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When a conducting object is placed in a region where there is an electric field, charges are induced
on its surface. We seek the unique surface charge density that produces an electric field that cancels
the original field inside the conductor. When the external sources are point charges or uniform fields,
it is easy to determine the field that the induced charges must produce inside the conducting object.
Up to a constant, this field gives the potential on the conducting surface, which suffices to determine
the potential function outside the conductor. The perturbing field produced by the induced charges
is obtained from this potential, and a simple boundary condition gives us the induced surface charge
density. © 2010 American Association of Physics Teachers.
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I. INTRODUCTION

When a conducting object is placed in a region where
there is an external electric field, induced charges in the con-
ductor pile up on its surface until the electric field produced
by the surface charges cancels the original field inside the
conducting body and distort the external electric field.1,2 The
problem of electrostatics for conductors is to determine the
electric field outside the conductor and the distribution of
charges on its surface.3 Thomson’s theorem states that the
introduction of an uncharged conductor into the field of
given charges reduces the total energy of the field.3,4 This
theorem can be applied to determine the induced charge on
the conducting surface, but its use is difficult even in simple
cases.5

Many problems in electrostatics involve boundaries on
which the potential is specified. Two special techniques used
to solve these problems are the method of images and the
expansion in orthogonal functions. The idea of the method of
images is to find a set of fictitious charges that, together with
the given charges, produce a field such that the surface of the
conductor is an equipotential surface.2–4,6 However, it is not
always easy to determine the location and the magnitude of
the imaginary charges, especially in problems with curved
surfaces. The representation of the potentials in terms of or-
thogonal functions is a powerful technique that can be used
to solve a large class of problems, but its study requires a
higher level of mathematical proficiency, and it is postponed
to intermediate and advanced courses in electrodynamics.2,4,6

In the initial study of electrostatics of conductors, much
attention is paid to the role played by the induced charges in
canceling the electric field inside the conductor.7 However,
this fact is seldom used in obtaining the electric fields sur-
rounding the conductors or the induced charges. Instead, the
methods used to solve these problems rely on the fact that
conductors are equipotential surfaces. We propose to deter-
mine the unique surface charge density that produces a
known electric field inside the conductor to cancel the field
of the external sources. When these sources are point charges
or uniform fields, it is easy to determine the fields that the
induced charges must produce inside the conducting object.
Up to a constant, this field gives the potential on the con-
ducting surface, which suffices to determine the potential
function outside the conductor. A single boundary condition
gives the induced surface charge density. This idea is intui-
tive because it is connected with the electrostatics of conduc-

tors. It is also a straightforward and general method that if
combined with a basic knowledge of expansions in orthogo-
nal functions provides another approach to solving a large
class of complex problems. Similar approaches have been
proposed for electrostatics in the presence of dielectrics.8,9

Many problems of electric fields in the presence of un-
charged conductors can be represented by the general case in
Fig. 1. The conducting object is in a region where both an
external electric field E� 0 and the induced charge density �

produce the field E� . Consider a closed surface of the same
shape as the conductor with an unknown surface charge den-
sity �. This charge produces a known electric field −E� 0 in-
side the surface, as shown in Fig. 2. Up to a constant, this
field gives the potential function at all points on the
boundary.10 Outside this surface the potential must satisfy
Laplace’s equation. According to the uniqueness theorem,
the knowledge of the potential on the boundary suffices to
determine the potential function in the external region, from
which the outside field E� 1 is obtained. Finally, if we add a
field E� 0 to that due to the charge distribution in Fig. 2, we
obtain the electric field distribution shown in Fig. 1, where
E� =E� 1+E� 0. Figure 3 summarizes this result. The surface
charge density � is obtained from the boundary condition of
the normal components of the electric field,

n̂ · �E� 1 + E� 0� = �/�0, �1�

where n̂ is a unit vector outwardly directed and normal to the
surface of the conductor. Note that E� 0 is the electric field
produced by sources not shown in the figure with the con-
ductor absent and E� 1 is the perturbing field produced by the
surface charge density �. Thus, the key to solving the prob-
lem is to determine E� 0.

�Ein = 0�E

σ

Fig. 1. A conducting object is in a region where external sources not shown
in the figure and the induced surface charge density � produce an electric
field E� .

639 639Am. J. Phys. 78 �6�, June 2010 http://aapt.org/ajp © 2010 American Association of Physics Teachers

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

149.156.116.7 On: Thu, 18 Dec 2014 13:47:55



II. EXAMPLES

Figure 4 illustrates a flat sheet infinite in extent above an
infinite conducting plane and the equivalent system. The
sheet has a uniform surface charge density �. Negative
charges are induced on the surface of the conducting plane to
cancel the electric field inside the conductor. These charges
are represented in the equivalent system by a sheet with uni-
form charge density �1 placed at the conductor’s surface.
Because E0=� / �2�0�, the electric field inside the conductor
is canceled if �1=−�. The electric field between the sheet
and the conducting plane is � /�0 and zero both above the
sheet and inside the conducting plane.

