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This experiment demonstrates the dynamics of water flowing out of a tank. Using the
rate change of mass for an emptying cylinder, we investigate the application of Bernoulli’s
equation and the resulting Torricelli’s theorem. We also observe the effects of constriction
on the parcel of water flowing out of the tank. Students will investigate fluid dynamics,
pressure and will relish how a phenomena as simple as water flowing out from a tank can
lead to rich dynamics that can be explored mathematically.
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1 Conceptual Objectives

In this experiment, we will,

1. understand and apply Bernoulli’s equation,

2. understand Torricelli’s law,

3. understand the continuity equation,

4. learn how to numerically differentiate data, and

5. make plots of variables derived from directly measured quantities.

2 Theoretical background

A fluid is a collection of molecules held together by weak cohesive forces. Usually liquids
and gases are termed as fluids because they deform in response to external forces. Some

∗No part of this document can be re-used without explicit permission from Dr. Muhammad Sabieh
Anwar.
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general properties of fluid flow are summarized here.

1. Steady or non-steady: The flow of a fluid is described by pressure, density and
flow velocity at every point of the fluid. If these variables are constant in time then
the flow is steady.

2. Compressible or incompressible: If the density of a fluid remains constant and
does not depend on x, y, z and t, then the flow is incompressible.

3. Viscous or non-viscous: Viscosity is the resistance towards flow. When a fluid
flows such that there is no energy dissipation, then it is non-viscous flow. Such a
flow is really an idealization.

4. Rotational or irrotational: If any element of the fluid does not rotate about an
axis through the center of mass of the element, then the flow is irrotational.

2.1 Pressure inside a fluid

Consider a small segment of the fluid of density ρ at a distance y above some reference
level as shown in Figure 1(a). This segment is a thin disk with thickness dy and area A,
as illustrated in part (b) of the diagram. The mass of the element is dm = ρdV = ρAdy
and its weight W = (dm)g = ρgAdy. Since there is no acceleration the net vertical force
is zero,

dy

y

(dm)g

A

PA

(a)
(b)

dy

Figure 1: A static fluid. (a) Small element at rest inside the fluid, (b) forces acting on a
small element.

ΣFy = PA− (P + dP )A− ρgAdy = 0, (1)

yielding,

dP

dy
= −ρg. (2)

This equation describes the variation of pressure with elevation above some reference level.

As the height increases (dy positive), the pressure decreases (dP negative). For an in-
compressible and homogeneous liquid with difference in height, the pressure difference is
found by integrating the Equation (2)

P2 − P1 = −ρg(y2 − y1), (3)
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and if the liquid has a free surface exposed to the atmospheric pressure Po, then,

Po − P = −ρg(y2 − y1),

P = Po + ρgh, (4)

where, y2 − y1 = h. This shows that the pressure in a liquid increases with depth but

Po

Po + pgh

h

would be same at all those points that are on the same level.

2.2 Bernoulli’s equation

In our discussion on pressure, we have seen how pressure depends on the weight of the
fluid above a level. However, pressure will also change with speed and elevation. You
must have noticed how an object could be pulled into the wake of a fast-moving train; or
by narrowing the hose of a water pipe, the stream of water can go further.

Q 1. Why do hordes of birds fly in a characteristic V-shaped pattern?

When a fluid moves through a region in which either the speed of the fluid or elevation
above the earth’s surface changes, the impact is that the pressure in the fluid changes.
The relationship between fluid speed, pressure and elevation was first derived by Daniel
Bernoulli in 1738. Bernoulli’s equation, a fundamental relation in fluid mechanics is deriv-
able from basic laws of Newtonian mechanics, as well as from the work-energy principle
which stems from the conservation of energy.

Consider a steady, incompressible and nonviscous flow of a fluid through a pipeline from
the position shown in Figure 2(a) to (b). The portion at the left has a cross sectional area
A1 and at an elevation y1 from some reference level. A mass of fluid ∆m gradually rises
and after time ∆t, it moves to the right end with cross sectional A2, at an elevation y2.

