the pulse-width modulation		
PWM duytcycle	Duty cycle of the pulse-width modulation	0.01.0 (1.0 corresponds to 100 %)	
GPIO state	State of the GPIO	See <u>is_IO()</u> 280	
GPIO direction	Direction of the GPIO	See <u>is_IO()</u> 280	
[Sequence AOI]	The sequence AOI is supported	by DCC1240x / DCC3240x model	s only.
NumberUsedAOI	Number of used AOIs	See is_AOI()	
StartX1StartX3	X position of AOI 1-3		
StartY1StartY3	Y position of AOI 1-3		
Gain1…Gain3	Gain of AOI 1-3		
Exposure1Exposure3	Exposure of AOI 1-3		
ReadoutCycle1 ReadoutCycle3	Number of read-out cycles of AOI 1-3		
BinningMode1 BinningMode3	Binning mode of AOI 1-3		
SubsamplingMode1 SubsamplingMode3	Subsampling mode of AOI 1-3		
ScalerFactor1… ScalerFactor3	Scaling factor of AOI 1-3		
DetachImageParameter1 DetachImageParameter3	Changes of exposure time and gain are transferred to AOI 1-3	0 = Every change is transferred 1 = Changes are not transferred	
		see also <u>is_AOI()</u>	
[Transfer]	Not supported by DCx cameras		
ImageDelay_us			
PacketInterval_us			

*1 This information is provided in <u>Camera and sensor data</u> chapter.

*² For the parameters, please refer to the uc480.h header file provided in the \Develop\include folder of the uc480 installation directory (see also Programming notes 45^{-1}).

*³ Function obsolete, see chapter Obsolete functions 379.

6.5 Definition of IP Protection Classes

The housing of the DCx Cameras comply with IP 30:

- Protection against the ingression of small particles (diameter > 2.5 mm)
- No protection against water

6.6 History of uc480 Software Versions

For new features in the current driver version 4.20see What is New in this Version? 16.

Cameras & functions	Described in chapter
The USB 3 DCC3240x cameras are now supported under Windows	

Cameras & functions	Described in chapter
XP (32 bit).	
The is_WriteI2C() function has been extended with the IS_I2C_DONT_WAIT parameter. The default polling may be disabled, whether the byte has been written into the storage cell.	
The AVI functions of the uc480_tools.dll now supports UNICODE strings for file names.	isavi_GetAVIFileNameW() isavi_OpenAVIW()
The sample programs contain two new samples for .NET programming.	See separate uc480 Samples Manual
The is_IO() function has been extended so that small flash duration and flash delay can be set for flash via the GPIOs.	<u>is_IO()</u> 280

New in Version 4.01

Cameras & functions	Described in chapter
Support of the DCC1240x/DCC3240x with NIR sensor	DCC1240x/DCC3240x Camera and sensor
New camera family GigE uEye LE as board-level camera.	DCx camera family 14
Additional shutter modes and Log mode for DCC1240x/DCC3240x cameras	uc480 Viewer > Properties > Shutter 115
The is_DeviceFeature() function was enhanced to control and set the shutter modes and the Log mode of the DCC1240x/ DCC3240x.	is_DeviceFeature()
New function is_Blacklevel() for controlling the black level	is_Blacklevel()
The <code>is_IO()</code> function was enhanced to control the configuration of the GPIOs.	<u>is_IO()</u> [280]
Information in this manual	Decsribed in chapter
With the is_Blacklevel() function the following uc480 function is now obsolete:	Obsolete functions 379
• is_SetBlCompensation()	

Cameras & functions	Described in chapter
New camera family: DCC3240x	DCx camera family 14 Model comparison 459 Mechanical Specifications DCC3240x 474 Camera Interface DCC3240x 49
Added USB 3 specifications to the chapter about the USB interface	USB interface 51
New function is_AutoParameter() enables/disables the auto white balance. This function is similar to the is_SetAutoParameter() function but does not replace the function completely in version 4.20.	<u>is_AutoParameter()</u>
The is_HotPixel() function supports now Unicode file names for saving and loading of hotpixel lists.	is_HotPixel() 260
New function for the conversion of a raw Bayer image into a the desired output format.	is_Convert() 188
New function for activating/deactivating the software edge filter.	is_EdgeEnhancement()
New function for saving the camera parameter set in a file or the camera EEPROM and loading from a file or the camera EEPROM respectively.	is_ParameterSet()
New function for controlling the camera pixel clock.	is_PixelClock() 294
New function for reading camera information.	is_DeviceInfo()