Now consider a point charge +Q located near an infinite
conducting plane. Let us place a surface density � on the
conducting plane that cancels the electric field inside the
conductor �see Fig. 5�. The electric field E� � produced by the
surface charge density must cancel the electric field E� 0 pro-
duced by the point charge +Q at all points below the surface.
That is, below the surface of the conductor,

E� 0 + E� � = 0. �2�

The surface charge density depends only on the distance r
�see Fig. 5�. Also, given the symmetry of the charge distri-
bution, the electric field E� � has mirror symmetry as well. The
vertical component of E� � is discontinuous because of the
surface charge density �. Hence,

� = − 2�0�E�z� . �3�

From Eqs. �2� and �3� we obtain

� =
− Qh

2��r2 + h2�3/2 , �4�

which is a well known result.11

We next study the charge distribution on a conducting
sphere of radius a placed in a uniform electric field E0ẑ.
Figure 6 shows both the original system and the equivalent
system made up of the uniform external field plus a spherical
charge distribution ���� that produces a uniform field −E0ẑ
inside the spherical surface.

The charge density ���� can be found if we know the
electric fields at both sides of the boundary. Because the field
inside the spherical surface is −E0ẑ, the potential function in
this region is �in�r ,��=E0z=E0r cos �. That is, the potential
is known at the boundary r=a. Because the solutions of
Laplace’s equation are unique, this information suffices to
determine the potential outside the spherical surface, which
must have the form12

�out�r,�� = �
k=0

�
Ak

rk+1 Pk�cos �� , �5�

where Pk are the Legendre polynomials. The boundary con-
dition at r=a,

E0a cos � = �
k=0

�
Ak

ak+1 Pk�cos �� , �6�

must hold for all values of the angle �. Then, only one term
is present in the sum, from which we obtain A1=E0a3. That
is, the surface charge distribution outside the sphere corre-
sponds to a dipole field,

�Ein = 0�E

σ

σ

− �E0
�E0�E1

Fig. 3. Illustration of the proposed approach: The electric fields due to the
surface charge density � plus the external field E� 0 are equivalent to the
electric field distribution in Fig. 1, where E� =E� 1+E� 0.

�E0

�E0

�Eσ1

σ

σ

σ1

�Eσ1 = − �E0

Fig. 4. A uniform charged sheet above an infinite conducting plane and the
equivalent system of charges. The electric field inside the conducting plane
is canceled if �1=−�.

�E0
�Eσ = − �E0

rr

+Q

+Q

σ

h

�Eσ

ẑ

Fig. 5. A point charge +Q located near an infinite plane conductor and the
equivalent system of charges. The electric field produced by the surface
charge density � cancels the electric field due to the point charge +Q inside
the conductor.

σ

− �E0
�E1

Fig. 2. The induced surface charge density � produces an electric field −E� 0

inside the conducting surface to cancel the electric field E� 0 of the external
sources, with the conductor absent. It also produces a perturbing electric
field E� 1 outside the surface.
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�out�r,�� =
E0a3

r2 cos � =
1

4��0

p� · r̂

r2 , �7�

where p� =4��0E0a3ẑ is parallel to the external electric field.
The electric fields inside and outside the charge distribution
are obtained from the potentials. The surface charge density
����=3�0E0 cos � is obtained from the boundary condition
in Eq. �1�.13 Finally, the total electric field outside the con-
ductor is the sum of the uniform and the dipole fields, E�

=E� 0+E� dipole.
We next consider a charge +Q placed inside a conducting

spherical cavity. Figure 7 shows both the original and the
equivalent problems. The induced surface charge density �a
must produce an electric field inside the conductor of oppo-
site sign as that produced by the charge +Q. If r�0 represents
the vector position of the point charge +Q, the potential
function due to �a for r�a must be14

�out�r,�� = −
Q

4��0

1

�r� − r�0�
= −

Q

4��0
�
k=0

�
r0

k

rk+1 Pk�cos �� .

