
Electrodynamics I. 9 October 2016

Solution HW 3: Electrostatics

1. Answer:

ϕ(r = 0) =
1

4πε0

∫
d2r′σ(r⃗′)

r′
=

1

4πε0

R∫
a

σrdϕ

r
dr

=
σ2π

4πε0
(R− a) =

σ

2ε0
(R− a).

2. Answer:

(a) The building up process results in an energy

Q∫
0

qdq

4πε0R
=

Q2

8πε0R
·

(b) Doubling the charge results in the energy

(2Q)2

8πε0R
=

Q2

2πε0R
(1)

which is the correct result from a shell carrying twice the charge.

(c) Consider two spheres, each carrying a charge Q and radius R.

Energy from two spheres =
Q2

8πε0R
+

Q2

8πε0R
=

Q2

4πε0R
·

This result, however, does not conform to equation (1). The reason is that we’ve

ignored the interaction term which can be written as∫
d3rρ1(r)ϕ2(r) =

∫
d3rρ1(r)

Q

4πε0R

=
Q

4πε0R

∫
d3rρ1(r)

=
Q2

4πε0R

Hence total energy =
Q2

8πε0R
+

Q2

8πε0R
+

Q2

4πε0R
=

Q2

2πε0R
·

3. Answer:

4. Answer:
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r

R dφ

φ
P

For the charged quadrant,

ϕ at P =

π/2∫
ϕ=0

R∫
r=0

σrdϕdr

4πε0r
=

σ

4πε0

π

2
R =

σR

8ε0
·

P

a

b

x

yθ

For the charged triangle follow the geometry shown here.

b

a
= tan θ ⇒ b = a tan θ.

The potential at P due to the tiny shaded element is,

dϕ =
1

4πε0

σ dx dy√
x2 + y2

ϕ due to the vertical strip =
1

4πε0
σdx

x tan θ∫
0

dy√
x2 + y2

Finally, ϕ due to the triangle =

a∫
x=0

dx

(xb/a)∫
y=0

dy√
x2 + y2
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=

a∫
x=0

dx

[
−1

2
ln(x2) + ln

(
b

a
x+

√
(a2 + b2)x2

a2

)]
= a− 1

2
a ln(a2) + a

(
−1 + ln(b+

√
a2 + b2)

)
= a ln(b+

√
a2 + b2)− a ln a

= a ln

(
b+

√
a2 + b2

a

)
= a ln(tan θ + sec θ).

5. Answer: Do it yourself.

6. Answer:

(a) We consider that the charge distribution is a superposition of a continuously

uniformly charged slab and a sphere carrying the opposite charge. This concep-

tualization is shown below.

= +

2R

2R

+ρ

−ρ

Let’s first consider the electric field due to the slab. For inside the slab, we

draw a Gaussian surface labeled 1 and for outside we draw the protruding cylinder

2. See the accompanying diagram.

a

-x +x
Surface 1

Surface 2
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For inside the slab, we have,

ρ(2x)a

ε0
= 2E1a

E1 =
ρx

ε0

E1 =
ρx

ε0
êx,

while outside the slab, we obtain

2E2a =
1

ε0
ρ2Ra

E2 =
ρR

ε0

E2 = ±ρR

ε0
êx = sgn(x)

ρR

ε0
êx,

where

sgn(x) =

 +1, x > 0

−1, x < 0.


The diagram below shows a visualization of the electric field only due to the

positively charged slab.

2R

We now turn to the electric field produced by only the charged sphere (rep-

resenting the cavity)

4
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r

R

Inside the cavity, we obtain

E = −
ρ4
3
πr3

4πε0r2
r̂ = − ρr

3ε0
r̂·

and outside, we have

E = −
ρ4
3
πR3

4πε0r2
r̂ = − ρR3

3ε0r2
r̂·

Therefore the electric fields are:

E(inside) =
ρx

ε0
êx −

ρr

3ε
r̂

E(outside) = sgn(x)
ρR

ε0
êx −

ρR3

3ε0r2
r̂.

(b)

P

x x

We first calculate the potential inside the cavity and consider only the field due

to the slab. Point P , variable x are defined in the figure. The point P is inside

the cavity. Hence, due to only the slab, we have, for x < R,

ϕ(x)− ϕ(0) = −
x∫

0

ρx

ε0
êx · dxêx = −ρx2

2ε0
·
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Furthermore for x > R

ϕ(x)− ϕ(R) = −
x∫

R

ρR

ε0
êx · dxêx

= −ρR

ε0
(x−R) ·

Hence potential inside the slab due to slab alone (x < R) = −ρx2

2ε0
.

Potential outside the slab due to the slab alone (x > R) = −ρR2

2ε0
−−ρR

ε0
(x−R).

Note that these are calculated with respect to center of the cavity.

Let’s now find the potential due to the negatively charged cavity alone.

For r < R, we have (defining ϕ(0) = 0)

ϕ(r)− ϕ(0) = −
r∫

0

−ρr

3ε0
r̂ · drr̂

= − ρ

3ε0

r2

2
=

ρr2

6ε0

⇒ ϕ(R) =
ρR2

6ε0
·

For r > R,

ϕ(r)− ϕ(R) = −
R∫

r

−ρR3

3ε0r2
r̂ · drr̂

=
ρR3

3ε0

R∫
r

dr

r2

= −ρR3

3ε0

1

r

∣∣∣∣R
r

= −ρR3

3ε0

(
1

R
− 1

r

)
·

Hence potential inside the cavity due to the cavity alone (r < R) =
ρr2

6ε0
, and
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potential outside the cavity due to only the cavity (r > R) =
ρR2

6ε0
−ρR3

3ε0

(
1

R
−1

r

)
.