According to the work-energy theorem, the work done by the resultant force that acts
on a system is equal to the change in kinetic energy. Assuming that there is no viscous
force, the only forces that do work on the system are the pressure forces and the force of
gravity. The net work done on the system by all the forces is,

W = P1A1∆l1 − P2A2∆l2 − (∆m) g(y2 − y1). (5)

This is the work done as the mass ∆m displaces from (a) to (b). The pressure force
P2A2∆l2 bears a negative sign because its direction is opposite to the horizontal displace-
ment ∆l2. The gravitational force is also negative because it acts in a direction opposite to
the vertical displacement. As A1∆l1 = A2∆l2 is the volume of the fluid (∆V ) displaced,
we can replace this ∆m/ρ. The change in kinetic energy, therefore is,

∆K =
1

2
∆mv22 −

1

2
∆mv21

=
1

2
∆m(v22 − v21)

= P1A1∆l1 − P2A2∆l2 − (∆m)g(y2 − y1) (6)

This can be rearranged to give,

1

2
∆m(v22) + P2A2∆l2 + (∆m)gy2 =

1

2
∆m(v21) + P1A1∆l1 + (∆m)gy2 (7)
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Figure 2: A fluid is flowing through a pipe from position (a) to (b). The net effect is the
transfer of the element (∆m) from the left to the right end. We calculate the work done
in this transfer process.

Dividing each side by the respective volume of the element A2(∆l2) = A1(∆l1),

P2 +
1

2
ρ v22 + ρgy2 = P1 +

1

2
ρ v21 + ρgy1 . (8)

The above equation is often expressed as,

P +
1

2
ρ v2 + ρgy = constant. (9)

This is a statement of Bernoulli’s equation.

The relation in Equation (8) can be modified in many different ways depending upon the
situation. This leads to interesting corollaries. If the fluid is at rest i.e. v2 = v1 = 0 then,

P1 + ρgh1 = P2 + ρgh2, (10)

where the term (P + ρgy) is called the static pressure.
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Likewise, if both ends of the pipe are placed at same height then Equation (9) can be
re-written as,

P1 +
1

2
ρv21 = P2 +

1

2
ρv22, (11)

showing that high speeds corresponds to low pressures. The term 1
2
ρv2 has dimensions of

pressure and is called dynamic pressure.

2.3 Continuity equation

The equation of continuity for incompressible fluids states that,

ρAv = constant (12)

where v is the velocity and ρ is density of the fluid. This relation is easy to understand.
Consider Figure (3) which shows a tapered horizontal pipe. The area at the left end is
A1 and at the right is A2<A1. In a unit time ∆t, a mass of liquid ∆m is transported
between the ends. Since the fluid cannot be compressed, we must conserve the mass of
fluid transferred, otherwise the liquid will turn denser in some regions and rarer in others.
Therefore,

ρA1∆l1 = ρA2∆l2, (13)

which dividing by ∆t yields the equation of continuity, (12).

A1

l1

l2

A2

v1 v2

Figure 3: A tapered horizontal pipe. The horizontal velocity vectors are depicted by
arrows.

Q 2. A giraffe needs a strong heart because of its long neck. Suppose the difference of
height between the aortic valve (the place where the arterial blood comes out of the heart)
and the head of a giraffe is 2.50m, and the artery leading from near the aortic valve to
the head has constant cross section all the way to the head. Blood is an incompressible
fluid with density 1.0 g/cm3. Assume the pressure at the head is zero.

(a) What is the minimum required pressure at the aortic valve? Compare this pressure
to the peak output pressure of the human heart (1.6× 104 Pa)?

(b) What would be the effect on the giraffe if the artery diameter narrowed down as it
approached the brain?

5



2.4 Water discharge from a cylinder

A cylinder contains water which flows out from a narrow circular orifice at a fixed height y2
from the base. [right]right The orifice has a small area A2 compared to the cross sectional Consider

Fig (4)area A1 of the cylinder. As time progresses, the level of the water y2(t) in the cylinder
descends and water issues out with a speed v2(t). Let’s apply Bernoulli’s law to points
1 and 2. Note that at the orifice, the jet of water is also exposed to the atmospheric
pressure Po. From Bernoulli’s principle,

A1

v2

A2
y1

y2

h

v1

Figure 4: A cylinder with water flowing out from a narrow orifice at a fixed height y2
from the base.

