Assignment 7

1. (a) In this question, we are only assuming one-dimensinal solids. Show that $V(x) = \sum_{G} V_{G} e^{iGx}$ is a periodic function with period a.

(b) Using the above description of the periodic V(x), show that if V(x) is real, we have $V_{-G} = V_G^*$.

(c) Conider the eigenstates for the free electron

$$\langle x \mid k \rangle = \frac{1}{\sqrt{L}} e^{i\mathbf{k}\mathbf{x}}$$

where L is the length of the solid and $L \gg 1/k$. Show that the matrix element $\langle k'|V(x)|k \rangle$ is non-zero only when G = k - k'.

(d) Consider k values at the first zone boundaries, i.e. at $k = -\pi/a$ and $k = -\pi/a + G = -\pi/a + 2\pi/a = \pi/a$. Hence these states can be written as $|k\rangle$ and $|k+G\rangle$. Write the Hamiltonian in the $\{|k\rangle, |k+a\rangle\}$ basis and diagonalize. This will provide the energies at the zone boundaries. Show that they are

$$\varepsilon = \frac{\hbar^2 \pi^2}{2ma^2} + V_0 \pm V_{2\pi/a}.$$
 (1)

What is the band gap between the first and second Brillouin zones?

2. (a) The dispersion relationship for elections in a metal is given by

$$\varepsilon = 2A\sin^2(ka/2),\tag{2}$$

Due date: April 16, 2021, 11:55 pm to be sent to touqeerzahid1@gmail.com by email. 1

where a is the lattice spacing. If for small $k, k \ll 1$, the effective mass m^* is equal the the free electron mass m, find the constant A.

(b) Show that $\partial \varepsilon / \partial k = 0$ at the zone boundary $k = \pm \pi / a$.

(c) If $m^* = \hbar^2/(\partial^2 \varepsilon/\partial k^2)$ plot the variation of the effective mass of the electrons in the FBZ.