Electrodynamics 1. 9 October 2016

Solution HW 3: Electrostatics

1. Answer:
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2. Answer:

(a) The building up process results in an energy
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(b) Doubling the charge results in the energy
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which is the correct result from a shell carrying twice the charge.

(c) Consider two spheres, each carrying a charge () and radius R.
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This result, however, does not conform to equation (1). The reason is that we’ve

ignored the interaction term which can be written as
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Hence total energy =

3. Answer:

4. Answer:
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For the charged triangle follow the geometry shown here.
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The potential at P due to the tiny shaded element is,
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5. Answer: Do it yourself.

6. Answer:

(a) We consider that the charge distribution is a superposition of a continuously
uniformly charged slab and a sphere carrying the opposite charge. This concep-

tualization is shown below.
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Let’s first consider the electric field due to the slab. For inside the slab, we

draw a Gaussian surface labeled 1 and for outside we draw the protruding cylinder

2. See the accompanying diagram.
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For inside the slab, we have,
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The diagram below shows a visualization of the electric field only due to the

positively charged slab.
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We now turn to the electric field produced by only the charged sphere (rep-

resenting the cavity)
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Inside the cavity, we obtain
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We first calculate the potential inside the cavity and consider only the field due
to the slab. Point P, variable z are defined in the figure. The point P is inside
the cavity. Hence, due to only the slab, we have, for z < R,
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Furthermore for x > R
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Hence potential inside the slab due to slab alone (z < R) = —gi.
€o
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Potential outside the slab due to the slab alone (z > R) = 5~ ——(x—R).
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Note that these are calculated with respect to center of the cavity.

Let’s now find the potential due to the negatively charged cavity alone.

For r < R, we have (defining ¢(0) = 0)

For r > R,
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Hence potential inside the cavity due to the cavity alone (r < R) = g—, and
€o
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R? pR3/1 1
potential outside the cavity due to only the cavity (r > R) = pr Pt (— — —) .
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(¢) As we move from W to T, the change in potential is only due to the sphere, since
the slab alone produces a potential that is invariant with vertical displacement.

Therefore
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Hence potential rises as we approach infinity. Very far off, the potential becomes
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P + B 0. Hence ¢ at T' is zero.
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Potential at T = 0.

Point T is far away. Hence the field due to negative cavity is zero and only the

field due to the slab is appreciable. Hence in the vicinity of 7', the field (outside
R

the slab) is 2é,.
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The diagram shows a rough sketch of the equipotential line.
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Inside the cavity the potential is —gi + gi For the ¢ = 0 line passing through
o o

the center, we obtain
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Along this line potential is zero, and the line is shown in the accompanying figure.
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The potential ourside the cavity but inside the slab is
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Equating this to zero, one can find the contour whose equation will be
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7. Answer:

~

A Potential here is zero R>a

(a) E inside: r <a
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Let’s find the potential inside the cylinder at » < a. We know that for R > a,
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Hence the potential inside the cylinder (r < a) with respect to R, is
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8. Answer:

Attached at the end.

9. Answer:

Since the hemisphere is at R — oo, there is zero stress tensor on the dome and we

need to consider only the zy plane.
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QOutside the Disk:
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which is identical to what is given in Eq.(3).

10. Answer:

Attached at the end.
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