Assignment 6: Solution

1. In class, we derived the relationship $v_{k}=\frac{V_{k}}{N}$ where v_{k} is the volume of a point in k-space, V_{k} is the volume of the first Brillouin zone and N is the total number of unit cells in the solid's volume. Show that v_{k} is also equal to $\frac{(2 \pi)^{3}}{\Omega}$ where Ω is the volume of the unit cell in direct space. Hence the number of k points in the first Brillouin zone (FBZ) does not change by the imposition of a periodic potential.

Solution:

We know that the value of the FBZ is

$$
\begin{align*}
\mathrm{V}_{k} & =\vec{a}^{*} \cdot \overrightarrow{b^{*}} \times \vec{c}^{*} . \tag{1}\\
\vec{a}^{*} & =\frac{2 \pi}{\Omega} \vec{b} \times \vec{c} \\
\vec{b}^{*} & =\frac{2 \pi}{\Omega} \vec{c} \times \vec{a} \tag{2}\\
\vec{c}^{*} & =\frac{2 \pi}{\Omega} \vec{a} \times \vec{b} \\
\Omega & =\vec{a} \cdot \vec{b} \times \vec{c}
\end{align*}
$$

where,

Solving for V_{k}

$$
\begin{equation*}
\vec{a}^{*} \cdot \vec{b}^{*} \times \vec{c}^{*}=\frac{(2 \pi)^{3}}{\Omega^{3}}(\vec{b} \times \vec{c}) \cdot((\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})) \tag{3}
\end{equation*}
$$

Let's say $(\vec{c} \times \vec{a})=\vec{F}$ and use the vector identity $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$,
to show

$$
\begin{align*}
(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b}) & =\vec{F} \times(\vec{a} \times \vec{b}) \\
& =\vec{a}(\vec{F} \cdot \vec{b})-\vec{b}(\vec{F} \cdot \vec{a}) \tag{4}\\
& =\vec{a}((\vec{c} \times \vec{a}) \cdot \vec{b})-\vec{b}((\vec{c} \times \vec{a}) \cdot \vec{a})
\end{align*}
$$

The second term in the last expression is zero giving,

$$
\begin{align*}
(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b}) & =\vec{F} \times(\vec{a} \times \vec{b}) \\
& =\vec{a}(\vec{a} \cdot \vec{b} \times \vec{c}) \tag{5}\\
& =\vec{a}((\vec{c} \times \vec{a}) \cdot \vec{b}) \\
& =\Omega \vec{a}
\end{align*}
$$

Therefore Equation 2 becomes,

$$
\begin{align*}
V_{k} & =\frac{(2 \pi)^{3}}{\Omega^{3}}(\vec{b} \times \vec{c}) \cdot(\Omega \vec{a}) \\
& =\frac{(2 \pi)^{3}}{\Omega^{2}} \Omega \tag{6}\\
& =\frac{(2 \pi)^{3}}{\Omega}
\end{align*}
$$

Now V_{k} is equal to value of the first BZ and Ω is equal to volume of the unit cell in the direct space. Thus we get

$$
\begin{align*}
\mathrm{v}_{k} & =\frac{\mathrm{V}_{k}}{N} \tag{7}\\
& =\frac{(2 \pi)^{3}}{N \Omega}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{v}_{k}=\frac{(2 \pi)^{3}}{\mathrm{~V}_{\text {solid }}} \tag{8}
\end{equation*}
$$

The volume of a k-point is $(2 \pi)^{3} / \mathrm{V}_{\text {solid }}$. The periodic potential does not change the structure of the k-point.
2. Show that for a Bloch function in 1D

$$
\begin{equation*}
\psi_{k n}(x)=e^{i k x} u_{k n}(x), \tag{9}
\end{equation*}
$$

the following Schrodinger equation holds for $u_{k n}$:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{\hbar}{m} k p_{x}+V(x)\right] u_{k n}(x)=\left(\varepsilon_{n}(k)-\frac{\hbar^{2} k^{2}}{2 m}\right) u_{k n}(x) . \tag{10}
\end{equation*}
$$

