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Abstract
Frictional losses are experimentally determined for a uniform circular disc
exhibiting rotational motion. The clockwise and anticlockwise rotations of the
disc, that result when a hanger tied to a thread is released from a certain height,
give rise to vertical oscillations of the hanger as the thread winds and unwinds
over a pulley attached to the disc. It is thus observed how the maximum height
is achieved by the hanger decrements in every bounce. From the decrements,
the rotational frictional losses are measured. The precision is enhanced by
correlating vertical motion with the angular motion. This method leads to
a substantial improvement in precision. Furthermore, the frictional torque
is shown to be proportional to the angular speed. The experiment has been
successfully employed in the undergraduate lab setting.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The moment of inertia is the resistance to change in rotational momentum. It is the
rotational analogue of mass and is a central concept in rotational mechanics. Measurement
of rotational inertia is a popular experiment at the undergraduate and especially the freshman
level. Concepts such as conservation of energy, torque, angular acceleration, moment of
inertia and dynamic friction along with the quantitative relationships between linear and
rotary motion can be verified with the help of suitably designed experiments. Furthermore,
a practical understanding can be developed about ubiquitous mechanical devices, such as
flywheels, pulleys and related concepts. Some experiments regarding the mathematical basis
of rotational inertia [1], friction [2] and speed-dependent drag [3] as well as interesting
procedures for measuring the moment of inertia [4] have already been presented. Computer-
aided experiments [5] are enjoying popularity and have become common.
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This paper describes a simpler, easier and more precise method to determine the frictional
losses that take place while experimentally measuring the moment of inertia. The loss in the
number of rotations of a disc is, in a calculative way, translated into the loss in vertical height
of a mass fastened to a thread that winds and unwinds over a pulley fixed on to the disc.
This rotational measurement is used to determine energy losses, overcoming the possibility
of errors in translational measurement with a metre rod.

Although for a stationary mass-hanger, position can be measured accurately up to the least
count of the rule, considering errors due to parallax, delayed human response and judgemental
variations in measuring effective height for a moving mass-hanger, the uncertainty is no better
than ±1 cm. Our method effectively brings down the uncertainty in height measurements of
the moving mass up to ±2 mm. This is achieved by using basic relationships between rotational
and linear motion. Furthermore, the measurement of the number of rotations is made easy
and considerably accurate with an improvisation involving a high-resolution photogate and a
digital counter, providing an accuracy of 1/50 of a rotation. Observations carried out with
different applied torques and resulting angular speeds are compiled and they show a linear
relationship between frictional torque and angular velocity.

2. Theoretical motivation

The moment of inertia of a continuous and uniform object is given by

I =
∫

r
ρ(r)r2 d3r, (1)

where ρ(r) is the density at a point designated by r, and the integral spans over the whole
volume of the object. It is well known that the moment of inertia for a uniform circular disc
is given by [6]

I = 1
2MR2, (2)

where M is the mass and R is the radius. Furthermore, the rotational kinetic energy of a rigid
body is given by [6]

K = 1
2Iω2. (3)

Here, ω = 2π/T is the angular speed in rad s−1, and T is the time period.
When a mass m, attached with a thread wound to the axle of the disc, is released from

a height h, it provides a torque to the disc. Suppose that the angular speed of the disc is
measured just after the mass hits the ground and is given by ω. The energy transferred after
the complete vertical descent of the mass is captured by the approximate equation

mgh ≈ 1
2Iω2, (4)

but an immediate inquiry of the real-life scenario suggests that the above equation is incomplete
as it ignores the energy lost in the process. The correct equation, instead, is

mgh = 1
2Iω2 + �E = 1

2Iω2 + �Ef + �Em, (5)

where �E is the energy loss which can be further divided into two parts: the frictional
losses �Ef and the untransferred energy, that is, the kinetic energy retained by the mass
�Em = 1

2mv2, where v is the velocity at the instant the mass hits the ground. Although
frictional losses are mainly due to friction in the axle and bearing assembly of the apparatus,
it is worth mentioning that air friction acting on the surface of the rotating disc as well as
the moving weights may also result in losses that are actually a part of the frictional losses
accounted in equation (5). Quantifying the sources of friction is not possible in the given
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Table 1. PASCO’s rotational apparatus specifications for various components [7].