��Po +
1

2
ρv21 + ρgy1 =��Po +

1

2
ρv22 + ρgy2 (14)

Since A1 ≫ A2, v1 ≈ 0, leading to

1
2
ρv22 = ρg(y1 − y2)

v22 = 2gh, (15)

which shows the relationship between the speed v2(t) and the instantaneous head h(t) of
water above the orifice.

2.5 Torricelli’s Law

Torricellis Law describes the relationship between the velocity of fluid leaving the cylinder
v2 and the height h of the fluid. This relationship is given in Equation (15). In its simplest
form, the speed, v, of a liquid flowing under the force of gravity out of an opening in a
tank is proportional to the square root of the vertical distance, h. The speed of efflux is
independent of the direction of flow. The theorem is named after Evangelista Torricelli,
who formulated it in 1643. Notice that this speed is identical to the speed acquired by a
mass falling under gravity through a height h.

In the experiment, you will observe if a linear relationship between v22 and h exists.
Furthermore, v22 will in fact be observed to be smaller than 2gh. The discrepancy will be
accounted for by water’s viscosity, and the effective narrowing of the orifice.

6



3 The Experiment

3.1 Preparation

You are provided a graduated cylinder with an orifice at a fixed height y2 from the base.
Place it on the provided electronic mass balance and set it to zero by pressing the TARE

button on the front panel. This subtracts the mass of cylinder from the subsequent data
points. Place the provided plastic box in the line of orifice to collect the discharging water.
Complete the assembly as shown in Figure 5. Before you begin make sure that the mass
balance and the LabView program have been configured according to sections 3.2 and 3.3
respectively.

2000ml 

Beaker

Graduated 

cylinder

Electronic 

mass balance
Collection 

box Vernier caliper

Steel ruler

Figure 5: The experimental assembly, for observing the rate of discharge from a graduated
cylinder.

3.2 Mass Balance Setup

A digital mass balance Kern 440-47N is connected to the serial port COM1 on the com-
puter using an RS-232 interface connection. The balance will send mass (g) readings to
the computer where a LabView code will be used to collect data into an output file. The
balance needs to be set up on AU PC mode before it can transmit data to the computer.
For this purpose one needs to follow the steps given in Table 1.

Also, turn off the Dosing and Zero-tracking function of the mass balance. If active,
this function is used to tare small variations in weight automatically which can cause
improper weighing results. So, it is advisable to switch this function off. Follow the steps
given in Table 2 for this purpose.
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Setting of Data Transfer Mode Balance Display

1. Keep the Print key pressed until Unit is displayed. Unit
2. Press Mode key till Pr appears. Pr
3. Press the Set key to change the settings of the balance.
4. Keep pressing the Mode key until the balance displays AU PC. Au PC

5. Press the Set key to confirm this change in settings.
6. The balance returns to the weighing mode. 0.0 g

Table 1: Steps to setup the mass balance for data transfer mode.

Activate/deactivate Zero-Tracking Balance Display

1. Keep the Print key pressed until Unit is displayed. Unit

2. Press the Mode key several times until tr is displayed. tr

3. Press the Set key to activate the function. tr on

4. By pressing once more the Mode key, the function is deactivated. tr off

5. The changed setting takes over by pressing the Set key.
6. The balance returns to the weighing mode. 0.0 g

Table 2: Steps to activate/deactivate zero-tracking.

3.3 Using the LabView Application

To collect the data of mass (g) and time (t) you will be using a LabView code which is
available for download from the experiment’s website. Download and run the file from the
website and present it with an output path for your data collection. Some other settings
relevant for the data acquisition are given in Table 3.

Functional Title Value

Visa Resource Name COM1

Baud Rate 9600
Bits 8
Parity None

Stop bit 1
Flow Control None

Table 3: Settings for the LabView interface.

3.4 Experimental procedure and analysis

In this experiment, you are required to verify a linear relationship between v22(t) and
h(t). You have access to vernier calipers that will be used to measure the diameter of the
cylinder and the orifice. Of course, the balance will return the rate of water flowing out
from the cylinder. Use available data to verify the Torricelli’s theorem. Write a computer
script that converts mass flow rate to speed.

Does your experimental data support Toricelli’s theorem? Ideally the slope of the v22
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verses h graph should have a slope 2g. Is the slope of your data smaller or greater than
2g? How do you account for the difference?

References

[1] Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers with
modern Physics, pp. 465-483, (2010).

9


