
~ The water droplets that fly up

from this beautiful fountain in Monaco

follow parabolic paths. Such paths are

a consequence of the constant vertical

acceleration associated with local

gravity.
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Motion in TW"oand Three

Ditnensions

I
nChapter 2 we considered the description of motion in one dimension-linear mo-

tion. We will now extend this description to motion in space. We observe such

motion in the curved path of a thrown ball, in the swing of the pendulum of a

grandfather clock, or in the orbits of the planets around the Sun. While for one-

dimensional motion the directional aspect is encapsulated in signs, for motion in two or

three dimensions we must use vectors to describe the directional aspect properly. With

the help of the mathematical apparatus provided by vectors, we'll find that it is straight-

forward to describe the motion of objects in a plane or in space in a manner that builds

on our earlier work with one-dimensional motion.

3-1 Position and Displacement

The motion of a planet orbiting the Sun traces out a path in space. Similarly, a rock

thrown off a cliff follows a certain path, or trajectory, as does any pointlike object as it

moves through space. For motion in a plane, think of a skater on a lake whose skates

leave marks that specify the trajectory of the motion. Figure 3-1 depicts a particle, for

example the skater, moving in a two-dimensional plane. We label the plane as the

xy-plane and introduce a Cartesian coordinate system that contains an origin and x- and



y

(a) (b)

y-axes. The particle is at the position P at time t1; this position is described by the

position vector rp, which points from the origin to the point P At a later time t2 the par-

ticle is located at position Q and is described by the position vector rQ' The change in
the particle's position between times t1 and t2-the final position minus the initial

position-can be described by the displacement vector L1r; this vector is defined by

L1r == rQ - rp. (3-1)

The vector L1r points from the tip of vector rp to the tip of vector t« and describes the
direction of the displacement as well as its magnitude. Whereas the position vectors rQ
and rp depend on the choice of origin, the displacement vector L1r is independent of the

choice of origin. To see this clearly, let's imagine that there is a new origin 0' such that

the vector from 0' to 0 is the fixed vector b (Fig. 3-2). The position vector of point P

in the new coordinate system is rp + b and that of point Q in the new system is rQ + b.
If we calculate the displacement, which is the difference (rQ + b) - (rp + b),

the vector b cancels. In other words, we have again arrived at the displacement vector
defined in Eq. (3-1). This can also be seen in the graphical representation in Fig. 3-2.

The displacement is independent of our choice of origin.

As a particle moves, the components of its position vector (with respect to the

Cartesian coordinate axes) change with time:

r(t) = x(t) i + y(t)j. (3-2)

For three-dimensional motion, we would proceed exactly as in Section 1-6: We set up

three axes, define three mutually perpendicular unit vectors i, }, and k, and write a po-
sition vector in the form

r(t) = x(t) i + y(t)} + z(t)k. (3-3)

The fact that there is more than one vector component to the motion is the only differ-

ence between one-dimensional motion and two- or three-dimensional motion .

.•••FIGURE 3-2 A displacement

vector Llr is independent of the origin.
Here 0 and 0' are two origins, and

although the initial and final position

vectors to points P and Q do depend on

the origins, the difference between these

position vectors does not.
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.•••FIGURE 3-1 (a) The ice skater is

gliding over the path indicated by the blue

trajectory line. (b) Position vectors rp and
rQ point from the origin to the positions P
and Q at the two times t[ and t2,

respectively, along the skater's path of

motion. The displacement vector between

these times is Llr '" rQ - rp.
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EXAMPLE 3-1 The position of a bumper car in an amuse-

ment park ride (Fig. 3-3a) is described as a function of time by the

coordinates x = Clt2 + C2t + C3and y = dlt
2 + d2t + d3, where

Cl = 0.20 m/s2, C2 = 5.0 m/s, C3 = 0.50 m, dj = -1.0 m/s2,

d: = 10.0 m/ s, and d3 = 2.0 m. Find the position vectors of the car

at t = 3.0 sand t = 6.0 s and the displacement vector between these

times. Plot the trajectory, that is, a curve of y versus x that traces the path

of the car on the floor.

Setting It Up We plot the locations of the car along the x-axis

and the y-axis as a function of time in Figs. 3-3b and 3-3c, respec-

tively. In the first instance we are given the position as a function of

time and are asked to find the position at a particular time; in other

words, we are actually given what we must find! We'll label the de-

sired displacement vector D.r.

Strategy The first part is a straightforward numerical substitu-

tion. For the displacement, we calculate the difference between the

position vectors (components x and y) at 6.0 and 3.0 s. This differ-

ence is the displacement vector. As for plotting the trajectories, the

simplest way to proceed is to start with an xy-plane. We can then

mark the x- and y-values at a given time as a point on this graph. A

half-second later, say, there is another point that can be marked, and

so forth. By connecting those consecutive points starting from the

one at the earliest time, we mark out the trajectory.