Component Parameters

Main platter M = 991 g; R = 12.7 cm
Moment of inertia = 0.0075 kg m2

Step pulleys Radii = 1.50 cm, 2.00 cm, 2.50 cm
Super pulley Inside groove radius = 2.38 cm

Outside groove radius = 2.54 cm

scenario; therefore �Ef represents the lumped-up sum of all frictional losses. Calculating
�Em is straightforward once we have calculated v using the equation

v = rpω, (6)

where rp is the radius of the step pulley over which the thread is wound and ω is measured just
after the mass hits the ground.

3. Experiment

3.1. Experimental setup

The experimental setup (figure 1) comprises PASCO’s introductory rotational apparatus
(Model: ME-9341) and other components from their ME series. The assembly comprises two
major parts: a base with levelling supports and a solid disc referred to as the main platter.
The base has two holes at the edges to support any peripheral components like holders, and a
bearing and spindle assembly at the centre to serve as the axle of the disc. The main platter is
fitted with three concentric pulleys of different radii that are called the step pulleys. A thread
with a mass attached to the distal end can be wrapped around any one of the pulleys enabling
the application of a torque to the disc. A super pulley (9448B) (number 1), that supports
the thread tied to the mass is clamped to the base. For timing measurements, another super
pulley (number 2) is fixed to a rod and with the help of a holder; it is fitted in such a way
that its rim gently brushes that of the main platter. A photogate (9498A), connected to the
Smart-timer (8930), is placed in such a way that the path of its beam is interrupted by the
spooks of the second super pulley. A photogate employs an infrared light beam passing from
one arm to the other, detecting when an obstacle interrupts the beam. Masses of different sizes
are available along with the hangers and are used to apply different driving torques to the main
platter. The physical attributes of some important components are summarized in table 1. The
manufacturer did not provide any uncertainties for the tabulated values.

The accuracy and precision of the measurements is partially determined by the instruments
used. Time measurements using a photogate and Smart-timer have an uncertainty equal to that
of the resolution of the timer, i.e. ±0.1 ms. As such a metre rod is used for height measurement.
For a static mass, the uncertainty is simply the least count (±0.5 mm). However, for a moving
mass, parallax, human response and arbitrariness of the position of the centre of the gravity
of the mass results in considerable imprecision, which could be of the order of ±1 cm. The
uncertainty in mass is taken to be ±1 g, which is the resolution of our mass measuring device.
When the smart timer is used as a counter, measurements are uncertain by ±1 count. These
uncertainties will propagate [8] and determine the precision of our results, as we describe later.

A bubble level is used to level the base to avoid any wobbling of the main platter. One end
of the thread is tied to the hanger loaded with weights while the other end is wrapped around
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one of the step pulleys and passed over the super pulley in such a way that it is horizontal
and in line with the edge of the step pulley being used. The thread should be of a reasonable
length, neither too short that it slips well before the mass-hanger reaches the floor, nor too
long that it hinders the rotation of the main platter when the torque is removed. Students try
out different kinds of threads and wires: inflexible, elastic, cotton, nylon, metallic, etc.

3.2. Angular deceleration

In order to investigate the frictional losses, the first step is to observe the angular deceleration
of the freely rotating disc, providing insight to the nature of the relationship between the
angular speed and frictional loss. If the energy loss that takes place in one rotation is denoted
as �ER , the value of frictional torque, τf , is determined as

�ER = τf θ = 2πτf , (7)

where θ is the angular displacement over which the torque is applied, which in the case of
�ER is 2π . If frictional torque were linearly dependent on the angular speed, we could also
write

τf = −I
dω

dt
= bω, (8)

where b represents a constant of proportionality, the coefficient of rotational friction. Solving
equation (8) for angular velocity, we obtain

ω = ωo e−(b/I)t , (9)

showing that if the decay of the angular speed is found to be exponential, frictional torque is
proportional to the angular speed.