�8�

Because the potential is known at the boundary r=a, this
information suffices to determine the potential inside the
cavity, which must be of the form12

�in�r,�� = �
k=0

�

Bkr
kPk�cos �� . �9�

The boundary condition for the potentials at r=a is

�
k=0

�

Bka
kPk�cos �� = −

Q

4��0
�
k=0

�
r0

k

ak+1 Pk�cos �� . �10�

This condition must be satisfied for all values of the angle �,
which makes it possible to obtain the coefficients

Bk = −
Q

4��0

r0
k

a2k+1 . �11�

The use of Eq. �1� at r=a gives the surface charge density

�a��� = −
Q

4�a2�
k=0

�

�2k + 1�� r0

a
�k

Pk�cos ��

= −
Q

4�a2 + ����� . �12�

The total charge induced on the spherical surface is −Q be-
cause the term ����� integrates to zero over the surface of
the sphere.15 The term ����� also vanishes when r0→0, as
expected.

The results of the previous example can be used to solve
the problem illustrated in Fig. 8, where a sphere of radius b
has been carved out of the conductor of Fig. 7. Assume that
the conductor has no net charge, and let �a and �b be the
induced surface charge densities on the cavity and the outer
surface, respectively. Equations �8� and �9� still describe the
potentials due to �a in the region r	a and the cavity, respec-
tively, with the same boundary condition. Then, Eq. �12�
gives the induced charge density �a on the cavity surface.
The surface charge density �b will be induced on the outer
surface because the conductor is neutral. Because +Q and �a
produce zero field for r	a and there is no field in the con-

�E0

�E0

− �E0

σ(θ)

ẑ

ẑ

Fig. 6. Conducting sphere placed in a uniform electric field E� 0 and the
equivalent system made up of the uniform external field plus a surface
charge density ����. This surface charge produces a field −E� 0 inside the
conducting surface that cancels the external electric field.

�E0

− �E0

r

+Q

+Q

σa(θ)

ẑ

ẑ

ẑ

r0

r0

a

a

Fig. 7. A point charge +Q placed at r�0 inside a conducting spherical cavity
of radius a and the equivalent system of charges. The surface charge density
�a��� produces the same electric field outside the cavity as a point charge
−Q placed at r�0.

+Q

r0

ẑ

Fig. 8. Neutral spherical conductor of radius b and charge +Q inside a
cavity of radius a.
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ductor, the induced charge density �b must produce zero field
within its surface. Given that the outer surface is spherical,
�b must be a constant. Then, �b=+Q / �4�b2�, and the field
outside the spherical conductor is the same as if the charge
+Q were concentrated at its center. An important lesson of
this example is that the potential in the cavity is determined
entirely by both +Q and the induced charge �a

17 and that �b
arises to fix the net charge in the conductor, with no effect on
the fields within its surface.18

III. CONCLUSION

The use of an expansion in orthogonal functions in the
proposed approach requires less work than the usual methods
because only one simple boundary condition is needed to
obtain the perturbing fields outside the conductor. If the elec-
tric field �or, equivalently, the potential function� produced
by the sources with the conductor absent is known, this
method is straightforward and can be applied to more ad-
vanced problems, as problem �3� in the Appendix shows.
Problems of the conductor with a cavity, both in the ex-
amples and the suggested problems, show that the method
also provides physical insight because it helps to understand
how charges distribute on the conducting surface to cancel
the field of the external sources within the conductor.
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APPENDIX: SUGGESTED PROBLEMS

The following problems can be assigned to intermediate
level students to help reinforce the ideas presented in the
paper.

�1� Consider a nonspherical cavity in the spherical conduc-
tor in Fig. 8. Compare the charge distribution in both the
cavity and the outer surface with the spherical cavity
studied in the examples.

�2� Consider a nonspherical conductor with a spherical cav-
ity. Somewhere within the cavity is a charge +Q. What
can be said about the surface charge densities on both the
cavity surface and the outer surface?

�3� Figure 9 illustrates a ring of total charge +Q inside a
conducting spherical cavity. The ring of charge is located
in the x-y plane, and it is concentric with the cavity.19

This problem is equivalent to a ring of charge of radius
r0 and total charge +Q and a charge density ���� on a
spherical surface of radius a. This surface charge pro-
duces an electric field for r	a that cancels the field due
to the charged ring. To find ����, we need to know the
electric field �or the potential function� of the ring of
charge in free space. The potential function of the
charged ring for r�a is20

�ring =
Q

4��0
�
k=0

�
r0

k

rk+1 Pk�0�Pk�cos �� . �A1�

Use this result to show that the induced charge density is
given by

���� = −
Q

4�a2�
k=0

�

�2k + 1�� r0

a
�k

Pk�0�Pk�cos �� . �A2�

Check that the net charge induced on the sphere is −Q
and that the induced charge density gives the expected
answer in the limits r0→0 and a→�.
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Fig. 9. Ring of total charge +Q inside a conducting spherical cavity.
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