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Abstract

An experimental setup of a chaotic resistor-inductor diode (RLD) circuit is presented. Following step-by-step its
route to chaos through period doubling, Feigenbaum constant d is calculated and its value is verified with noticeable
accuracy. In addition, the analysis of the corresponding strange attractor shows that one- and multi-step prediction of
the corresponding chaotic time series can be achieved in a real RLD circuit.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos is the non-periodic behavior of deterministic nonlinear dynamic systems that is highly sensitive to initial con-
ditions. Chaotic behavior can also be observed in a variety of presumably simple linear systems in which even a single
parameter variation can lead to a behavior indicative of that of complex nonlinear systems, though governed by the
same initial deterministic rules. Many electronic circuits are good examples of such systems and, in this respect, building
a chaotic circuit can be of great help into understanding the mathematics and possible applications of this pervasive
phenomenon. One of the routes to chaos is by period doubling or bifurcation [1–5]. According to this, when a sinusoidal
signal of period 1 is applied to a system, its output will initially be equal to that of the input. However, if the value of a
single parameter of the system is changed, the output period will bifurcate and if that value is changed again another
bifurcation will occur and so on. Thus, as the parameter value changes, the output signal period becomes 2, 4, 8, 16,
etc., and this continues until no more stable states are available. Interesting enough, for each new bifurcation, the
amount of the parameter value need be changed decreases in a constant manner. By measuring the parameter’s sequen-
tial changes and comparing each one to the next, a constant ratio called Feigenbaum’s constant d is yield [6–9]. A simple
circuit that can exhibit such a chaotic behavior is the so-called RLD circuit, i.e. a series connection of a resistor R, an
inductor L, and a junction diode D. The circuit is driven by a sinusoidal input voltage and the diode provides for the
system’s nonlinearity while its state-of-bias-related capacitance, combined with the inductance, gives the system the nec-
essary degrees of freedom in order to produce chaos.
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In this paper, we use a real RLD circuit and follow its route to chaos through period doubling. We consider this
work in continuation of the recently presented time series analysis in simulated similar circuit, [10]. The remainder
of the paper is organized as follows. In Section 2, we discuss on the RLD circuit setup and, in Section 3, we present
the experimental procedure and the obtained results, from which, in Section 4, we calculate the Feigenbaum constant
d. In Section 5, we proceed to a one- and multi-step prediction of the corresponding chaotic time series. Concluding
remarks are given in Section 6.
2. Description of the RLD circuit setup

The schematic diagram of the employed RLD circuit is shown in Fig. 1. The circuit consists of a simple inductor L, a
diode D and a resistor R connected in series. Their values are L = 4.88 mH, R = 100 X, and the diode type is IN4007.
The input signal is a sinusoidal voltage ts with frequency near or equal to the resonance frequency fr of the circuit, while
the voltage tR across resistor R is considered to be the circuit output signal.

The resonance frequency of a series resistor, inductor, and capacitor (RLC) circuit is the signal frequency that cor-
responds to the maximum amplitude of the output voltage. Considering the diode’s junction capacitance Cj, the reso-
nance frequency fr for the RLD circuit of Fig. 1 depends on this value. In this respect, fr has been found to be
approximately equal to 450 KHz by varying the input signal frequency until the output voltage takes its peak ampli-
tude. Therefore, using the general expression:
fr ¼
1

2p
ffiffiffiffiffiffiffiffi
LCj

p ð1Þ
the actual zero-biased dynamic junction capacitance of the diode [11], is found to be Cj(0) = 25.63 pF which is close
enough to Cj(0)IN4007 = 25.89 pF given by the PSPICE model for IN4007.

In a RLD circuit, chaotic operation may eventually result due to the unrecombined electrons and holes that cross the
forward-biased pn junction, and, as the diode changes state-of-bias, diffuse back to their origin [11]. Hence, the diode
appears to act like a charging or discharging capacitor as its space-charge width varies accordingly. The larger the for-
ward current, the greater the amount of charges that cross the junction and the longer the system needs to return to its
reverse bias equilibrium. If the reverse current is unable to reach equilibrium before the forward bias, then the next cycle
will depend upon the previous cycle, and, this will be equivalent to different parameters at each cycle’s initial conditions.
Thus, under such varying conditions, the circuit may become chaotic [11], and, this may be due to period doubling or
bifurcation of the output signal [1,12].