Cameras & functions	Described in chapter
New function for saving and loading image files.	is_ImageFile() 264
Information in this manual	Decsribed in chapter
Now, for all functions all return values are listed in the function description.	
With the is_ Convert() function the following uc480 functions are now obsolete: • is ConvertImage()	Obsolete functions 379
<pre>• is_SetConvertParam()</pre>	
<pre>With the is_EdgeEnhancement() function, the following uc480 function is now obsolete: is SetEdgeEnhancement()</pre>	Obsolete functions
With the is_ParameterSet() function the following uc480 functions are now obsolete: • is_SaveParameters()	Obsolete functions 379
• is_LoadParameters()	
<pre>With the is_PixelClock() function the following uc480 functions are now obsolete: • is_GetPixelClockRange()</pre>	Obsolete functions 379
• is_SetPixelClock()	
<pre>With the is_DeviceInfo() function, the following uc480 function is now obsolete: • is GetEthDeviceInfo()</pre>	<u>Obsolete functions</u> รรด
<pre>With the is_ImageFile() function the following uc480 functions are now obsolete: is_LoadImage() is_LoadImageMem() is_SaveImage() is_SaveImageEx() is_SaveImageMem()</pre>	<u>Obsolete functions</u> (วรด)
<pre>• is_SaveImageMemEx()</pre>	

Cameras & functions	Described in chapter
Sequence AOI mode (camera models DCC1240x) You can define up to 4 AOIs. These have the same size, but may have a different position. It is also possible to have different settings for each AOI for exposure time and master gain. In addition, you can define for AOI 2, 3, and 4 how often they are readout and the images are transferred.	Sequence AOI
Additional resolution profiles for CMOS and CCD cameras.	is_ImageFormat() 267
New demo uc480SequenceAoi for showing the sequence AOI mode of the camera models DCC1240x.	
New demo C#-Cockpit with expanded settings under C#.	
New function for getting and setting of the camera exposure time.	is_Exposure() 216
New function for information about errors when capturing images.	is_CaptureStatus()
New function for controlling the digital in-/outputs of the cameras	<u>is_IO()</u> [280]
New header file uc480_deprecated.h with all deprecated function definitions and constants. These are no longer part of the uc480.h file. If neccessary the uc480_deprecated.h can be	

DCx Cameras

	r
Cameras & functions	Described in chapter
included additionally beside the uc480.h.	
The DCx Manager is renamed to uc480 Camera Manager. This is the control center for managing all DCx cameras.	uc480 Camera Manager 6िने
JPEG- and PNG files can be loaded using the <code>is_LoadImage()</code> function.	is_LoadImage()
Information in this manual	Decsribed in chapter
<pre>The is_IO() function integrated all flash and IO functions. The following uc480 functions are now obsolete: is_SetIO() is_SetIOMask() is_SetIED() is_GetGlobalFlashDelays() is_SetFlashDelay() is_SetFlashStrobe()</pre>	Obsolete functions378is_SetIO440is_SetIOMask441is_SetLED443is_GetGlobalFlashDelays391is_SetFlashDelay428is_SetFlashStrobe431
<pre>The is_Exposure() function integrates the functions for camera exposure. The following uc480 functions are now obsolete: is_GetExposureRange() is_SetExposureTime()</pre>	Obsolete functions 379 • is_GetExposureRange() 390 • is_SetExposureTime() 427
<pre>The is_CaptureStatus() function provide information about errors while capturing images. The following uc480 functions are now obsolete: • is_GetCaptureErrorInfo() • is_ResetCaptureErrorInfo()</pre>	Obsolete functions 379 • is_GetCaptureErrorInfo() 386 • is_ResetCaptureErrorInfo() 404

New in Version 3.82

Cameras & functions	Described in chapter
New function to set system-wide options.	is_Configuration()
New function to set and query the exposure time.	is_Exposure() [216]
The functions for AVI recording with the uc480_tools.dll are supported by 64 bit operating systems.	AVI Function Descriptions

Cameras & functions	Described in chapter
Support of the Multi AOI mode on DCC1240x camera models	Basice: Area of Interest (AOI) 34
	uc480 Viewer: Multi AOI 112
	is_AOI()
	DCC1240x Specifications
Support of the line scan mode on DCC1240x camera models	Basics: Zeilenmodus 33
	uc480 Viewer: Shutter 115
	is_DeviceFeature()
	DCC1240x Specifications 461
New function for setting the size and position of an area of interest (AOI)	<u>is_AOI()</u> 159
New function for reading and extending the camera's internal hot pixel correction list	is_HotPixel()
New function for setting special options on some camera models. Currently the following special options are available through this	is_DeviceFeature()
function:	
On UI-124x/UI524x models: Set line scan mode	
 On UI-124x/UI524x models: Toggle between rolling and global shutter mode 	