Working It Out We insert the two values of time (3.0 and 6.0 s)

into the equations for x and y:

for t = 3.0 s:

x(t) = (0.20 m/s2)(3.0 s)2 + (5.0 m/s)(3.0 s) + 0.50 m = 17 m,

y(t) = (-1.0 m/s2) (3.0 s)2 + (10.0 m/s ) (3.0 s) + 2.0 m = 23 m;

for t = 6.0 s:

x(t) = (0.20 m/s2)(6.0 s)2 + (5.0 m/s)(6.0 s) + 0.50 m = 38 m,

y(t) = (-1.0 m/s2)(6.0 sf + (10.0 m/s)(6.0 s) + 2.0 m= 26 m.

With these components, Eq. (3-2) gives us the position vectors of

the car at the two times:

for t = 3.0 s: r(t)

for t = 6.0 s: r(t)

(17i + 23J) m;

(38 i + 26J) m.

Thus the displacement vector of the car between 3.0 and 6.0 s is

[Eq. (3-1)]

D.r= r( t = 6.0 s) - r( t = 3.0 s)

= (38i + 26J) m - (17i + 23J) m = (2li + 3J) ill.

Finally, we plot y versus x, moment by moment, in Fig. 3-3d. This

curve is the trajectory of the car.

What Do You Think? Why does the trajectory curve look so

similar to the curve of y versus time? There are other vector descrip-

tions of motion in a plane. Can you think of another such set?

Answers to What Do You Think? questions are given in the back

of the book.
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.•. FIGURE 3-3 (a) An xy-coordinate system can be laid out on the

floor. (b) Location along x-axis of car's motion from 0 to 8 s. (c) Car's

location along y-axis. (d) By combining the results of part (b) and part

(c), we can plot the trajectory, a graph of the y-position versus the

x-position.

D"..2 Velocity and Acceleration

Velocity

As for the one-dimensional motion described in Chapter 2, the velocity of a particle de-

scribes the rate of change of the position of the particle as it moves on its trajectory. Gen-

erally we will consider two-dimensional motion as we work through the chapter, as it is



simpler than considering three-dimensional motion, but the approach applies perfectly

well to three dimensions. Using Eq. (3-1) for the particle's displacement, the average

velocity vav over the finite time interval from t to t + /1t is accordingly defined by

r(t + /1t) - r(t)
vav == /1t

(3-4)

Equation (3-4) shows that the direction of vav is the same as the direction of the dis-

placement vector /1r.

As the time /1t tends towards zero, the displacement over that interval becomes

smaller and smaller, and as we'll describe in more detail later, the displacement vector

/1r becomes tangent to the particle's trajectory at the location of the moving particle.

Then, as in Eq. (2-11), the instantaneousvelocityv( t) is obtained by letting /1tbecome

infinitesimally small:

~ . r(t + /1t) - r(t) ar
vet) == 2:!!!O---/1-t---= di' (3-5)

We have recognized that in the limit /1t - 0 we arrive at the time derivative of the po-

sition vector. The instantaneous velocity can change from moment to moment. The di-

rection of vat time t is tangent to the trajectory curve at that time (Fig. 3-4). Of course,

we already know that its magnitude is by definition the particle's speed.

We can write the velocity vector in terms of components by using Eqs. (3-2) and (3-5):

d d ~ ~
v = -r(t) = -[x(t)i + yet))]

dt dt
(3-6)

dx ':' dy :
=~I+~J.
dt dt

(3-7)

(The unit vectors i and J are constant in magnitude and direction, so their derivatives

are zero.) We write Eq. (3-7) in the form

(3-8)

(3-9)

where

dx
Vx =-,

dt
(3-lOa)

dy
vy =~,

dt
(3-10b)

and the component vectors are

~ dx ':'
Vx = ~l,

dt
(3-11a)

~ dy :
vy = ~J.

dt
(3-11b)

The component vectors Vx and vy of the velocity vector v are drawn in Fig. 3-4.
The magnitude of the velocity v can be written in terms of the components of v:

v = Ivl = Vv~ + v~. (3-12)

The angle e that the velocity vector v makes with the x-axis is determined in terms

of the components of the velocity by

vy
tan f =-.

Vx
(3-13)
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x

..•..FIGURE 3-4 The velocity vector

v at point P is tangent to the particle's
trajectory at that point. The component

vectors vx and vy of the velocity vector V
at that point are also included.



64 I Motion in Two and Three Dimensions

EXAMPLE 3-2 Use the data presented in Example 3-1 to find

the bumper car's average velocity over the period from 3.0 to 6.0 s

and the car's instantaneous velocity at t = 3.0 s.

Setting It Up The data of Example 3-1 give the position of the

car as a function of time.

Substituting the numerical values of cl, c2, d], and d2 at t = 3.0 s

from Example 3-1, we have

Strategy The average velocity is given by Eq. (3-4), and this re-

quires us to know the displacement for a given time interval. That in-

formation is available from Example 3-1. For the instantaneous

velocity we use Eq. (3-7) and evaluate the derivatives of x(t) and yet).

Working It Out Given the result of Example 3-1, that the dis-

placement vector of the bumper car between t = 3.0 sand t = 6.0 s

is t!,7 = (217 + 3.0J) m, we have

dx :1
- = 2(0.20m/s )(3.0£) + (5.0m/s) = 6.2m/s,
dt

dy = 2(-1,0m/s:1)(3.0£) + (lO.Om/s) = 4.0m/s.
dt

Thus the velocity at t = 3.0 s is

(217 + 3.0J) m

6.0 s - 3.0 s
(7.07 + 1,0J) m/so

dx A dy A A A

11= -i + -j = (6.2m/s)i + (4.0m/s)j.
dt dt

This velocity vector is shown in Fig. 3-5.

