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We have repeated Perrin’s 1908 experiment for the determination of Avogadro’s number by
determining the mean square displacement of small particles undergoing Brownian motion. Our
apparatus differs from Perrin’s by the use of a CCD camera and is much less tedious to perform. We
review Einstein’s 1905 analysis of Brownian motion and Langevin’s alternative derivation of the
Einstein equation for the mean square displacement. We also show how Einstein’s thinking was a
reflection of his belief in the validity of molecular-kinetic theory, a validity not universally
recognized 100 years ago. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

As is well known, Einstein published three great papers in
1905. As Pais1 has emphasized, his doctoral dissertation,2

also submitted in 1905, is equally important. The first two
papers on relativity3 and on light quanta4 have overshadowed
the third paper5 in which he treated the fluctuations of the
motion of a suspension of particles rather than true solutions,
which he had considered in his dissertation. As we shall see,
the connection between the dissertation and third paper is not
trivial.

In 1905 many scientists such as Mach and Ostwald, who
believed in philosophical positivism, considered energy the
fundamental physical reality and regarded atoms and mol-
ecules as mathematical fictions. Einstein did a statistical
analysis of molecular motion and its effect on particles sus-
pended in a liquid. From this analysis he calculated the mean
square displacement of these particles. In Ref. 5 he argued
that observation of this displacement would allow an exact
determination of atomic dimensions. He also recognized that
failure to observe this motion would be a strong argument
against the molecular-kinetic theory of heat.

The experimental confirmation of this prediction of the
relation between the mean square displacement and
Avogadro’s number as well as a physical explanation of the
phenomenon of Brownian motion led to acceptance of the
atomic or molecular-kinetic theory. As Sommerfeld
remarked6 in his contribution to Einstein’s 70th birthday,
“The old fighter against atomistics, Wilhelm Ostwald, told
me once that he had been converted to atomistics by the
complete explanation of Brownian motion.”

Perrin, a brilliant experimentalist, believed strongly in mo-
lecular reality. He did a series of experiments7 in the first
decade of the twentieth century, one of which depended on
Einstein’s calculation of the mean square displacement of
suspended particles. His results confirmed Einstein’s relation
and thus the molecular-kinetic theory.

In this paper we shall review the Einstein relation for
mean square displacement concentrating especially on his
assumptions in formulating it. We then describe a modern
version of Perrin’s displacement experiment. Although the
apparatus is essentially the same as Perrin’s, the use of a
modern camera coupled to a computer makes the measure-

ment far easier.
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II. EINSTEIN’S EQUATION FOR THE MEAN
SQUARE DISPLACEMENT

In his autobiographical notes8 Einstein described his goal
of proving the existence of atoms. He accepted Maxwell-
Boltzmann statistics and its relation to the molecular-kinetic
theory of heat. In his dissertation “On a new determination of
molecular dimensions,” Einstein based his analysis on van’t
Hoff’s laws of dilute solutions and osmotic pressure and cal-
culated the molecular dimensions of the dissolved molecules.
The Brownian motion paper became possible with his recog-
nition that particles suspended in a liquid behave much like
solute molecules dissolved in a liquid. His great insight was
the recognition that these suspended particles also exhibit
osmotic pressure.

He based this insight on the argument that a suspended
particle differs from a dissolved molecule solely by its di-
mensions. He verified this conjecture by calculating the en-
tropy and free energy of the entire system of particles and
liquid. The calculation required integrating over all configu-
ration space. This analysis showed that just as the molecular-
kinetic theory leads directly to the ideal gas law, so does it
explain the osmotic pressure of a suspension of particles. We
concur with Hinshelwood9 who wrote, “Osmosis is some-
times dismissed as an obscure and secondary effect. It is, on
the contrary, the most direct expression of the molecular and
kinetic nature of solutions.” We believe that Einstein would
have agreed strongly with this statement.

Let us outline Einstein’s arguments in going from solution
to suspension that led to his equation for the mean square
displacement of suspended particles, the basis of Perrin’s ex-
periment. There is an excellent summary and discussion of
the arguments in his dissertation and the Brownian motion
paper in Ref. 1, pp. 86–101. In his dissertation Einstein bal-
anced the Stokes dissipative force depending on Navier-
Stokes motion of a viscous liquid with the fluctuating force
arising from thermal molecular motions caused by the sol-
vent. The diffusion current balances that created by the
Stokes law.

In the Brownian motion paper5 Einstein used essentially
the same argument, applying the van’t Hoff law to suspen-
sions, assuming Stokes’s law, and describing the Brownian
motion as a diffusion process. From these assumptions he

2
derived an expression for the mean square displacement �x �
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of a suspended particle. The derivation led to an expression
for Avogadro’s number NA in terms of the mean square dis-
placement

NA = �1/�x2���RT/3��r�� , �1�

where R is the gas constant, T is the absolute temperature, �
is the viscosity, r is the particle radius, and � is the time
interval between measurements of the particle position. Ein-
stein mentioned that Eq. �1� does not hold for time intervals
� that are too small, because the root mean square displace-
ment divided by � would blow up as � approaches zero.