Considering the operation of a system driven by a sinusoidal signal, its output signal power spectrum will contain the
fundamental input frequency fIN and some high order harmonics due to the system’s nonlinearities. If the same system
is to progress towards chaos by period doubling then additional frequency components, known as subharmonics and
ultra-subharmonics, will appear [12–15]. However, for a truly chaotic system, there will be a spectrum of frequencies
rather than specific peaks, while multiple ‘‘chaos’’ may also occur with broadening of the spectrum near certain
frequencies.

When a RLD circuit is driven by an input signal with frequency near or equal to its resonance frequency fr, the cir-
cuit may operate normally as expected [16]. If the input signal amplitude is increased, the operation will become unsta-
ble in the sense that the output signal periodic state will change and be divided into two frequency components
dependent on fr. The first component will be the harmonic but a second will also appear at half the harmonic. Further
amplitude increase will result in splitting each new component, leading progressively into higher periodicity until there
will be no more stable states available and chaos will prevail. This is exploited in the next section.
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Fig. 1. The experimental RLD circuit.
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3. Experimental procedure and results

In the considered RLD circuit, the input signal frequency fIN is set equal to fr, i.e. fIN = fr = 450 KHz, and remains
unchanged as its amplitude is increased. A two-channel oscillator is used in order to monitor the variations of input and
output signals, and, most importantly, the resulting loops when set in X–Y mode. Hence, before the first period dou-
bling there will be a single loop, while afterwards there will be two loops, four, etc. A spectrum analyzer is also used to
monitor the output signal frequency spectrum. This is particularly helpful in clarifying the occurrence of each bifurca-
tion and measure the value of any new frequency peak that appears on screen.

We now describe step-by-step the experimental procedure that leads the RLD circuit of Fig. 1 to chaotic behavior.
At first, the input signal amplitude is increased to a peak-to-peak value Vpp = 1.11 V. As shown in Fig. 2a–c, the output
signal remains sinusoidal and only one loop appears in X–Y mode. However, Fig. 2d shows that a small frequency peak
appears at 900 KHz being the first harmonic of the input signal fundamental frequency and a typical consequence of the
RLD circuit nonlinearity.

In a second step, Vpp is firstly increased up to Vpp = 1.14 V, where, as shown in Fig. 3, a first period doubling occurs
with a subharmonic frequency peak at 225 KHz and an ultra-subharmonic peak that is just about to appear at around
675 KHz indicating the first bifurcation of the fundamental input frequency of 450 KHz.

After that, Vpp is increased up to Vpp = 1.62 V, where, as shown in Fig. 4, a second period doubling occurs, three
loops appear in X–Y mode, the 675 KHz ultra-subharmonic is clearly shown and the second period doubling is indi-
cated with the just to appear frequency peaks at around 112.5 KHz and 337.5 KHz.

In Fig. 5, Vpp is increased to Vpp = 1.74 V and the occurring new bifurcation results into a total of seven loops and
seven distinguishable frequency peaks.

Following that, a new increase of the input signal amplitude leads to chaos. This is shown in Fig. 6, while along with
Fig. 7, it can be seen that as the input amplitude is further increased, the output chaos will accordingly be strengthened.
However, it must not be overlooked that this is limited by the fact that chaos will be eventually destroyed [17,18].
4. Feigenbaum constant calculation

Feigenbaum’s constant d can be experimentally calculated according to the expression [12,16,19,20]:
Fig. 2.
loop, (
d ¼ P nþ1 � P n

P nþ2 � P nþ1

ð2Þ
(a) Input signal generator settings and output signal tR, (b) tR waveform before any period doubling. (c) X–Y mode: only one
d) spectrum analyzer display of the fundamental frequency component at 450 KHz and its first harmonic at 900 KHz.



Fig. 3. (a) Input signal generator settings and output signal tR, (b) tR waveform after the first period doubling, (c) X–Y mode: a second
loop just appears indicating the first period doubling, (d) display of the first period doubling with the first subharmonic at 225 KHz
along with an indication that an ultra-subharmonic will appear at 675 KHz.