As for the instantaneous velocity, we require

What Do You Think? Could you have used the graph of the

trajectory in Fig. 3-3d to read off the velocity of the car?

y

10 The vectors v and a can be----I-----
determined at each point 1
along the trajectory. I

l-

I x

30

20

•. FIGURE 3-5 The trajectory of the

car's path in Example 3-1 is plotted for

times up to 10 s; also shown are the

position vector T, the velocity 'D,and the

acceleration a at t = 3.0 s.

20 40 60

Position (m)

Acceleration

Acceleration describes how rapidly velocity changes with time. This "change" could

be in the magnitude (the speed) or the speed could remain the same while the direction

of the velocity vector changes or both magnitude and direction may change. As for

motion in one dimension, acceleration is found from velocity in the same way that ve-

locity is found from displacement. For a finite time interval I1t, the average accelera-

tion is defined as

v(t + I1t) - v(t)

I1t
(3-14)

The instantaneous acceleration at time t is the limit of the average acceleration as ;).t ap-

proaches zero, which is a derivative:

_ . v(t + I1t) - v(t) dv
a == Iim ------- = -

Llt--'>O I1t dt .
(3-15)

The instantaneous acceleration is in principle a function of time, meaning that its three

components are generally functions of time. As for velocity, we can express accelera-

tion in terms of its components; for two dimensions (again for economy) we have



~ do; -:' dvy-:,
a=-z +-J

dt dt

= a)~ + ay;'

Here, the components of the acceleration vector are

du; d2x

ax = ---:it = .u?'

dVy d2y
a -----
y - dt - dt2'

EXAMPLE 3-3 Calculate the instantaneous acceleration,

magnitude and direction, of the bumper car in Example 3-1 at

t = 1.0 sand t = 3.0 s.

Setting It Up Wewill want to use the known velocity vector of

the car calculated in Example 3-2 using data for the position vectors

from Example 3-1.

Strategy The acceleration vector is the time derivative of the

known velocity vector, Eqs. (3-18a) and (3-18b). The acceleration is

a function of time, into which we will then substitute particular val-

ues of time.

Working It Out From Eqs. (3-18),

du, d
ax = - = -(2cjt + C2) = 2cj

dt dt

and
do; d

ay = ---;it = dt (2djt + d2) = Zd«,

Thus [Eq. (3-17)]

a = 2cji + 2dJi,

In this case, the car's acceleration is a constant-it is independent of

time-and so is exactly the same for t = 1.0 s and for t = 3.0 s.
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(3-16)

(3-17)

(3-18a)

(3-18b)

Given the values of Cl and d , from Example 3-1 (0.20 and

-1.0 m/s2, respectively), the numerical value of the acceleration is

a = (OAOi - 2.0J) m/s2

The magnitude of the acceleration is

a = lal = Va; + a~= V(OAO)2 + (-2.of mN
= V4.2 m/s2 = 2.0 m/s2.

The acceleration vector makes an angle e with the x-axis, which
is shown in Fig. 3-5; the angle e is derived from

ay -2.0 m/s2
tan f = - = ----= -50'

ax 0040 m/s2 . ,

so e = -790; that is, the direction of the acceleration is at -790 to

the horizontal, almost directly toward the -y-direction.

What Do You Think? We started this example by taking the

time derivative of the known velocity vector. Could we instead

have started with the position vector as a function of time (given in

Example 3-1)?

Representing Trajectories

Look again at the trajectory of the bumper car discussed in Examples 3-1, 3-2, and 3-3

(Fig. 3-5); this trajectory is a curve representing the car's position on the floor of the

amusement park ride (its x-position versus its y-position). In Fig. 3-5, we show a posi-

tion vector r, a velocity vector V, and an acceleration vector a at t = 3 s. Although the

figure shows a at the point corresponding to t = 3.0 s, we in fact saw that the accelera-

tion of the car is independent of time and hence would be drawn as the same vector

everywhere along the curve.

We can create a graphical representation like that in Fig. 3-5 for any motion. As an

object moves, its trajectory will be traced out by the tip of the position vector r as r
changes with time. The velocity vector v at any time t is a vector of magnitude Ivl that
is tangential to the trajectory at time t. This is quite intuitive. However, it is not quite so

obvious how to think about the acceleration.

Since the acceleration is to the velocity as the velocity is to the displacement,

one thing we could do is to repeat the procedure of the preceding paragraph with

velocity and acceleration. A plot of the tip of the vector v can be drawn; it is the
curve of the points whose horizontal coordinate at time t is Vx and whose vertical

coordinate at that time is vy. We might call this the "velocity trajectory." The accel-

eration at time t is given by a vector whose magnitude is lal and whose direction is

tangential to the velocity trajectory at time t. The acceleration vector a is tangent to
the velocity trajectory but not to the trajectory itself



66 I Motion in Two and Three Dimensions

y y

a broken into parallel and
perpendicular componenis

o
x

(b)

••. FIGURE 3-6 Velocity v and acceleration a of a particle following some trajectory. (a) The
acceleration of the particle is separated into x- and y-components. (b) The acceleration of the particle

is separated into components parallel and perpendicular to the path.