In the first experiment, the main platter is driven manually and then allowed to rotate
freely. After every 10 s, the angular speed is measured and subsequently plotted against time,
and curve-fit as shown in figure 2 which clearly highlights the linear dependence of frictional
torque on the angular speed. The value of b estimated from the fit is 6.6 × 10−5 kg m2 s−1.
It should however, be remembered that this holds only for as long as the disc rotates freely.
Section 3.3 deals with more quantitative and rigorous verification of this linear relationship.

3.3. Measuring rotational friction

The next experiment is determining the frictional losses. For this purpose, the free end of the
thread is tied to the screw on the small step pulley and the smart timer is used as a counter, set
in the manual count mode. In this mode, every interruption of the photogate beam causes the
device to increment its reading by one until it is stopped manually. The thread should be of
such a length that at its minimum height position, the mass-hanger does not touch the floor.

After wrapping the thread around the step pulley, the counter is started to record counts
and the mass-hanger is released from a certain initial height (figure 3). During the clockwise
and anticlockwise rotation of the main platter, the mass-hanger will oscillate vertically,
the span of its movement decreasing with every bounce (figure 4). Our objective is to measure
the height that is lost in successive oscillations, what we call the �hn, in order to measure the
energy loss. To do this, counts from the counter are read every time the mass-hanger reaches
its maximum height (position 1, 2, 3 and so on). Counts for individual oscillations can be
determined from the difference of two consecutive readings. We know that, for one complete
revolution of the platter, 50 counts are recorded, so the fractional number of rotations of the
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(b)(a)

Figure 1. Moment of inertia apparatus: (a) schematic illustration and (b) photograph showing the
various components.

Figure 2. Decay of the angular speed of the freely revolving main platter shown as the linear fit of
ln(ω).

main platter, Nn, in a certain cycle (or bounce) of the mass-hanger can be calculated using the
relationship

Nn = Cn−1

50
, (10)

where Cn is the number of counts for the nth cycle. Using equation (10), the �hn as indicated
in figure 3, can be calculated using the following expression:

�hn = �Cn × 2πrp

50
, (11)

where �Cn = Cn − Cn−1 represents the difference in counts of two consecutive bounces of
the mass-hanger.

Once we have calculated the height loss in a certain bounce, we can determine the
corresponding energy loss per bounce (�EBn

= mg�hn). The energy loss per rotation (�ER)
can then be found:

�ERn
= �EBn

Nn

. (12)
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Figure 3. Frictional losses: scheme of observations for determining frictional losses. Counts are
recorded at positions 1, 2, 3 and so on.

Figure 4. Decay in maximum height achieved by the mass-hanger: a plot of counts for every
bounce.

3.4. Typical measurements and findings

Following the procedure described in the previous subsection, observations are recorded for
various weights, different pulleys and three types of thread. Table 2 summarizes a typical
set of readings for a particular mass, pulley and thread. The only measured quantity is the
number of counts, C, and the rest of the table can be constructed using equations (10)–(12).
The deduced uncertainties in �h, �EB and �ER are calculated to be ±2 mm, ±0.003 J and
±0.0005 J, respectively.

The values in the last column of table 2 clearly indicate that as the maximum velocity
achieved by the mass-hanger or the disc decreases, energy loss per rotation also decreases for
successive bounces resulting in gradually decreasing energy loss per rotation. This qualitative
statement is now substantiated.
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Table 2. Sample observations for frictional energy losses where the zeroth cycle is assumed to be
the starting reference. Mass = 105 g, pulley: small, thread: thin polyester.

Cycle C �C �h �EB N �ER

‘n’ ±1 ±2 ±0.002 (m) ±0.003 (J) ±0.02 ±0.0005 (J)

0 564
1 483 81 0.153 0.157 11.28 0.0139
2 416 67 0.126 0.129 9.66 0.0133
3 359 57 0.107 0.110 8.32 0.0132
4 312 47 0.089 0.092 7.18 0.0128
5 271 41 0.077 0.079 6.24 0.0126
6 238 33 0.062 0.064 5.42 0.0118
7 209 29 0.055 0.056 4.76 0.0117
8 183 26 0.049 0.050 4.18 0.0119
9 162 21 0.039 0.040 3.66 0.0109

Table 3. Average angular speed (ωav) and corresponding frictional loss per rotation (�ER) for
small and medium pulleys and three kinds of threads.