Fig. 4. (a) Input signal generator settings and output signal tR, (b) tR waveform after the 2nd period doubling, (c) X–Y mode: three
loops can be seen, (d) three clear frequency peaks at 225, 450, and 675 KHz (left-to-right) and two peaks at 112.5 and 337.5 KHz just
before to appear (the harmonic at 900 KHz is irrelevant and thus excluded).
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where Pn is the value of the changing parameter, i.e. the driving input voltage amplitude, in one bifurcation, and Pn+1,
Pn+2 the corresponding parameter values for the next two bifurcations. Following that, the obtained values are sum-
marized in Table 1 and lead to:



Fig. 5. (a) Input signal generator settings and output signal tR, (b) tR waveform after the first period doubling, (c) X–Y mode: seven
loops are present, (d) spectrum analyzer display: seven frequency peaks at 112.5, 225, 337.5, 450, 562.5, 675, and 787.5 KHz (the
harmonic at 900 KHz is excluded).

Fig. 6. (a) Input signal generator settings and X–Y mode loops, (b) tR chaotic waveform, (c) spectrum analyzer display of the obtained
chaos.
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d ¼ 1:62� 1:11

1:74� 1:62
¼ 4:25 ð3Þ
which is a mere 8.97% decline in comparison to the theoretical value d = 4.669 [11,16] due to experimental faults, and,
thus, it is well acceptable.



Fig. 7. (a) Input signal generator settings and X–Y mode loops. (b) Spectrum analyzer display of the RLT chaotic behavior.

Table 1
Survey of results of period doubling and chaos on RLD circuit with different values of input amplitude and the corresponding
transitions

Vpp (V) Period

1.11 Transition 1–2
1.62 Transition 2–4
1.74 Transition 4–8
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5. Time series prediction

In this section, we consider the RLD circuit with input amplitude V0 = 890 mV (Vpp = 1.78 V) and use a reordered
time series in order to predict the voltage V = tR(t) across R. In particular, we use local models to predict the one step
and the multi-step procedures. That is, instead of fitting one complex model with many coefficients to the entire data set,
we fit many simple models (low order polynomials) to small portion of the data set depending on the geometry of the
local neighbourhood of the dynamical system [21,22]. The general procedure is the following: to predict point Vi+1, we
determine the last known state of the system as represented by vector X = [Vi,Vi�s,Vi�2s, Vi�(m�1)s], where m is the
embedding dimension and s is the time delay as determined by the first minimum of the average mutual information
function Iav, i.e. s = it where i = 1, . . .,N, [23–26]. Here, keeping in mind that the sample rate is t = 0.222 ns, the average
mutual information Iav exhibits a local minimum at s = 34 time steps, as shown in Fig. 8. Thus, we use as a delay time
equal to s = 34.

According to Taken, [27,28], an m dimensional delay vector will be embedded with a minimum embedding dimen-
sion m when m P 2m + 1 with m being the correlation dimension. In other words, Takens’ embedding theorem asserts
that if the attractor dimension is m, then for a complete understanding of the attractor, 2m + 1 dimensions in the embed-
ding space will be sufficient. Further generalization asserts that any embedding dimension larger than the correlation
dimension will be sufficient for a complete characterization of the attractor, [29,30]. Moreover, the minimum embedding
dimension will be the smallest integer greater than the correlation dimension. Following [10], the correlation dimension
for an RLD circuit has been found equal to m = 2.11.

Hence, considering as optimum the values of delay time s = 34 and embedding dimension m = 3, we then search the
time series to find k similar states that have occurred in the past, where ‘‘similarity’’ is determined by evaluating the
distance between vector X and its neighbour vector X 0 in the m-dimensional state space. Thus, k close states of the sys-
tem that have occurred in the past are found by computing their distances from X and usually these are the k nearest
neighbours of X. The idea, here, is to fit a map which extrapolates X and its k nearest neighbours to determine the next
value. If the observable signal was generated by some deterministic map M(Vi,Vi�s,Vi�2s,Vi�(m�1)s) = Vi+s, that map
could be recovered (reconstructed) from the data by simply looking at its behavior in the neighbourhood of X. Using
this map, an approximate value of Vi+1 will then be obtainable.