We can illustrate the consequences of these facts using Fig. 3-6, which shows the

path of an object with v and a indicated at one time along the path. In Fig. 3-6a, the ac-

celeration is separated into its a ; and ay components. Alternatively, we can separate the

acceleration a into components that are parallel (tangential) and perpendicular (normal)

to the velocity vector (Fig. 3-6b). We label these components all and a~, respectively.

The component all of a that is parallel to V affects the magnitude but not the direction of

v. Similarly, the a~ component changes the direction but not the magnitude of V. It is

useful to refer separately to the parallel and perpendicular components of an object's

acceleration because they affect the velocity differently.

CONCEPTUAL EXAMPLE 3-4 The motion of bumper

cars is extremely erratic: You are colliding with other cars or you are

trying to use evasive techniques. Figure 3-7 shows the path of a

bumper car. Consider the points A, B, C, D, and E. (a) At which point

did a collision most likely take place? (b) At which point did evasive

action most likely take place? (c) Can you determine where the mag-

nitude of the velocity is the greatest? (d) Can you determine where

the magnitude of the acceleration is the greatest?

y

~
D

-t-----------x

••. FIGURE 3-7 The motion of a bumper car can be quite erratic as

it slams into other cars and takes evasive action to avoid collisions. Here

we have the trajectory, or path, of such a car.

Answer (a) A collision most likely took place at point B be-

cause there is an abrupt change in direction. The driver could not

change the direction so quickly without some outside effect.

(b) Evasive action probably took place at point D because there is a

rapid but smooth change in direction as the driver turned quickly.

The motion change is typically more abrupt at collisions.

(c, d) We can't tell where the magnitudes of the velocity and accel-

eration are the greatest from the trajectory alone because we do not

know the times associated with points along the trajectory. We

might guess that the acceleration was a maximum during the colli-

sion at point B because the velocity would change dramatically

during the collision. On the other hand, if the bumper car were

traveling very slowly at the time of a collision at point B then the

collision might not be a very violent one and the acceleration

would not necessarily be very large. You simply do not have

enough information on a trajectory to tell. A plot such as Fig. 3-7

does not contain all the information about the motion .

3---3 Motion with Constant Acceleration

When an object moves with constant acceleration-meaning constant in both magnitude

and direction-it can move only in a straight line (one dimension) or a plane (two dimen-

sions). The plane of motion is formed by the initial velocity vector and the acceleration

vector a. The motion remains in this plane because, as Fig. 3-8 illustrates, the initial

velocity vector has no component v01- perpendicular to the specified plane, and since the

acceleration is in the plane, v1- can never change and become nonzero. Motion near
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z

ta Particle's trajectory\

Initial

velocity

Plane of motion

x

Earth's surface, that is, motion under the sole influence of gravity, with air resistance ne-

glected, provides an everyday example. If we throw a rock, it moves in a plane defined by

the initial direction of the motion and the constant (vertical) acceleration of gravity.

At this point we'll simplify our notation by defining the plane of the motion as the

xy-plane. We'll suppose for the moment that the initial velocity can have both x- and

y-components, as can the (constant) acceleration. We can then use the results for one di-

mension from Chapter 2 to write independently the x- and y-components of position 7

and velocity v in terms of the constant-acceleration components. In other words, we can

think of the x- and y-motions as separate from each other, governed only by their own

separate constant accelerations. We use Eqs. (2-17) and (2-21) to find

x-component of F: x = xo + voxt + ~axt2 (3-19)

x-component of v: Vx = VOx + axt; (3-20)

y-component of F: y = Yo + vOyt + !ayt
2, (3-21)

y-component of v: vy = vox + axt. (3-22)

Here, xo and Yo are the components of 7 = ro at an initial time t = 0 and vox and

vOy are the components of v = vo at time t = O.Together these quantities are the given
initial conditions. In vectorial form, the initial conditions are

(3-23)

and
A A

Vo = vOx i + voyJ (3-24)

att = O.

Equations (3-19) through (3-22), which give position and velocity for motion with

constant acceleration a, can be written more compactly in vector form:

(3-25)

MOTION WITH CONSTANT ACCELERATION

(3-26)

This form of the kinematic equations has the additional benefit that it does not refer to

any particular set of axes. Remember that these important and useful results are valid

only when a is constant. We can easily see the important features of these compact

equations. In particular, you can see that for any direction for which the acceleration

component is zero the position (or, equivalently, the displacement) component changes

linearly with time, corresponding to a constant-velocity component. For any direction

for which the acceleration component is not zero, the position component changes

quadratically in time, corresponding to a linearly changing velocity component.

y

..••FIGURE 3-8 Projectile motion lies

in a plane, the plane formed by the initial

velocity vector and the acceleration

vector.
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EXAM PLE3-5 A wayward golf ball rolls off the edge of a ver-

tical cliff overlooking the Pacific Ocean. The golf ball has a horizon-

tal velocity component of 10 m/s and no vertical component when it

leaves the cliff. Describe the subsequent motion. (The golf ball pro-

vides us with our first glimpse of projectile motion. In the following

section we will look at this important type of motion in more detail.)