Solution:

One dimensional Schrodinger equation:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{k n}(x)+V(x) \psi_{k n}(x)=\varepsilon_{n}(k) \psi_{k n}(x) \tag{11}
\end{equation*}
$$

Substituting $\psi_{k n}$ from equation (8),

$$
\begin{aligned}
\varepsilon_{n}(k) e^{i k x} u_{k n} & =-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\left(e^{i k x} u_{k n}\right)+V\left(e^{i k x} u_{k n}\right), \\
& =-\frac{\hbar^{2}}{2 m} \frac{d}{d x}\left(e^{i k x} \frac{d}{d x} u_{k n}+i k e^{i k x} u_{k n}\right)+V\left(e^{i k x} u_{k n}\right),
\end{aligned}
$$

$$
\begin{aligned}
\varepsilon_{n}(k) e^{i k x} u_{k n}= & -\frac{\hbar^{2}}{2 m}\left(e^{i k x} \frac{d^{2}}{d x^{2}} u_{k n}+i k e^{i k x} \frac{d}{d x} u_{k n}+i k e^{i k x} \frac{d}{d x} u_{k n}-k^{2} e^{i k x} u_{k n}\right) \\
& +V\left(e^{i k x} u_{k n}\right), \\
= & -\frac{\hbar^{2}}{2 m}\left(e^{i k x} \frac{d^{2}}{d x^{2}} u_{k n}+i 2 k e^{i k x} \frac{d}{d x} u_{k n}-k^{2} e^{i k x} u_{k n}\right)+V e^{i k x} u_{k n}, \\
= & {\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} u_{k n}+\frac{\hbar}{m} k\left(-i \hbar \frac{d}{d x}\right) u_{k n}+\frac{\hbar^{2} k^{2}}{2 m} u_{k n}+V u_{k n}\right] e^{i k x} . }
\end{aligned}
$$

Using definition of momentum operator along $x, p_{x}=-i \hbar \frac{d}{d x}$, we obtain

$$
\begin{equation*}
\varepsilon_{n}(k) u_{k n}=\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} u_{k n}+\frac{\hbar}{m} k p_{x} u_{k n}+\frac{\hbar^{2} k^{2}}{2 m} u_{k n}+V u_{k n}\right] \tag{12}
\end{equation*}
$$

Upon the arranging this given the desired form of the Schrodinger equation for the periodic function $u_{k n}(x)$:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{\hbar}{m} k p_{x}+V(x)\right] u_{k n}(x)=\left(\varepsilon_{n}(k)-\frac{\hbar^{2} k^{2}}{2 m}\right) u_{k n}(x) . \tag{13}
\end{equation*}
$$

3. Consider a simple cubic lattice of a monovalent element. What is the radius of the Fermi sphere k_{F} relative to the size of the first Brillouin zone (FBZ), k_{i} ? Will distortion of the spherical Fermi surface occur?

Solution:

The reciprocal lattice of a simple cubic lattice is also cubic with edge length $2 \pi / a$. The minimum distance from the origin $\left(k_{x}, k_{y}, k_{z}\right)=0$ to the nearest zone boundary
is π / a. Let $k_{i}=\pi / a$.
As $k_{F}=\left(3 \pi^{2} n\right)^{1 / 3}$ and $n=1 / a^{3}$, we have

$$
\begin{align*}
\frac{k_{F}}{k_{i}} & =\left(\frac{3 \pi^{2}}{a^{3}}\right)^{1 / 3} \frac{a}{\pi} \tag{14}\\
& =\left(\frac{3}{\pi}\right)^{1 / 3}=0.9848
\end{align*}
$$

Yes, distortion of the spherical Fermi surface occur because the Fermi surface is close upto 98% to the boundaries. The diagram below shows the relation of the FBZ (cube) and the Fermi sphere is approximately shown below.