Weight Thin thread Thick thread Nylon thread

(g) ωav (rad s−1) �ER (J) ωav (rad s−1) �ER (J) ωav (rad s−1) �ER (J)

Small pulley
55 4.11 0.0133 4.19 0.0117 4.27 0.0128

105 6.04 0.0144 6.10 0.0148 6.28 0.0162
155 7.54 0.0194 7.66 0.0187 7.66 0.0189
205 8.78 0.0219 8.73 0.0211 8.98 0.0213

Medium pulley

55 4.13 0.0139 4.16 0.0138 4.22 0.0134
105 6.10 0.0183 6.04 0.0182 6.16 0.0184
155 7.54 0.0218 7.66 0.0211 7.57 0.0219
205 8.83 0.0251 8.85 0.0242 8.73 0.0245

3.5. Dependence of frictional torque on angular speed

In order to discover the quantitative relationship between the frictional torque and angular
speed, we need to record the average speeds for the various cycles of the mass-hanger. This
can be done by putting different weights in the hanger and observing the angular speed of the
main platter when the mass-hanger reaches the first minimum (position ‘a’ in figure 3). The
initial velocity for every cycle is zero, and because acceleration is constant for a particular
weight, average angular velocity can be calculated in a straightforward manner:

ωav = 0 + ωmax

2
= ωmax

2
, (13)

where ωmax is the angular velocity of the main platter when the mass-hanger is at the first
minimum. The average energy loss per rotation measured for various weights and the resulting
average angular velocities are listed in table 3.

The data recorded in table 3 are plotted in figure 5. It can be observed that the average
energy loss per rotation increases in proportion to the average angular speed of the main



1374 J Alam et al

(a)

(b)

Figure 5. Average angular speed versus energy loss per rotation for (a) small pulley and (b)
medium pulley.

platter. This clearly indicates a direct relationship between speed and frictional torque. Slight
differences for different pulleys are due to unquantifiable errors that take place due to the
difference of angle at which the thread meets the super pulley.

3.6. Calculating the moment of inertia

As frictional losses can be calculated for a range of angular speeds, we are now in a position
to measure the moment of inertia of the main platter. The mass-hanger is loaded with a weight
of 105 g, the thread is wound on the small pulley and released from a height of 62 cm, and in
this particular experiment, it is allowed to fall to the ground. As it hits the ground, the smart
timer is used to measure the angular speed, ω, of the main platter.

In one experiment, the average smart-timer reading was 10.4 ms. This corresponds to a
time period of 0.52 s and an angular speed of 12.08 rad s−1. Using equation (13), the average
angular speed turns out to be 6.04 rad s−1. From figure 5, we can see that this average speed
corresponds to an energy loss of 1.44×10−2 J. Using equation (6), the kinetic energy retained
by the mass hanger, �Em, was calculated to be 1.72 × 10−3 J. This results in a total frictional
loss of 9.647 × 10−2 J when the number of rotations of the main platter (N = h/(2πrp)) was
6.58. Using equation (5), the moment of inertia was found to be 0.0074 kg m2. Using the
precision of the instruments and the formulations for error propagation [8], the uncertainty in
the value determined for moment of inertia is calculated to be ±0.0002 kg m2.
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4. Conclusions

A simple, yet insightful, method of measuring the frictional losses is presented in order to
find a precise value for the moment of inertia of a circular disc. The experiment goes hand
in hand with the basic concepts of energy conservation, rotary motion and real life equations.
Basic relationships between translational and rotational motion are employed to improve the
precision of the measurements. The dependence of the frictional torque on the speed of rotation
is also observed deductively. The beauty of the experiment is that the same apparatus is used
to accomplish a range of tasks. Moreover, students also get to observe how improvements in
the apparatus can help make simpler but accurate and precise experiments.
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