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Solving the Angular part of the Schrodinger Equation

The time independent Schrodinger Equation is,
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We assume a solution of the form,

Using the definition of the Laplacian operator in spherical coordinates,
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the Schrodinger equation becomes,
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Multiplying both sides by 2"”"75‘“‘9 , we obtain,
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where the equation has been adjusted such that the R.H.S is dependent on r and 6, while
L.H.S is dependent on ¢ only. Since both sides are equal, they must equal a common separa-
tion constant, say —m;2, yielding,
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Now consider equation (2),
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Dividing the equation by sin? 8, we obtain,
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This time, the L.H.S is dependent on 6 only, while R.H.S is dependent on r only. Put both
sides equal to a common separation constant, say [(I + 1). Thus we obtain two additional

equations corresponding to the polar and radial parts,
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(1), (3) and (4) are respectively, the azimuthal, polar and radial equations. Notice that the
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partial derivatives have been replaced by ordinary derivatives -, 4, s ete.

Solving the Azimuthal equation (1) :

Equation (1) can be written as,
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To solve this equation we write the auxiliary equation,
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Hence,
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Actually there are two solutions, e ® and e~"™% but we’ll cover the latter by allowing
m; to run negative. Here we consider the constraint that the eigenfunctions must be single
valued. Since the azimuthal angles ¢ = 0 and ¢ = 27 are the same angles (because when ¢

advances by 27, we return to the same point in space), it is natural to require that,
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From the last expression it follows that m; must be an integer, i.e.,

my=0,+1,42 +3 44, . ...

Solving the Polar equation (3) :
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Multiplying throughout by ©,
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Now, multiplying by sin? 6, we obtain,
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We perform the substitution,
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Now if ©(f) = P(z), P being a function of z, we can use the chain rule to compute and
express © and 6 in terms of P and z,
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This is the historically famous Legendre equation. This equation may also be written in the
compact form,

le

dP
d (1-22)

z}+{l(l+1)—

dz{(l—zQ)-

}P(z) =0/ (6)




This ordinary differential equation is frequently encountered in physics and other technical
fields. In particular it occurs when solving Laplace’s equation and related partial differential
equations in spherical coordinates. The Legendre equation may be solved using the standard
power series method. Let us perform (yet another) substitution,
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Now differentiate both sides with respect to z to obtain,
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Inserting the value of P(z) and £ {(1 -z )dp} back into equation (6) we obtain,
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Dividing both sides by (1 — 22)2",
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This is the equation we set to solve. We have to find a G(z) that solves (7) and back sub-
stitute it to find P(z) and ultimately, ©(0). Suppose G(z) is a power series (a polynomial in z),

Substitution of these values in Equation 7 yields,
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The coefficients of 2™ are,
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For each term in (8) to be zero, each and every one of these coeflicients must be identically
zero, resulting in the recursive formula,
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Where n,my; are integers. Since G(z) = >,°  a,2" is an infinite series, and z = cos 6, the
entire range of z is (=1 < z < 1) including z = 1. When z assumes the value +1, the series
diverges and G(z) becomes infinite. This is not physically possible, because then the wave
functions ©(#) blows up. In other words, we cannot let a,’s go on up to a, otherwise the
series G will diverge. A value for n =0,1,2,3,... reaches, (let’s call it n,,q,) for which,

(nmaz + |ml‘)(nmaaz + |ml| + ]-) = l(l + 1)

Since n and m; are integers, so [ is also an integer. There always exists an n,,q4;, such that,
I = n+|my|. The possible values of [ are (|my]), (|mi|+1), (|my|+2), ...., (|7u] +Nmaz ), ensuring
that the series converges. The constraint | = nq. + || also indicates that |my| <.

Let us summarize our main results so far.

I = Nmaz+ Myl (10)

Don’t confuse 1,4, with the principal quantum number n.

Nmax

G(z) = Y an2" (11)
n=0

P(z) = (1-2°)™2G(z) (12)

0(0) = P(2) (13)
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Example:

Case I: Whenl =0, m; =0

If { = 0 and m; = 0, then from equation (10), 7,4, = 0.
Thus G(z) will be,

G(z) = a,
P(z) = (1-2%%,=a
©) = P(z)x1



Case Il: When I =1, |my| = 0,1, = m; =0,+1

(a) Consider | = 1, and m; = 0, then from equation (9), Nnmes = 1.

G(z)=a,+ a1z

From equation (10) it is clear that, as = 0, because N4, = 1 and a, = 0, thus
G(z) = mz
P(z) = (1-2H%2=ua2
O(f) o« z=cosb
(b) Consider ! =1, and m; = 1, then from equation (10), nymqes = 0.
G(z) = ao
P(z) = (1-2°)"2a,=a,(1—2%)"?
0) x (1-2)Y2=sno
(c) Consider I =1, and m; = —1, then from equation (10), Nmar = 2.

G(2) = ap + a1z + az2®

From equation (10), as = —a,,

G(2) = ao+a1z—ay2*
ao(1 — 2%) + ar2

Since Nypae = 2, 80 ag3 = 0,= a1 = 0.
G(2) = an(1—2%)
Pz) = (1- z2)_1/2ao(1 )
= ap(1 —22)1/2

0) « (1-2)Y2=sng

Case III: When [ = 2, |my| =0,1,2, = my = 0, +1, +2

(a) Consider [ = 2, and m; = 0, then from equation (10), ez = 2.

G(2) = ap + a12 + az2®

Where as = —3a,. Also a3 =0, = a; =0.
G(z) = a,—3a,2°
= a,(1—32%)
P(z) = (1—2%)%%a,(1—32%)
= a,(1—32%

0() o« (1-32% =(1-3cos?h)
(b) Consider | = 2, and m; = 1, then from equation (10), npmqes = 1.

G(z) = ap+aiz



Where as = —2a,. Since due to Nyee = 1, we have ao =0, = a, = 0.

G(z) = mz
P(z) = az(1—2z%)"?2
0(0) o« z(1—2*)'? =sinfcosh.
(c) Consider I = 2, and m; = 2, then from equation (10), n,q. = 0.
G(z) = ao
P(Z) = ao(l - ZQ)
0(0) o (1-2% =sin?0.

Case IV: When | =3, |my| =0,1,2,3, = m; =0,£1,+2,+3

(a) Consider I = 3, and m; = 0, then from equation (10), nmaz = 3.

G(z)=a,+a1z+ asz? + asz®

Where as = —6a, and az = —%al. Since a, = 0 otherwise series diverges, hence ay = 0.
Therefore,
5 3
G(z) = amz-— 3012
= a1(3z —52%)
P(z) = a1(3z—52%)

0(0) o (3z2—52%) =2(3 —52%) = cosH(3 — 5cos? )
(b) Consider [ = 3, and m; = 1, then from equation (10), nymes = 2.

G(2) = ap + a1z + az2®

Where as = —ba, and a3 = —ay. Since n,q,; = 2, this gives a3 = 0 = a; = 0. Hence,
G(z) = ap—ba,?*
= a,(1—52%)
P(z) = ao(1—52%)(1— 2212
00) x (1-52%)(1—2*)"Y2=(1-5cos?6)sinb

(c) Consider | = 3, and m; = 2, = Ny = L.

G(z)=ao+a17

Where as = —2a,. Also due to n,,q: = 1, as = 0, which implies a, = 0.
G(z) = wmz
P(z) = ay1z(1—2%

0(0) o z(1—2%) =cosfsin?6

(d) Consider I = 3, and m; = 3, = Nynae = 0.

G(z) = ao
P(z) = an(1—22)%?
0) x (1-2%%2=sin®0