Appendix A gives the details of the derivation. For a com-
plete exegesis of his thought consult the collection of his
papers on Brownian motion published between 1905 and
1911.10

Three years after Einstein’s first paper Langevin11,12 ob-
tained the same equation for Avogadro’s number by a differ-
ent and simpler derivation. His derivation is based on a New-
tonian approach and is given in Appendix B.

III. PERRIN’S DETERMINATION OF AVOGADRO’S
NUMBER

Perrin used several approaches in determining Avogadro’s
number,7 including direct measurements of the mean square
displacement and application of Einstein’s equation. He pre-
pared suspensions of particles of gamboge and of mastic of
uniform size and observed the particles with a camera lu-
cida, a device that projects an image on a plane surface suit-
able for tracing. He made measurements of the displace-
ments for as many as 200 distinct granules and obtained
NA=7.15�1023.

We essentially replicated Perrin’s experiment, although
with a few modern touches. The apparatus, shown schemati-

Fig. 1. Apparatus for viewing Brownian motion. It is essentially the same as
Perrin’s except that a CCD camera and software replace his camera lucida.
cally in Fig. 1, consists of a microscope objective, a sample
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of uniform spherical particles dispersed in a saline solution, a
CCD camera with a computer interface, and software to de-
termine the positions of the particles. The main difference
between Perrin’s arrangement and ours is the replacement of
the camera lucida by a CCD camera.

Our experiment was performed using an American Optical
Microstar trinocular microscope. The 100�objective was
chosen to maximize displacement of the microsphere image
at the camera’s CCD array. In principle, the experiment can
be performed using less magnification, especially if long
time intervals are chosen. The microscope body is optional.
Given appropriate mounts, the objective, camera, and light
source are the only mandatory components. The computer
communicates with the camera via a FireWire interface.

Preparing a suitable sample is important. A dimpled slide
was chosen to minimize convection within the sample. A
simple alternative is to use a standard slide with a parafilm
gasket between the slide and cover slip. Polystyrene micro-
spheres were obtained from Polysciences, Inc.13 The size of
the spheres was chosen for convenience. One micron diam-
eter spheres are ideal. The samples were mixed in concentra-
tions of a few microliters of microsphere solution per milli-
liter of solute. An ionic solute is desired to minimize
electrostatic interactions between the microspheres. A buff-
ered saline solution can be mixed from scratch;14 we used
saline solution intended for use with contact lenses. The vis-
cosity of the saline solution �1.02�10−3 Pa s� was obtained
by interpolation from a table in Ref. 15.

Sequential images were recorded at fixed time intervals.
The focus control of the microscope was used to keep the
microsphere in focus, effectively projecting a three-
dimensional random walk onto a plane. The microsphere was
located in each image using Image/J, an open source Java
application for image analysis and processing. The mean-
square incremental displacement in units of pixels was cal-
culated for both x- and y-coordinates and averaged. The
CCD pixel size was calibrated by imaging a replica diffrac-
tion grating with known line spacing.

Each data point in Fig. 2 represents approximately 200
incremental displacements. The mean-square displacement
for time intervals ranging from 0.50 to 10.0 s, for 0.50, 1.09,

Fig. 2. Mean square displacements as a function of time.
and 2.06 micron diameter spheres, is shown. The lines are
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fits to the data, forced to go through the origin. Avogadro’s
number is deduced from the slope using Eq. �1�. The results
are given in Table I. Note that the values for NA decrease for
increasing particle size. We are not certain of the reason for
this dependence. However, Brownian motion is sensitive to
the size of the particles in suspension and begins to disappear
as a size of 2 microns is reached.

IV. SUMMARY

We believe that several reasons justify the effort of repeat-
ing an experiment 100 years after it was first done. As stated
in Sec. I, Einstein’s statistics paper has been in the shadow of
the relativity and light quantum papers of 1905. It is a beau-
tiful piece of scientific exposition, presented in a modest
fashion. Einstein did not claim that his results explained
Brownian motion or proved the validity of the molecular
kinetic theory. Rather he said that the predictions, if ob-
served, would be consistent with the theory, adding that fail-
ure to observe them would weigh strongly against the theory.
It is significant that a theoretician as great as Einstein recog-
nized that theory must stand or fall with experiment.