Comerce & functions	Described in chapter
Cameras & functions	Described in chapter
 On UI-1008XS (uEye XS) model: Choose the HS mode for triggered image capture 	
Predefined image formats can now be set for all CMOS cameras	is_ImageFormat()
New uc480 Hotpixel Editor for editing the hotpixel list stored in the camera	uc480 Hotpixel Editor 123
The I2C outputs on some uEye models can now be programmed directly in the uc480 Viewer.	uc480 Viewer: Miscellaneous 110
The uc480 Viewer can now display and save images with a bit depth of more than 8 bit.	<u>uc480 Viewer: Format</u> अभे
Information in this manual	Described in chapter
The application notes for the individual camera models are now provided in a separate chapter.	Application notes for the cameras
The $is_AOI()$ function comprises all the functions for setting and positioning an AOI. The following uc480 API commands are therefore obsolete and have been moved to the Obsolete Functions chapter:	Obsolete Functions 379 is_AOI() 159
• is_SetAOI()	
• is_SetImageAOI()	
• is_SetImageSize()	
• is_SetImagePos()	
is_AOI() also allows quickly moving an AOI to a different position.	

New in Version 3.70

Cameras & functions	Described in chapter
New API function for setting the color space and color temperature	is_ColorTemperature() [180]
New function parameters for reading out the exposure time range	is_SetExposureTime() 427
Information in this manual	Described in chapter
Information in this manual Updated camera specifications	Described in chapter

Functions	Described in chapter
New function in uc480 Viewer for selection profiles for camera settings	<u>Start Dialog</u> 76 <u>Creating Profiles</u> 117
Information in this manual	Described in chapter

New in Version 3.51

Functions	Described in chapter
Driver support for Windows 7	System Requirements 12
Support for 64 bit versions of Windows 7, Windows Vista and Linux	System Requirements 12
Software	Described in chapter
Support of Direct3D graphics functions with Overlay	Camera properties: Format 99
The DirectDraw functions have been completely replaced by the new API function. This function allows image scaling and inserting overlay data into the camera's live image without flicker.	<u>System Requirements</u> 12ी
Extended Automatic Image Control:	Automatic Image Control 46
Configurable hysteresis control	AES/AGC (Automatic Brightness Control)
Information in this Manual	Described in chapter
Basics of digitizing and bit depth of image data	Basics: Digitizing Images 39
Function is_GetCameraType() moved to the "Obsolete Functions"	Obsolete Functions 379
Section. It is entirely replaced by is_GetCameraInfo().	is_GetCameraInfo() 23
Merge of the previously separated manuals DCx <i>Programming Manual</i> and DCx <i>User Manual</i> .	-
New section: How to Proceed - DCx Programming	How To Proceed 129
New chapter: Troubleshooting	Troubleshooting 499
Keyword index added	-
New chapter: Quick-start	Quick-start 54
This chapter explains in a nutshell how to configure your DCx camera and capture images.	
New chapter: Firmware and Camera Start-up	Firmware and Camera Start-up 46
New chapter. All DCx models at a glance	Model comparison 459
A table shows the most important features of each DCx series at a glance.	
Exact measuring results for the trigger delay of all DCx models.	Camera and Sensor Data 460

New features	Described in chapter
Extended trigger mode	Operating Modes: Trigger Mode 19
The continuous trigger mode allows triggering the DCx repeatedly. The camera no longer has to be made ready for the next trigger before each image capture.	
Improved DCx Camera Manager features	uc480 Camera Manager
Test image function The camera transmits a selectable test image that you can use for testing the data transmission.	<u>Camera properties: Test image</u> ा10
Support of 10 and 12 bit sensor data Some sensors can output images with a color depth of 10 to 12 bits. This data can now be processed by the DCx software.	Camera and Sensor Data 400
New color formats uc480 driver version 3.3 supports a wide range of new color	Camera properties: Color 102

formats for all DCx cameras. These include: RGB/BGR 30 RGBY Y12 YCbCr Enhanced YUV 	
Full support of <i>Windows Vista</i> (32 Bit) From driver version 3.30 onwards, all DCx cameras will run under Windows Vista 32.	System Requirements 12
Localization of the <i>uc480 Camera Manager</i> The uc480 Camera Manager offers new features and now also supports over 10 languages that can be switched anytime.	<u>uc480 Camera Manager</u> िि7े
New information in the manual	Described in chapter
Detailed presentation of all DCx operating modes	Operating Modes 17
Updated connected load data on every camera model	Camera and Sensor Data 460