Setting It Up The displacement, velocity, and acceleration all lie

in the same plane, which we assign to be the Ay-plane. In Fig. 3-9a we

include a coordinate system, placing the origin at the point where the

ball leaves the cliff and with the y-direction pointing up. We are given

initial values of velocity. A "description" of the motion consists of writ-

ing the position as a function of time. Given this, further quantities,

such as velocity as a function of time, can be found by differentiation.

Strategy This is a case of motion under constant acceleration. In

this case the ball's constant acceleration is that of gravity, and thus

a = g. The vector g points toward Earth's center-vertically down-

ward-and has magnitude 9.8 rn/s". Because we have constant accel-

eration, we can use Eqs. (3-19) through (3-22) to describe the motion,

for which we know the initial values (at t = 0, the moment when the

ball rolls off the cliff). As emphasized above, we can say that because

there is no component of acceleration in the x-direction, the horizontal

velocity component is constant and will remain at its initial value.

Equations (3-19) and (3-21) give the ball's position as a function of

time:

x = Om + (lOm/s)t + ~(Om/s2)t2 = (lOm/s)t,
1 - (3-28)

y = Om + (Om/s)t + 2:(-9.8m/s2)t2 = (-4.9m/s2)t2.

Figure 3-9a shows the trajectory of the golf ball. (We'll discuss

trajectories under constant acceleration in more detail in Section 3--4.)

It also shows the velocity vector and its components at 0.5-s intervals

for the first 2 s of the motion. The horizontal component of the veloc-

ity stays constant, whereas the vertical component changes linearly

with time. Further, the total velocity vector is a tangent to the ball's

path of motion at each point along its trajectory.

Figure 3-9b shows the position vector T, velocity V, and acceler-

ation a at t = 1 sand t = 2 s. Whereas a remains constant, T and v
change with time. The three vectors T, v, and a do not generally
point in the same direction at a given time during the golf ball's mo-

tion. The directions of T and v are specified by angles 8 and 8', re-

spectively, with respect to the x-axis. These angles are

tan 8
= ~ = (-4.9m/s-2)t2 _ -)
x (lOm/-s)t - (-0.49 s )t

and
Working It Out We start with initial values: The golf ball's ini-

tial position and velocity in our chosen coordinate system are

xo = 0 m, vox = 10 m/s, Yo = 0 m, and vOy = 0 m/so Next we

specify that in our coordinate system the acceleration has compo-

nents ax = 0 m/s2 and ay = -9.8 m/s2 We determine the velocity

components as a function of time from Eqs. (3-20) and (3-22):

Vx = 10 m/s

(-9.8 m/s-2)t

(lOm/-s)
tan 8'

respectively. Both angles vary with time.

What Do You Think? According to Fig. 3-9, the ball appears

to drop into the ocean about 25 m from the cliff. In this problem what

determines how far from the base of the cliff the ball enters the

(3-27) water?

and

v)' = 0m/s + (-9.8 m/s2)t = (-9.8 m/s2)t.

y(m) y(m)

1010

•• FIGURE 3-9 (a) The velocity

vector v and components Vx and vy of the
golf ball are shown at 0.5-s intervals up to

2.0 s. (b) Position T, velocity V, and

acceleration Cl of the golf ball for t[ = 1 s

and 12 = 2 S. (a)

Pacific Ocean Pacific Ocea n

o»

3-4 ProjectileMotion

A golf ball in motion is an example of a projectile that moves under the effect of gravi-

ty. In the absence of air resistance, what is the trajectory of a projectile? The motion is

thatof constant acceleration due to gravity, and this constant acceleration g has only a

vertIcal co~ponent; we can use all the constant-acceleration results of the previous

section to find the trajectory. The ball's motion is best described by separating it into



horizontal and vertical components-as we have already emphasized, the horizontal

motion is independent of the vertical motion-and then applying the kinematic equa-

tions for constant acceleration.

Usually it is easiest to place the origin at the starting point, assigning the

y-direction vertically and the x-direction along the horizontal (Fig. 3-10), as we did in

Example 3-5. The initial position of the ball is Xo = Yo = 0; the initial velocity at

t = 0 is vo. The flight of the golf ball starts at an initial angle to the horizontal that we (a)

call the elevation angle eo. Then Vo has components

Vox = Vo cos eo and vOy = Vo sin eo·

The components of the acceleration are the constants

a x = 0 and ay = - g.

(3-29)

(3-30)

Using Eqs. (3-19) through (3-22), the components of? and v (the position and veloci-
ty of the ball, respectively) are

x = 0 + (vocoseo)t + ~(0)t2 = (vocoseo)t,

y = 0 + (vosineo)t + ~(_g)t2 = (vosineo)t - ht
2
,

(3-31)

(3-32)

and

Vx = Vo cos eo + (O)t = Vo cos eo, (3-33)

(3-34)vy = Vo sin eo - gt,

The Trajectory

We can find the trajectory of the golf ball by plotting its height y versus its x-position.