4. Consider a BCC monovalent metal. It's primitive lattice vectors are

$$
\begin{align*}
\vec{a} & =\frac{a}{2}(1,1,-1) \\
\vec{b} & =\frac{a}{2}(-1,1,1) \tag{15}\\
\vec{c} & =\frac{a}{2}(1,-1,1)
\end{align*}
$$

where $(1,1,-1)$ represents the vector $\hat{i}+\hat{j}-\hat{k}$ and so on.
(a) Show that the reciprocal lattice vectors are:

$$
\begin{align*}
\overrightarrow{a^{*}} & =\frac{2 \pi}{a}(1,1,0) \\
\overrightarrow{b^{*}} & =\frac{2 \pi}{a}(0,1,1) \tag{16}\\
\overrightarrow{c^{*}} & =\frac{2 \pi}{a}(1,0,1) .
\end{align*}
$$

Solution:

Take $\vec{a}, \vec{b}, \vec{c}$, as the direct lattice primitive basis vectors of the face centered cubic lattice, which are:

$$
\begin{align*}
\vec{a} & =\frac{a}{2}(1,1,-1) \\
\vec{b} & =\frac{a}{2}(-1,1,1) \tag{17}\\
\vec{c} & =\frac{a}{2}(1,-1,1)
\end{align*}
$$

Take $\vec{a}^{*}, \vec{b}^{*}, \vec{c}^{*}$, as the basis vectors in reciprocal space. To find these basis vectors we can use the following equations with $\Omega=\vec{a} \cdot \vec{b} \times \vec{c}$

$$
\begin{align*}
\vec{a}^{*} & =2 \pi \frac{\vec{b} \times \vec{c}}{\Omega} \\
\vec{b}^{*} & =2 \pi \frac{\vec{c} \times \vec{a}}{\Omega} \tag{18}\\
\vec{c}^{*} & =2 \pi \frac{\vec{a} \times \vec{b}}{\Omega}
\end{align*}
$$

Now,

$$
\begin{align*}
& \vec{a} \cdot(\vec{b} \times \vec{c})=\frac{a^{3}}{8}\left|\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right|=\frac{a^{3}}{4} . \tag{19}\\
& \vec{a}^{*}=\frac{8 \pi}{a^{3}} \cdot \frac{a^{2}}{4}\left|\begin{array}{ccc}
\hat{i} & \hat{k} & \hat{k} \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right|=\frac{2 \pi}{a}(1,1,0) \tag{20}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \vec{b}^{*}=\frac{2 \pi}{a}(0,1,1) \tag{21}\\
& \vec{c}^{*}=\frac{2 \pi}{a}(1,0,1)
\end{align*}
$$

These vectors define a primitive cell in the reciprocal space, indicating an FCC reciprocal lattice.
(b) Construct the first Brillouin zone and show that a dodecahedron (with 12 sides) is formed. Where are the 12 planes in terms of k_{x}, k_{y} and k_{z} ?

Solution:

We construct a Wigner Seitz cell. The boundary planes bisect $\pm \vec{a}^{*}, \pm \vec{b}^{*}, \pm \vec{c}^{*}$ at $\left(k_{x}, k_{y}, k_{z}\right)=(\pm 1, \pm 1,0),(\pm 1,0, \pm 1),(0, \pm 1, \pm 1)$. These are 12 planes.
(c) What is the minimum distance from the origin of the k-space to the nearest zone boundary? Show that the distance is $k_{i}=\frac{\sqrt{2} \pi}{a}$.

Solution:

The minimum distance of any one such plane (e.g. $\left.(\pm 1, \pm 1,0)=\left(k_{x}, k_{y}, k_{z}\right)\right)$ from the origin is

$$
\begin{equation*}
k_{i}=\frac{\pi}{a} \sqrt{(\pm 1)^{2}+(\pm 1)^{2}}=\frac{\pi \sqrt{2}}{a} . \tag{22}
\end{equation*}
$$

(d) What is the number of electrons per unit volume (n) ? Find $k_{F}=\left(3 \pi^{2} n\right)^{\frac{1}{3}}$ where k_{F} shows the size of the Fermi sphere.