6.7 History of uc480 API Functions

New functions in software version 4.20

• is_Measure() 290

New functions in software version 4.01

• is_Blacklevel() 170

New functions in software version 4.00

- is_AutoParameter() 167
- is_Convert() [188]
- is_DeviceInfo()
- is_EdgeEnhancement() 206
- is_ImageFile() 264
- is_ParameterSet() 292
- is_PixelClock() 294

New functions in software version 3.90

- is_CaptureStatus()
- is_Exposure() 216
- is_IO() 280

New functions in software version 3.81

- is_Configuration() 183
- New functions in software version 3.80
- is_AOI() 159
- is_DeviceFeature() 192
- is_HotPixel()²⁶⁰

New functions in software version 3.70

• is_ColorTemperature() 180

New functions in software version 3.52/3.60

• is_ImageFormat() 267

New functions in software version 3.40

- <u>is_DirectRenderer()</u> 198
- is_GetImageInfo() 244
- <u>is_GetSensorScalerInfo()</u> 252
- <u>is_SetSensorScaler()</u> 343

New functions in software version 3.33

- <u>is_Direct3D()</u> 198
- is_GetTimeout()

New functions in software version 3.32

- is_GetTimeout()
- is_SetTimeout() 350

• <u>is_SetTriggerCounter()</u> 351

New functions in software version 3.30

- is_GetCameraLUT()²³⁵
- is_GetCaptureErrorInfo() 386
- <u>is_GetColorConverter()</u> 236
- is_GetSupportedTestImages() [253]
- is_GetTestImageValueRange()
- is_ResetCaptureErrorInfo() 404
- is_SetColorConverter() 315
- <u>is_SetSensorTestImage()</u> 345

New function in software version 3.20

• is_SetOptimalCameraTiming() 338

6.8 Thorlabs Worldwide Contacts

USA, Canada, and South America

Thorlabs, Inc. 56 Sparta Avenue Newton, NJ 07860 USA Tel: 973-579-7227 Fax: 973-300-3600 www.thorlabs.com www.thorlabs.us (West Coast) Email: sales@thorlabs.com Support: techsupport@thorlabs.com

Europe

Thorlabs GmbH Hans-Böckler-Str. 6 85221 Dachau Germany Tel: +49-8131-5956-0 Fax: +49-8131-5956-99 www.thorlabs.de Email: europe@thorlabs.com

France

Thorlabs SAS 109, rue des Côtes 78600 Maisons-Laffitte France Tel: +33-970 444 844 Fax: +33-811 38 17 48 www.thorlabs.com Email: sales.fr@thorlabs.com

Japan

Thorlabs Japan, Inc. Higashi Ikebukuro Q Building 2nd Floor 2-23-2 Toshima-ku, Tokyo 170-0013 Japan Tel: +81-3-5979-8889 Fax: +81-3-5979-7285 www.thorlabs.jp Email: sales@thorlabs.jp

UK and Ireland

Thorlabs Ltd. 1 Saint Thomas Place, Ely Cambridgeshire CB7 4EX United Kingdom Tel: +44-1353-654440 Fax: +44-1353-654444 www.thorlabs.com Email: sales.uk@thorlabs.com Support: techsupport.uk@thorlabs.com

Scandinavia

Thorlabs Sweden AB Mölndalsvägen 3 412 63 Göteborg Sweden Tel: +46-31-733-30-00 Fax: +46-31-703-40-45 www.thorlabs.com Email: scandinavia@thorlabs.com

Brazil

Thorlabs Vendas de Fotônicos Ltda. Rua Riachuelo, 171 São Carlos, SP 13560-110 Brazil Tel: +55-16-3413 7062 Fax: +55-16-3413 7064 www.thorlabs.com Email: brasil@thorlabs.com

China

Thorlabs China Room A101, No. 100 Lane 2891, South Qilianshan Road Putuo District Shanghai 200331 China Tel: +86-21-60561122 Fax: +86-21-32513480 www.thorlabs.hk Email: chinasales@thorlabs.com