We find the approximation of M by fitting a (low order) polynomial which maps the k nearest neighbours (similar
states) of X onto their next immediate values. We use a fixed size of nearest neighbours k = 7 and then use this map to
predict Vi+1. In other words, we assume that M is fairly smooth around X, and so if a state
X0 ¼ ½V0i;V0i�s;V

0
i�2sd;V

0
i�ðm�1Þs� in the neighbourhood of X resulted in the observation V 0iþ1 in the past, then the point

Vi+1 which we want to predict must be somewhere near V 0iþ1, [21].
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Fig. 8. Average mutual information Iav vs. time delay s.
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We use both the one step and multi-step ahead prediction methods. In the one step ahead prediction, after each step
in the future is predicted, the actual value is utilized for the next one step prediction. In contrast, the multi-step predic-
tion is based only on the initial k states. The calculated performance is otherwise known as the normalized mean
squared error (NMSE) and calculated by,
NMSE ¼MAX

PNP
i¼1ðeV i � V iÞ2PNP
i¼1ðV i � V iÞ2

;

PNP
i¼1ðeV i � V iÞ2PNP

i¼1ðV i�1 � V iÞ2

" #
ð4Þ
where eV i is the predicted value, Vi is the actual value, V is the average actual value, and NP is the range of values in the
prediction interval. From Eq. (4) it can be seen that NMSE is the mean squared error of our predictor normalized by
the mean squared error of a random walk predictor. By definition, the minimum value of NMSE is 0. At that value
there is an exact match between the actual and the predicted values. The higher NMSE, the worse is our prediction
as compared to the trivial predictors. If NMSE is equal to 1, our prediction is as good as the prediction by the trivial
predictor. If NMSE is greater than 1, our prediction is worse. Using s = 34 and m = 3,4 or 5, we find that optimum
values are s = 34 and m = 5, k = 7 for which the minimum NMSE is achieved. We use the locally weight linear predic-
tor method for predicting one step ahead the voltage V = tR across R. In addition, in order to determine a weighting
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Fig. 9. One step prediction of voltage oscillations across the resistor.
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Fig. 10. Mean squared error of our predictor normalized by the mean squared error of the random walk predictor for one step
prediction.
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Fig. 11. Multi-step prediction of voltage oscillations across the resistor.
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function to assign the contribution of each neighbour to our locally weighted linear predictor, we use the tricube Kernel
[30–33]:
Kðd; hÞ ¼ 1� d
h

� �3
" #3

ð5Þ
where d is the Euclidean distance between vectors X and X 0 at a phase space with dimension m = 5 and h is the band-
width of the neighbourhood formed by k = 7 neighbours and weights the contribution of each of the k = 7 nearest
neighbours of the reference state X to the resulting prediction. Furthermore, this bandwidth controls the size of the
neighbourhood in which the nearest neighbours are sought.

In our predictor the bandwidth is implemented as a variable bandwidth [21,34] where the actual number indicates
the number of the nearest neighbours of the reference state to search. Once that number is set, the size of the neigh-
bourhood will change in the process of training to include the exact number of the neighbours specified. That is, the
neighbourhood will be larger (resp. smaller) in the sparse (resp. dense) regions of the attractor. In general, the larger
is the bandwidth, the lower is the variance and the greater is the bias of the predictor. For the very low values of band-



24375 24775 25175 25575 25975
0.00

0.05

0.10

0.15

0.20

0.25

N
M

SE

time index

Fig. 12. Mean squared error of our predictor normalized by the mean squared error of the random walk predictor for multi-step
prediction.
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width, the predictor simply interpolates between points, while for the very large values of bandwidth, the local predictor
becomes a global one since it considers all the points in the data set. Then, the contribution of each neighbour to the
regression is calculated according to Eq. (5). In the present analysis, we used 26,000 data points and predicted the evo-
lution for 2000 succeeding dimensionless time steps from 24,000 to 26,000. We then computed the NMRSE as the Root
mean square error of the prediction as well. The obtained results are shown in Fig. 9 where the one step ahead predicted
values are coming from an out-of-sample set prediction, where we pretend that we know the data only up until this
point, and we try to predict from there, while the one step ahead predicted values are coming from prediction out-
of-sample set. The NMSE is then shown in Fig. 10 for the one step prediction. The root mean square error (RMSE)
for this prediction is found equal to 0.000473.

Finally, we use the same procedure as before but with multi-step ahead predictions and the results are shown in
Fig. 11. Respectively, Fig. 12 depicts NMSE for multi-step prediction while the corresponding RMSE is found equal
to 0.005145.
6. Conclusion

With a resistor, diode and inductor in series and a sinusoidal drive signal, we were able to experimentally drive a
circuit into chaos. Our circuit recapitulated the Feigenbaum universal constant and the calculated value proved to
be close enough to the theoretically expected value. Furthermore, using as input parameters the invariant parameters
that characterize the strange attractor, we achieved both one step and multi-step prediction of the corresponding cha-
otic time series that governs the dynamics of the considered RLD circuit.
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