Potential at W = −ρR2

2ε0︸ ︷︷ ︸ +
ρR2

6ε0︸︷︷︸ = −ρR2

3ε0
·

from slab from cavity

Potential at P (inside the cavity) = −ρx2

2ε0
+

ρr2

6ε0
·

(c) As we move from W to T , the change in potential is only due to the sphere, since

the slab alone produces a potential that is invariant with vertical displacement.

Therefore

△ϕ = −
∞∫

R

(
−ρR3

3ε0r2

)
dr

=
ρR3

3ε0

∫ ∞

R

dr

r2
= −ρR3

3ε0

1

r

∣∣∣∣∞
R

=
ρR3

3ε0R
=

ρR2

3ε0
·

Hence potential rises as we approach infinity. Very far off, the potential becomes

−ρR2

3ε0
+

ρR2

3ε0
= 0. Hence ϕ at T is zero.

(d)

Potential at W = −ρR2

3ε0
Potential at T = 0.

Point T is far away. Hence the field due to negative cavity is zero and only the

field due to the slab is appreciable. Hence in the vicinity of T , the field (outside

the slab) is
ρR

ε0
êx.

At a distance x′ from the point T ϕ(x′) = −ρRx′

ε0

−ρRx′

ε0
= −ρR3

3ε0

x′ =
R

3
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R/3

Potential is −ρ

ε0
R

3

2

W

T S

The diagram shows a rough sketch of the equipotential line.

(e)

54.7
φ=0
line

Inside the cavity the potential is −ρx2

2ε0
+
ρr2

6ε0
. For the ϕ = 0 line passing through

the center, we obtain

r

x
=

√
3

x

r
=

1√
3

cos θ =
1√
3

θ = cos−1 1√
3
≈ 54.7◦.

Along this line potential is zero, and the line is shown in the accompanying figure.
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The potential ourside the cavity but inside the slab is

ρR2

6ε0
− ρR3

3ε0

(
1

R
− 1

r

)
− ρx2

2ε0
·

Equating this to zero, one can find the contour whose equation will be

3R3

(x2 + y2)1/2
= 3x2 +R2.

7. Answer:

a

R

Potential here is zero R>a

(a) E inside: r < a

E(2πrℓ) =
ρπr2ℓ

ε0

E =
ρr

2ε0
r̂·

E outside: r > a

E(2πrℓ) =
ρπa2ℓ

ε0

E =
ρa2

2ε0r
r̂·

Let’s find the potential inside the cylinder at r < a. We know that for R > a,

ϕ(R)− ϕ(r) = −
a∫

r

ρr

2ε0
dr −

R∫
a

ρa2

2ε0r
dr

= − ρ

2ε0

1

2
(a2 − r2)− ρa2

2ε0
ln

(
R

a

)
= − ρ

4ε0
(a2 − r2)− ρa2

2ε0
ln

(
R

a

)
·
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Hence the potential inside the cylinder (r < a) with respect to R, is

ϕ(r)− ϕ(R) =
ρ

4ε0
(a2 − r2) +

ρa2

2ε0
ln

(
R

a

)
.

(b)

UE

ℓ
=

1

2
· ρ

ε0

a∫
r=0

[(
a2 − r2

4

)
+

a2

2
ln

(
R

a

)]
2πrdr

=
ρ2π

ε0

∫ a

r=0

[
a2

4
r − r3

4
+

a2

2
ln

(
R

a

)]
dr

=
ρ2π

ε

[(
a2

4
+

a2

2
r ln

(
R

a

))
a2

2
− a4

16

]
=

ρ2π

ε

(
a4

8
+

a4

4
ln

(
R

a

)
− a4

16

)
=

ρ2πa4

ε

(
1

16
+

1

4
ln

R

a

)
=

ρ2πa4

4ε

(
1

4
+ ln

R

a

)
·

8. Answer:

Attached at the end.

9. Answer:

Since the hemisphere is at R → ∞, there is zero stress tensor on the dome and we

need to consider only the xy plane.

Inside the Disk:

Fz|bottom =
Q2

64πε0a2
(derived in the class).
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Outside the Disk:

E⃗ =
Q

4πε0R2
(cosϕ êx + sinϕ êy)

Tzz =
ε0
2

(
E2

z − E2
x − E2

y

)
= −ε0

2

Q2

(4πε0R2)2
·

Txz = ε0ExEz = 0 = Tyz

(dS⃗ · T⃗ )z = dSxTxz + dSyTyz + dSzTzz

dS⃗ = −dS êz

dfz = (dS⃗ · T⃗ )z = −dSêz ·
(
−ε0

2

)
Q2

(4πε0R2)2
êz = dS

ε0
2

Q2

(4πε0R2)2
·

Fz = dfz =
Q2

64πε0a2
+

ε0
2

Q2

(4πε0)2

∞∫
R=a

dS

R4

dS = R dϕ dR∫
dS

R4
=

2π∫
ϕ=0

∞∫
R=a

R

R4
dϕ dR = 2π

∞∫
a

1

R3
dR

= −2π

2

1

R2

∣∣∣∣∞
a

= −π

(
0− 1

a2

)
=

π

a2

Fz =
Q2

64πε0a2
+

Q2

2(4)2πε0

(
π

a2

)
=

Q2

πε0a2

(
1

64
+

1

32

)
=

Q2

πε0a2
3

64
=

3

16

Q2

4πε0a2
,

which is identical to what is given in Eq.(3).

10. Answer:

Attached at the end.
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