6.9 Certifications and Compliances

I		, ,	5
Product type	EMC immunity	EMC emission	UL certification
DCC1240x*1	EN 61000-6-	EN 61000-6-3:2001 +	UL 60950-1, 2nd Edition, 2011-12-19
	2:2005	A11:2004	CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12
DCU223x ^{*1}	EN 61000-6-	EN 61000-6-4:2001	UL 60950-1, 2nd Edition, 2011-12-19
DCU224x ^{*1}	2:2001		CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12
DCC1545M *1	EN 61000-6-	EN 61000-6-3:2001 +	UL 60950-1, 2nd Edition, 2011-12-19
DCC1645C *1	2:2005	A11:2004	CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12
DC3240x *1	EN 61000-6- 2:2005	EN 61000-6-3:2007	UL 60950-1, 2nd Edition, 2011-12-19 CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12

Compliance with the directives is demonstrated by meeting the following standards:

¹¹ This equipment has been tested and found to comply with part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Modifications not expressly approved by the manufacturer could void the user's authority to operated the equipment under FCC rules.

6.10 Thorlabs 'End of Life' Policy (WEEE)

As required by the WEEE (Waste Electrical and Electronic Equipment Directive) of the European Community and the corresponding national laws, Thorlabs offers all end users in the EC the possibility to return "end of life" units without incurring disposal charges.

This offer is valid for Thorlabs electrical and electronic equipment

- sold after August 13th 2005
- marked correspondingly with the crossed out "wheelie bin" logo (see Figure 58)
- sold to a company or institute within the EC
- currently owned by a company or institute within the EC
- still complete, not disassembled and not contaminated

As the WEEE directive applies to self contained operational electrical and electronic products, this "end of life" take back service does not refer to other Thorlabs products, such as

- pure OEM products, that means assemblies to be built into a unit by the user (e. g. OEM laser driver cards)
- components
- mechanics and optics
- left over parts of units disassembled by the user (PCB's, housings etc.).

Waste treatment on your own responsibility

If you do not return an "end of life" unit to Thorlabs, you must hand it to a company specialized in waste recovery. Do not dispose of the unit in a litter bin or at a public waste disposal site.

WEEE Number (Germany) : DE97581288

Ecological background

It is well known that waste treatment pollutes the environment by releasing toxic products during decomposition. The aim of the European RoHS Directive is to reduce the content of toxic substances in electronic products in the future.

The intent of the WEEE Directive is to enforce the recycling of WEEE. A controlled recycling of end-of-life products will thereby avoid negative impacts on the environment.

6.11 Warranty

Thorlabs warrants material and production of the DCx Cameras for a period of 24 months starting with the date of shipment. During this warranty period *Thorlabs* will see to defaults by repair or by exchange if these are entitled to warranty.

For warranty repairs or service the unit must be sent back to *Thorlabs*. The customer will carry the shipping costs to *Thorlabs*, in case of warranty repairs *Thorlabs* will carry the shipping costs back to the customer.

If no warranty repair is applicable the customer also has to carry the costs for back shipment.

In case of shipment from outside EU duties, taxes etc. which should arise have to be carried by the customer.

Thorlabs warrants the hard- and software determined by *Thorlabs* for this unit to operate faultfree provided that they are handled according to our requirements. However, *Thorlabs* does not warrant a fault free and uninterrupted operation of the unit, of the software or firmware for special applications nor this instruction manual to be error free. *Thorlabs* is not liable for consequential damages.

Restriction of warranty

The warranty mentioned before does not cover errors and defects being the result of improper treatment, software or interface not supplied by us, modification, misuse or operation outside the defined ambient stated by us or unauthorized maintenance.

Further claims will not be consented to and will not be acknowledged. *Thorlabs* does explicitly not warrant the usability or the economical use for certain cases of application.

Thorlabs reserves the right to change this instruction manual or the technical data of the described unit at any time.

6.12 Exclusion of Liability and Copyright

Thorlabs GmbH has taken every possible care in preparing this Operation Manual. We however assume no liability for the content, completeness or quality of the information contained therein. The content of this manual is regularly updated and adapted to reflect the current status of the software. We furthermore do not guarantee that this product will function without errors, even if the stated specifications are adhered to.

Under no circumstances can we guarantee that a particular objective can be achieved with the purchase of this product.

Insofar as permitted under statutory regulations, we assume no liability for direct damage, indirect damage or damages suffered by third parties resulting from the purchase of this product. In no event shall any liability exceed the purchase price of the product.

Please note that the content of this User Manual is neither part of any previous or existing agreement, promise, representation or legal relationship, nor an alteration or amendment thereof. All obligations of *Thorlabs GmbH* result from the respective contract of sale, which also includes the complete and exclusively applicable warranty regulations. These contractual warranty regulations are neither extended nor limited by the information contained in this User Manual. Should you require further information on this product, or encounter specific problems that are not discussed in sufficient detail in the User Manual, please contact your local *Thorlabs* dealer or system installer.