Solution:

For body centered cubic lattice, we have two atoms per unit cell (one electron per unit cell). So,

$$
\begin{gather*}
n=\frac{2}{a^{3}} . \tag{23}\\
k_{F}=\left(3 \pi^{2} n\right)^{\frac{1}{3}} \\
=\left(3 \pi^{2} \frac{2}{a^{3}}\right)^{\frac{1}{3}}=\frac{\left(6 \pi^{2}\right)^{\frac{1}{3}}}{a} \tag{24}
\end{gather*}
$$

(e) Find $\frac{k_{F}}{k_{i}}$. How far or close to the zone boundaries does the Fermi surface extend?

Solution:

From part (c) and (d),

$$
\begin{align*}
\frac{k_{F}}{k_{i}} & =\frac{\left(6 \pi^{2}\right)^{\frac{1}{3}} / a}{\pi \sqrt{2} / a} \\
& =\frac{\left(6 \pi^{2}\right)^{\frac{1}{3}}}{\pi \sqrt{2}} \\
& =\left(\frac{6 \pi^{2}}{\pi^{3}}\right)^{\frac{1}{3}} \frac{1}{\sqrt{2}} \tag{25}\\
& =\left(\frac{6}{\pi}\right)^{\frac{1}{3}} \frac{1}{\sqrt{2}}=0.88
\end{align*}
$$

So, the Fermi surface extents to about 88% of the zone boundaries.
(f) Repeat all the above calculations for a monovalent FCC metal. Which of the FCC or BCC lattices is more likely to have a distorted Fermi sphere?

Solution:

Primitive lattice vectors of FCC lattice are

$$
\begin{align*}
\vec{a} & =\frac{a}{2}(0,1,1) \\
\vec{b} & =\frac{a}{2}(1,0,1) \tag{26}\\
\vec{c} & =\frac{a}{2}(1,1,0)
\end{align*}
$$

And reciprocal lattice vector are

$$
\begin{align*}
\overrightarrow{a^{*}} & =\frac{2 \pi}{a}(-1,1,1) \\
\overrightarrow{b^{*}} & =\frac{2 \pi}{a}(1,-1,1) \tag{27}\\
\overrightarrow{c^{*}} & =\frac{2 \pi}{a}(1,1,-1) .
\end{align*}
$$

The boundary planes bisect $\pm \vec{a}^{*}, \pm \vec{b}^{*}, \pm \vec{c}^{*}$ at $\left(k_{x}, k_{y}, k_{z}\right)=(\pm 1, \pm 1, \pm 1)$.

The Minimum distance of any one such plane from the origin is

$$
\begin{equation*}
k_{i}=\frac{\pi}{a} \sqrt{(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}}=\frac{\pi \sqrt{3}}{a} . \tag{28}
\end{equation*}
$$

For face centered cubic lattice, we have four monovalent atoms per unit cell (four electrons per unit cell). So,

$$
\begin{equation*}
n=\frac{4}{a^{3}} . \tag{29}
\end{equation*}
$$

$$
\begin{align*}
k_{F} & =\left(3 \pi^{2} n\right)^{\frac{1}{3}} \\
& =\left(3 \pi^{2} \frac{4}{a^{3}}\right)^{\frac{1}{3}}=\frac{\left(12 \pi^{2}\right)^{\frac{1}{3}}}{a} \tag{30}
\end{align*}
$$

From equation (26) and (28),

$$
\begin{align*}
\frac{k_{F}}{k_{i}} & =\frac{\left(12 \pi^{2}\right)^{\frac{1}{3}} / a}{\pi \sqrt{3} / a} \\
& =\frac{\left(12 \pi^{2}\right)^{\frac{1}{3}}}{\pi \sqrt{3}} \\
& =\left(\frac{12 \pi^{2}}{\pi^{3}}\right)^{\frac{1}{3}} \frac{1}{\sqrt{3}} \tag{31}\\
& =\left(\frac{12}{\pi}\right)^{\frac{1}{3}} \frac{1}{\sqrt{3}}=0.903
\end{align*}
$$

So, the Fermi surface extents to about 90.3% of the zone boundaries.
Fermi surface for FCC monovalent extends more toward boundaries than BCC so it will undergo a greater degree of distortion.