The experiment has important pedagogic value as well.
Statistical concepts are, by their very nature, abstract. To
grasp the ideas in a physical context is easier. We were struck
by our own reactions to measuring the successive positions
of a particle. Consider 100 frames taken at 1 s intervals. We
selected a particle and record its position. This procedure is
not difficult because the software makes the measurement.
The next frame is selected and the measurement repeated.
The process is repeated for all 100 frames. Each time the
particle moves but a short distance. In this way we obtained
a truly hands-on feeling for Brownian motion and its statis-
tical nature. The result is that the statistical analysis loses its
arcane nature and leads to a fuller conceptual understanding
for students.

We quote Pais �Ref. 1, p. 97�, “¼one never ceases to
experience surprise at this result, which seems, as it were, to
come out of nowhere: prepare a set of small spheres which
are nevertheless huge compared with simple molecules, use a
stopwatch and a microscope, and find Avogadro’s number.”

As a community, we are sometimes forgetful of the history
of physics. Students often believe that progress in physics is
a smooth road without controversy. New theories are not
accepted without a fight. We should remember that the mo-
lecular kinetic theory was accepted only after many bitter
fights. As Ostwald said �see Ref. 6�, it was the work of Ein-
stein and Perrin that convinced him of its validity. We hope
that this paper will serve as a reminder of this history.
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Particle diameter �microns� Slope �10−13m2/s� NA �1023�
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1.09±0.04 7.3±0.2 6.4±0.3
2.06±0.02 4.3±0.2 5.7±0.2
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APPENDIX A: EINSTEIN’S DERIVATION

In his dissertation Einstein combined van’t Hoff’s laws for
osmotic pressure with Stokes law for particles moving in a
viscous medium and applied them to the diffusion process.
Because there are both thermal and dynamic equilibria, these
two laws led to a relation between the diffusion constant D
and the viscosity � for molecules dissolved in a liquid.

D = �RT/NA��1/6��r� . �A1�

In his 1905 Brownian motion paper5 Einstein extrapolated
van’t Hoff’s law for the osmotic pressure of a solute to a
suspension of undissolved particles. As he did in his disser-
tation, he also assumed Stokes law

K = 6��rv , �A2�

where K is the resistive force �Einstein used K because the
German word for force is Kraft�, and v is the velocity of the
particle.

He combined the osmotic pressure, which gives rise to a
compensating diffusion, and Stokes law and then treated
Brownian motion as subject to a diffusion equation for the
concentration n of the suspension:

D��2n/�x2� = �n/�t . �A3�

If we integrate Eq. �A3�, we obtain the concentration as a
function of position and time:

n�x,t� = �n/�4�D��1/2�exp�− x2/4D�� . �A4�

The mean square displacement �x2� from the origin is then

�x2� = �1/n� � x2n�x,t� dx = 2D� . �A5�

The final result is the Einstein equation,

�x2� = �RT/3��NAr�� . �A6�

APPENDIX B: LANGEVIN’S DERIVATION

Langevin’s derivation of the Einstein relation goes as fol-
lows. Each colloidal particle is subject to two forces. One is
a random molecular bombardment F that causes Brownian
motion. The other is a resistive force, �v, proportional to the
velocity v of the particle where � is the damping coefficient
related to viscosity. We write the equation of motion of a
particle in one dimension as

m�d2x/dt2� + ��dx/dt� − F = 0. �B1�

We multiply Eq. �B1� by x and remember that

x�d2x/dt2� = �1/2�d2�x2�/dt2 − �dx/dt�2, �B2�
and obtain
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�m/2�d2�x2�/dt2 − m�dx/dt�2 + ��/2�d�x2�/dt + Fx = 0.

�B3�

For a large number of particles, the average value of Fx is
zero, because F will, on the average, have equal positive and
negative values. From the equipartition theorem the average
value of the kinetic energy of a single particle for one degree
of freedom is

�m/2��dx/dt�2 = RT/2NA. �B4�

Let � equal the mean value of d�x2� /dt. We can write Eq.
�B3� as

�m/2��d�/dt� − RT/NA + ��/2 = 0. �B5�

We integrate Eq. �B5� and obtain

� = 2RT/NA� + Ae−t�/m, �B6�

where A is an integration constant. If we take the specific
gravity of the colloid particles as unity, set � equal to 6�r�
from Stokes’s law, and take r as 1� and � as the viscosity of
water at room temperature, we find that m /� equals 10−5 s−1.
Hence for any reasonable observation time �, the term
Ae−t�/m is close to zero. Therefore Eq. �6� becomes

� = 2RT/NA� . �B7�

Integrating over the observation time � gives the mean
squared displacement �for one degree of freedom� as

�x2� = RT�/3�NAr� , �B8�

which is the Einstein equation. A measurement of the mean
square displacement combined with the observation time, the
absolute temperature, the radius of the particles, and the vis-
cosity allows us to determine Avogadro’s number.
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