All rights reserved. This manual may not be reproduced, transmitted or translated to another language, either as a whole or in parts, without the prior written permission of *Thorlabs GmbH*.

Status: 2013

Copyright © Thorlabs GmbH. All rights reserved.

Index

Α

ActiveX programming	453	Black leve
Ambient conditions	486	Blinking o
AOI		Boot boos
for automatic image control	159	
sequence mode	113	С
AOI (Area of interest)	34, 97	0#
AOÌ sequence	34	C#
multi AOI	34	C/C++
AOI sequence	159	Comoro
AOI sequence mode		camera
binning	113	EEPRO
readout cycle	113	electrica
scaler	113	Informa
subsampling	113	open
Application notes		parame
DCC1240x	63	Camera E
DCC1545M	66	Camera I
DCC1645C	66	Camera I
DCC3240x	63	camera
DCU223x	66	Control
DCU224x	66	Camera r
Area of interest -> AOI	34	save
Area scan camera	33	Camera r
Area scan sensor	33	load at s
Auto exposure (AES)	81	Camera s
Auto exposure shutter (AES)	45, 106	get
Auto exposure time (AES)	93	Capture
Auto frame rate (AFR)	45, 106	freerun
Auto gain (AGC)	44, 81, 95,	live mod
	106	overlap
Auto gain control (AGC)	45	single s
Auto white balance (AWB)	45, 81	trigger r
hysteresis	108	Capture v
Automatic image control	81	Characte
hysteresis	45	gamma
programming	147, 303	linear
AVI functions		logarithi
errors	457	C-mount/
AVI recording	84, 359	Color cor
playback	119	Color dep
		Color forr
Б		

	Bayer filter	
	Bayer conversion	26, 99, 102
	Binning	34, 38, 97
	Bit depth	41.319
	Black level	95, 421
453	Black level correction	44
186	Blinking codes	501
400	Boot boost	71
150	Deer beest	71
113	C	
	0	
r, 97 34	C#	452
34	C/C++	451, 452,
150		453
155	Camera	
112	close	130
113	EEPROM	71
113	electrical data	487
113	Information	129
110	open	79, 130
63	parameters	74
66	Camera EEPROM	148
66	Camera ID	71
63	Camera Manager	67
66	camera list	68
66	Control center	68
34	Camera parameter	
33	save	412
33	Camera parameters	71
Q1	load at start-up	183
106	Camera status	
001	get	148
93	Capture	
106	freerun synchronisation	134
, 95,	live mode (freerun)	17
106	overlap trigger	19
45	single snap mode	17
5, 81	trigger mode	19, 103
108	Capture video	177
81	Characteristics	
45	gamma curve	39
303	linear	39
	logarithmic	39
457	C-mount/CS-mount	477
359	Color correction	102
119	Color depth	319
	Color formats	99, 502
	COM port -> Serial interface	50
260	Contrast adjustment	41

Bad pixel -> hot pixel

CPU idle state CRA correction	71 24	overlay overlay display	133 198
D		Display overlay Driver version	133 70
DCC1240x	113	F	
DCC3240x	113	-	
digital input	493	Edge enhancement	110
digital output	494	EEPROM of the camera	71, 496
electrical data	491	Errors	
flsh	494	error messages	454
GPIO	492	transfer failed	79, 89, 90
I/O connector	491	transmission errors	44
pin assignment	491	troubleshooting	499
serial interface	495	Event handling	141
trigger	493	Expert mode	76, 77
DCU223x / DCU224x	407	Exposure time	44, 93, 427
electrical data	487	setting	216
Din assignment	487		
	407	F	
driver compatibility	58	Fast line scan	63
DCx camera model	14	Fill factor	24
DCC3240x	14	Filter glasses	480
DCU223x / DCC224x	14	clean	480
DCx camera models	14, 458	DL filter	480
comparison table	459	IR cut filter	480
DCx Model Naming	460	Firmware	46
Conventions		Flange back distance	477
DCx naming convention	460	calculate	477
Delphi	452	Flash	19, 30, 280,
DIB	21		431
Digital input		global flash	104
triager	47	Flash timing	
Digital input/output	20 47 103	in freerun mode	49
GPIO	104	in trigger mode	47
programming	327, 431	Frame rate	44, 93, 329
Digital output	,	Freerun -> Capture: live	17
flash	47	mode	
Direct3D	21, 198, 322	Freerun mode	177
DirectShow	71		
DirectX	56 198	G	
Display	00, 100	Gain	95, 333
bitmap mode (DIB)	21	linearity	44
color formats	502	Gamma	95
DIB mode	133	Gamma characteristic	39
Direct3D	21, 56, 133	Global shutter	30 115
DirectDraw	379	GPIO	104 280
modes (uc480 Viewer)	99	programming	441
OpenGL	21	Graphics card	21 56
			21,00