We know both x and y as functions of time, and we can eliminate the time dependence

by using Eq. (3-31) to find the time t as a function of x. We then insert the result for t

into Eq. (3-32) to find the trajectory, that is, the height y as a function of x, with the time

dependence eliminated:

x
t = ----

Vo cos eo'
(3-35)

y = (vo sin eo) x _ !g( x )2
Vo cos eo 2 Vo cos eo

= (tan eo)x - ( 2 g 2 )x2.
2vo cos eo

The coefficients of x and x2 in Eq. (3-36) are both constants, so the trajectory has the form

y = Cjx - C2X
2
. (3-37)

(3-36)

This is the equation of a parabola passing through the origin with its axis parallel to the

y-axis. The trajectory of all objects moving with constant acceleration is parabolic. Par-

abolic motion is illustrated in the chapter-opening photograph and Fig. 3-10 as well as

in Fig. 3-11, which shows the position of a ball at equal time intervals.

The trajectory and the time dependence of the components of displacement have

some simple characteristics that can be useful in our study of projectile motion-range,

flight time, and maximum height. These are easily extracted from the motion, and we

discuss them further below.

Range: We define the range R of a projectile launched from the ground (y = 0) to be

the horizontal distance that the projectile travels over level ground; that is, it lands at the

same height from which it started. The quantity R is the value of x when the projectile

has returned to the ground, that is, when y again equals zero. If we insert y = 0 into

Eq. (3-37), we have

(3-38)

3-4 Projectile Motion I 69

y

Trajectory

Side view

x

(b)

A FIGURE 3-10 (a)Agolfball

leaves a tee with an initial velocity of

magnitude Vo at an elevation angle 80,

(b) The side view of the motion shows a

parabolic trajectory.

A FIGURE 3-11 Motion of a ball

bouncing along the floor and moving

under the int1uence of gravity. In the air,

the ball moves with constant acceleration,

which in this case is directed downward

due to gravity. The velocity vector

changes throughout the motion, although

its horizontal component does not. The

velocity's vertical component changes

linearly with time. The resulting

trajectory forms a series of parabolas.
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~ FIGURE 3-12 For a fixed initial

speed and if air resistance is ignored, a

projectile's trajectory will have a

maximum range for an elevation angle of

45°. The range is the horizontal distance

the projectile travels to reach the same

height from which it started.

~ FIGURE 3-13 A projectile (a ball)

moving under the force of gravity is at its

maximum height when vy = O.At that

moment, the ball is traveling horizontally.

We have marked the velocity at this point

as V2.

Y
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where we have set x = R. To find R, set the factor Cl - CzR = 0 in Eq. (3-38), or

R = CI/Cz. Inserting the values of Cl and Cz from Eq. (3-36) yields

Cl tan eo(2v~ cos
z
eo) 2v~ ( sin eo );f v~.

R = - = ------- = - --- cos eo = - 2smeocoseo.
Cz g g .em eo g

From trigonometry, sin(2eo) = 2 sin eo cos eo, and we find

vZ
R = ~ sin 2eo. (3-39)

g

The range R depends on the initial speed Vo and the elevation angle (the initial

angle) of the projectile. As eo increases progressively from 0° to 45° and then to 90°, the

range R [ex: sin(2eo) ] starts out at zero, increases to a maximum at eo = 45° [i.e.,
sin(2eo) = 1], then decreases back down to zero at eo = 90°. So, to throw or kick a

ball over level ground as far as you can, send it upward at a 45° angle. For this case,

which gives the maximum range, we have

v~
Rmax =-.

g
(3-40)

If the projectile is launched at an angle higher or lower than 45°, the range is shorter

(Fig. 3-12). Note that according to Eq. (3~39) there are two initial angles for which a

projectile has the same range for a given initial speed (Fig. 3-12). For example, in soft-

ball a pop fly at 75° and a line drive at 15° can both be caught by the shorts top (compare

the two trajectories in Fig. 3-12).

Flight Time: Let T be the total flight time of a ball. Figure 3-13 shows that the ball

reaches its maximum height exactly halfway through its trajectory, at time t = T/2. At

this point, its motion is horizontal and the vertical component of velocity is zero. We

can find T/2 by setting vy = 0 in Eq. (3-34),0 = Vo sin eo - g(T/2). We solve for T

to find that

2vo .
T = -smeo.

g
(3-41)
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This time the simple factor sin 80 enters. Look again at the motion at 75° and 15° in

Fig. 3-12 and you will understand that in softball the fly ball's flight time is greater than

that of the line drive.

Maximum Height: The maximum height Yrnax = h IS reached at time T /2. From

Eq. (3-32), we find the height at this time,

. 2vo. I (2Vo. )2 2 sirr' 80 2 sin
2
80

h = (voSIll 80)- SIll 80 - -g - SIll 80 = vo-- - gvo--
2
-

2g 2 2g g 2g

. 28
2SIll 0

= vo--. (3-42)
2g

We use Eqs. (3-36), (3-39), (3-41), and (3-42) to determine a projectile's trajecto-

ry, range, flight time, and maximum height, respectively. The range and flight time refer

to the special case where the ball returns to its original height. These equations need not

be memorized; instead, it is important to understand how they were obtained. We apply

these methods again in Examples 3-6 through 3-10.