© 2013 Thorlabs GmbH

		is_EnableMessage	211
Н		is_ExitCamera	213
Histogram	41.86	is_ExitEvent	214
Hot pixel correction	28, 110, 260	is_ExitImageQueue	215
Hotpixel	, ,	is_Exposure	216
add	123	is_ForceTrigger	221
edit	123	is_FreeImageMem	222
		is_FreezeVideo	223
		is_GetActiveImageMem	225
I2C bus	111	is_GetActSeqBuf	226
Image capture -> Capture	19	is_GetAutoInfo	227
Image display -> Display	21	is_GetBusSpeed	230
Image format		is_getCameraInfo	231
set	267	is_GetCameraList	233
Image memory		IS_GetCameraLUI	235
allocate	130	is_GetCamera I ype	385
Image scaling	97	is_GetCaptureErrorInfo	386
INI file -> Parameter file	504	IS_GetColorConverter	236
Installation	58, 61	Is_GetColorDepth	237
Interface	405	IS_GETDC	388
Serial ID norm	490	is_GetDLLVersion	309 220
IP nonn IP out filtor	509 480	is CotError	230
is AddToSequence	400	is CetExposurePande	239
is AllocimageMem	150	is CetEramesPerSecond	240
	157	is GetFrameTimeRange	240
is AutoParameter	167	is GetGlobalElashDelays	391
is Blacklevel	170	is GetImageHistogram	242
is CameraStatus	172	is GetImageMem	247
is CaptureStatus	174	is GetImageMemPitch	248
is CaptureVideo	177	is GetNumberOfCameras	249
is_ClearSequence	179	 is_GetOsVersion	250
is_ColorTemperature	180	 is_GetPixelClockRange	392
is_Configuration	183	is_GetSensorInfo	251
is_Convert	188	is_GetSensorScalerInfo	252
is_ConvertImage	382	is_GetSupportedTestImages	253
is_CopyImageMem	190	is_GetTestImageValueRang	255
is_CopyImageMemLines	191	е	
is_DeviceFeature	192	is_GetTimeout	256
is_DeviceInfo	196	is_GetUsedBandwidth	257
is_DirectRenderer	198	is_GetVsyncCount	258
is_DisableDDOverlay	383	is_HasVideoStarted	259
is_DisableEvent	205	is_HideDDOverlay	393
is_EdgeEnhancement	206	IS_HOtPixel	260
is_EnableAutoExit	208	Is_Image⊢ile	264
is_EnableDDOverlay	384	Is_Image⊢ormat	267
is_EnableEvent	209	is_InitCamera	273

is_InitEvent	276	is_SetDisplayPos	325
is_InitImageQueue	278	is_SetEdgeEnhancement	426
is_InquireImageMem	279	is_SetErrorReport	326
is_IO	280	is_SetExposureTime	427
is_lsVideoFinish	288	is_SetExternalTrigger	327
is_LoadBadPixelCorrectionT	394	is_SetFlashDelay	429
able		is_SetFlashStrobe	431
is_LoadImage	395	is_SetFrameRate	329
is_LoadImageMem	396	is_SetGainBoost	331
is_LoadParameters	398	is_SetGamma	332
is_LockDDMem	400	is SetHardwareGain	333
is_LockDDOverlayMem	401	is SetHWGainFactor	335
is_LockSeqBuf	289	is SetHwnd	433
is_Measure	290	is SetImageAOI	434
is_ParameterSet	292	is SetImageMem	337
is_PixelClock	294	is SetImagePos	435
is_PrepareStealVideo	402	is SetImageSize	438
is_ReadEEPROM	296	is SetIO	440
is_ReleaseDC	403	is SetIOMask	441
is_RenderBitmap	297	is SetKevColor	442
is_ResetCaptureErrorInfo	404	is SetLED	443
is_ResetToDefault	299	is SetOptimalCameraTiming	338
is_SaveBadPixelCorrectionT	405	is SetPixelClock	444
able		is SetRopEffect	340
is_SaveImage	406	is SetSaturation	342
is_SaveImageEx	407	is SetSensorScaler	343
is_SaveImageMem	409	is SetSensorTestImage	345
is_SaveImageMemEx	410	is SetSubSampling	347
is_SaveParameters	412	is SetTimeout	350
IS_SET_EVENT_TRANSFE	209	is SetTriggerCounter	351
R_FAILED		is SetTriggerDelav	352
is_SetAllocatedImageMem	301	is ShowDDOverlay	446
is_SetAOI	414	is StealVideo	447
is_SetAutoParameter	303	is StopLiveVideo	353
is_SetBadPixelCorrection	417	is UnlockDDMem	448
is_SetBadPixelCorrectionTa	418	is UnlockDDOverlavMem	449
ble	100	is UnlockSegBuf	354
is_SetBayerConversion	420	is UpdateDisplay	450
IS_SetBinning	310	is WaitEvent	355
is_SetBICompensation	421	is WaitForNextImage	356
is_SetCameraID	313	is WriteEEPROM	358
is_SetColorConverter	315	isavi AddErame	359
IS_SetColorCorrection	317	isavi CloseAVI	360
IS_SetColorMode	319	isavi DisableEvent	360
IS_SetConvertParam	423	isavi EnableEvent	361
IS_SetDDUpdate I ime	425	isavi ExitAVI	362
Is_SetDisplayMode	322	isavi ExitEvent	363

isavi_GetAVIFileName	364	OpenGL	21, 322
isavi_GetAVIFileNameW	365	Operating system	56
isavi_GetAVISize	366	Overlap trigger -> Capture	19
isavi_GetnCompressedFram	367	Overlay -> Display	21
es		Overlay: Direct3D	
isavi_GetnLostFrames	368	display (programming)	133
isavi_InitAVI	369	Overlay: display	198
isavi_InitEvent	370		
isavi_OpenAVI	371	P	
isavi_OpenAVIW	372	Parameter	
isavi_ResetFrameCounters	373	new	46
isavi_SetFrameRate	374	Parameter file (ini file)	80, 504
isavi_SetImageQuality	375	Pixel clock	44, 93, 444
isavi_SetImageSize	376	Pixel pre-processing	40
isavi_StartAVI	377	Port	71
isavi_StopAVI	378	Ports	50
		Processor	
L		idle states	183
I FD	280	support for multitasking	183
LED -> Status LED	200	Profiles	76, 117
DCx Status LED	501	Programming languages	451, 452,
Lens			453
immersion depth	478	Programming notes	451
Line scan		PWM	280
fast line scan	63		
Line scan mode	33, 115, 192	Q	
Linux	56, 61	Quick start	
not supported functions	457	connection	54
Live mode	177	image capture	54
Log mode	192	programming	127
Lookup table (LUT)	39, 40		
		R	
Μ		Raw Baver -> Baver filter	26
Memory board	379	Reference AOI	
Memory formats	502	for automatic image control	159
Micro lenses	24	Return values	454
Multi AOI	34 159	RGB gain	44
uc480 Viewer	112	ROI -> AOI	34, 159
Multi camera systems		Rolling shutter	30, 115
system requirements	56	Rolling shutter (global start)	30
		RS-232 -> Serial interface	50
Ν			
Network card	56	S	
	00-	Scaler	07
0		Sensor	31
Obselete functions	070	position accuracy	480
Obsolete functions	379	Sensor formats	23
			20

Ser	ial interface	50	USB 3.0	50
D	CC3240x	50	cable	52
Set -> /	ting the area of interest AOI	159	conncetion	52
Sho	ock resistance	486	V	
Shu	utter		VB_NET	452
gl	obal	30	Vibration resistance	486
ro	lling	30		100
Sta	ndby mode of the camera	20	W	
Sta	rt dialog	76		
Sta	rter firmware	46, 273	Windows	56
Sta	tus LED	58	install camera driver	58
D	Cx camera	501		
Stro	obe output -> Flash	431		
Sub	osampling	34, 37, 97		
sup	port	499		
Sup	port file			
cr	eate	71		
Sys	stem requirements	56		
Т				
Ter	nperature range	486		
Tes	stimage	110		
Thr	ead programming	453		
Tric	ager	280		
Tric	ager mode -> Image	19		
cap	oture			
U				
UA	RT	495		
uc4	80 Camera Manager	67		
С	ontrol Center	68		
uc4	80 Hotpixel Editor	123		
uc4	80 programs	67		
uc4	80 Viewer	75		
st	atus bar	79		
to	olbars	77		
uc4	80.h	451, 452,		
		453		
uc4	80_Api.dll	451, 452,		
	P	453		
US	B	50		
Da		53		
Ca		52		
C(5Z 61		
111 ct	andard	51		
SI to	nology	51		
10	pology	51		