EXAMPLE 3-6 To win a bet that he can drive a golf ball a

horizontal distance of 250 m, an amateur golfer goes to a cliff over-

looking the ocean. The cliff is 52 m above the ocean. The golfer

strikes the golf ball so that the ball's initial speed is 48 m/s and the

elevation angle (from the horizontal) is 36° Does he win his bet?

What is the horizontal distance actually covered by the ball?

Setting It Up Figure 3-14 shows the situation. We place the

origin of our coordinate system at the tee where the ball's motion

starts, letting y extend upward. We know the initial conditions (t = 0

when the ball is struck), which with our coordinate system are

Xo = 0 m, Yo = 0 m, Vo = 48 m/s, and 80 = 36°. We want to deter-

mine the distance R' from the tee to the point at which the golf ball

reaches the ocean (y = -52 m).

y (m)

100

50

Q-
,~.,

-5D

Horizontal travel distance :>1

..•. FIGURE 3-14 A golf ball is driven off a cliff into the ocean.

Strategy We use the trajectory equation to find the value of x at

which the golf ball reaches the ocean surface. Note that we cannot

use Eq. (3-39) to calculate the range because that result applies only

to level ground; we don't want the horizontal distance when the ball

returns to y = 0 m. However, we can still use Eq. (3-36) to find the

value of x when y = - 52 m.

Working It Out Equation (3-36) reads in our case

y = -52 m = (tan (0)R' - ( g )R'2
2v5 cos2 80 .

Rearranging this equation yields

2
2V5 cos2 80 tan 80

R' - ------R'
g

R,2 + bR' + c = 0,

2YV5 cos ' 80
+----=0

g ,

where

2V5 cos/ 80 tan 80
b= ------

g
and c =

g

Solving this quadratic equation to find R' gives

-b±~
R' =-------

2 .

Inserting the values of band c, we obtain

v5 cos2 80 tan 80 I 4V6 cos4 80 tan
2 80

R' = ------ ± - -------
g 2 g2 g

Now inserting y = -52 m and the initial values to determine R'

yields

(48 m/ sf cos2 36° tan 36°
R' = ----------

9.8 m/s2

I 4( 48 m/s )" cos" 36° tan2 36°
± - ----------
2 (9.8 m/s2)2
= 281 m or - 57 m.

8( -52 m)( 48 m/s)2 cos2 36°

9.8 m/s2

Now, did the golfer drive the ball a distance of281 m or -57 m? The

positive value must be correct. The golfer wins his bet.

What Do You Think? We stated the positive solution (281 m)

must be the correct solution to the problem, but the negative solution

(-57 m) also is a solution. What is the physical meaning of the neg-

ative solution?
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EXAMPLE 3-7 What was the maximum height above the

ocean of the golf ball in Example 3-6, and how long was the golf

ball in flight?

Setting It Up We can again refer to Fig. 3-14. We denote the

maximum height above the ground by h. In this case we want

the maximum height above the ocean. We also want to find the total

time T of the trip.

Strategy The maximum height of the golf ball occurs when the

vertical component of the velocity is zero, and Eq. (3-42) will give h.

The value we seek is li + 52 m. As for T, we can find it by using
Eq. (3-31), together with the knowledge that the total horizontal dis-

tance traveled is 281 m.

Working It Out From Eq. (3-42),

v2 sin2 8 (48 m/s)? sin2 36°
h = 0 0 -------= 41 m.

2g 2(9.8 mN)

The answer is therefore 41 m + 52 m = 93 m.

From Eq. (3-31) with a horizontal distance traveled of 281 m,

281 m = (48 m/s) (cos 36°)T;

281 ,ill
T = ------= 7.2s.

(48 m/s) cos 36°

What Do You Think? On level ground the horizontal distance

covered by the golf ball depends on sin 280 [see Eq. (3-39)], where 80
is the initial elevation angle, and the range is a maximum for

80 = 45°. However, in this example we do not have level ground. Will

the maximum horizontal travel distance still occur for 80 = 45°7

~ FIGURE 3-15

Two balls released

simultaneously have two

different trajectories, but

in a given time each

moves the same vertical

distance. The difference

in their motions is the

magnitude of their

(constant) x-components

of velocity.

CONCEPTUAL EXAMPLE 3-8 A major league pitcher

and you, the student, compete in throwing a baseball as far as possi-

ble in an initially horizontal direction. Assume that you each throw

so that each ball leaves the hand at exactly the same height. Whose

ball will go further and why?

Answer The time it takes the ball to hit the ground is deter-

mined by the height from which the ball starts. Since the ball leaves

the hand horizontally, the initial vertical velocity component is the

same for both of you, namely zero, and hence the time it takes to hit

the ground is the same for both of you. But the initial horizontal ve-

locity component of the ball is expected to be larger for the profes-

sional pitcher, so that in the same time it covers a larger distance. The

independence of the two components of the motion is again key here.

Figure 3-15 illustrates the equal fall time for two projectiles that fit

this description; in this photograph one of the projectiles has an ini-

tial speed of zero.

EXAMPLE 3-9 A group of engineering students constructs a

slingshot device that lobs water balloons. The device is constructed

so that the angle of the lob can be adjusted, and it has a launch speed

(the balloon's initial speed) of 12 m/so There is a target 14 m away at

the same elevation. How should they adjust the initial angle so that

they reach the target?

Setting It Up The slingshot setup is shown in Fig. 3-16. The

students must find a value of launch angle 80 that will produce a

given range R for a given initial speed vo.

••. FIGURE 3-16 The students can orient their slingshot in two

ways to get the same range for the same initial speed-just one is

shown here.

Strategy In this case the range equation for horizontal ground,

Eq. (3-39), can be used, and we can solve it for the launch angle.

Working It Out With R = 14 m and Vo = 12 m/s, Eq. (3-39)

gives

(12 m/s)2 sin 280
R = 14m = ------

9.8 m/s2

or

sin 280 = 0.95.

This equation has two solutions, 280 = 72° and 280 = 108°, or 80 is

36° and 54°. These are the two possible initial angles that result in a

given range, as in Fig. 3-12. We have drawn one of these trajectories

(Fig. 3-16). A reminder: There will always be two initial angles that

generate the same range, except for maximum range, which is pro-

duced only by the limiting angle 45°

What Do You Think? From the standpoint of surprise, which

of the two solutions, 36° or 54°, might be best for the students to use

if the target were human?
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EXAMPLE 3-10 A boy would rather shoot coconuts down

from a tree than climb the tree or wait for the coconuts to drop. The

boy aims his slings hot directly at a coconut, but at the same moment

that his rock leaves the slingshot, the coconut falls from the tree.

Show that the rock will hit the coconut.

Setting It Up We establish the launch point of the rock as the

origin of a suitable xy-coordinate system in Fig. 3-17. The coconut is

at the point (xo, Yo). We are asked if the two objects moving under

the influence of gravity will be at the same spot at the same time. For

one of the trajectories, the initial velocity is given by an angle that

would take it to the coconut if there were no gravity.

,
/

Lineof// r
slghY )

,/" Collision
/.

,"

.•••. FIGURE 3-17 If the coconut falls at the same time the rock

leaves the slingshot, both the coconut and rock fall the same distance.

Strategy We must compare a trajectory that includes both a hor-

izontal and a vertical component (the rock) versus one that has only

a vertical component (the coconut). For that reason it will be useful

to think in terms of these components. It is useful to first consider

what would happen if there were no gravity, then to see how the pres-

ence of gravity modifies the positions of both the rock and coconut.

Working It Out The rock has an initial velocity (vxo, vyo). If

there were no gravity acting, the rock would follow a straight-line

path that would place it at the point (xo = vxot, Yo= vyot) after a

time t. This is the time necessary for the rock to reach the coconut

(which is still at the tree since gravity has been ignored so far). Now

let's include the effect of gravity. First, consider what happens to the

coconut. During the time t that the rock travels toward the coconut,

the coconut falls the distance gt2/2 (Fig. 3-17). In other words, the

height of the coconut after time t is [Eq. (3-21)]

y=YO-~gt2.

Next, consider what happens to the rock when we include gravity.

The rock's horizontal velocity component remains constant at vxo.

However, the vertical velocity component of the rock is changing

under the effect of gravity and, after time t, Eq. (3-21) shows us that

the rock's height is not vyot but rather

1 2
Y = vyot - :2gt .

The rock is a height gt2/2 below the height it would have if it fol-

lowed a straight-line motion, which is precisely the distance the co-

conut falls (Fig. 3-17). Thus the rock will hit the coconut at the

common point ~gt2 below the coconut's starting point. In effect,

the parabolic path of the rock "tracks" the falling coconut.

What Do You Think? The real world is usually somewhat dif-

ferent than the idealized case discussed in textbooks. What are some

reasons why the rock may not hit the coconut?

THINK ABOUT THIS ...

IS IT POSSIBLE TO EXPERIENCE FREE FALL FOR LONG PERIODS?

Every jump puts you in free fall. Some of you

may have done bungee jumping, where you

can be in free fall for a couple of seconds

until the cord starts to pull. What would it be

like to be in free fall for longer periods?

NASA has equipped a KC-135 airplane that

allows training astronauts and others to expe-

rience longer periods of free fall. The plane is

equipped to coast following a parabolic tra-

jectory identical to that of a projectile. For the

25 s of the dive, the occupants are in free fall

along with the airplane (see Fig. 3-18). Much

of the film Apollo 13, which recounts the dra-

matic story of a mission to the Moon that

barely made it back to Earth, was shot within

the NASA plane. The best place to experience

free fall is the International Space Station,

which is orbiting around Earth in a free fall in

which Earth's curvature allows the surface to

"fall away" from the projectile's path as the

projectile proceeds. The personnel inhabiting

the station may be in free fall for months .

••• FIGURE 3-18 The interior

of the airplane used by NASA for

a free-fall environment during that

part of the flight where the plane

follows the same parabolic path

taken by a projectile in free fall. In

this photograph, astronauts in

training are experiencing some of

the same effects they will feel

during a stay in the International

Space Station.

•


