Autocorrelation of electrical noise: An undergraduate experiment

J. Loren Passmore, Brandon C. Collings,? and Peter J. Collings
Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081

(Received 15 August 1994; accepted 11 October 94)

An undergraduate experiment is described in which the output of a noise generator is sampled by a
computer equipped with a data acquisition board, after which the autocorrelation function is
calculated. If the output of the noise generator passes through a low-pass filter before it is sampled
by the computer, then the autocorrelation function is a decreasing exponential function with a decay
constant equal to the time constant of the low-pass filter. The theory necessary to understand this
phenomenon involves basic concepts in electrical noise, the analysis of linear systems, and Fourier
transforms. In this paper the theoretical background for the experiment is discussed, typical data are
presented, and a full analysis of these data is described. © 1995 American Association of Physics

Teachers.

I. INTRODUCTION

While the study of noise in electrical circuits has been a
topic in the undergraduate physics curriculum for some time,
the development of modern data acquisition systems has
made laboratory experiments on noise much more feasible.
For example, connecting an artificial source of electrical
noise to the A/D input of a computer allows the student to
measure the root-mean-square amplitude of the noise and to
view a histogram of observed voltage levels. If a signal of
some type is added to the noise, then repeated data acquisi-
tions and signal averaging can reduce the signal-to-noise ra-
tio to the point where a signal buried in the noise can be
recovered. Papers describing undergraduate expenments on
the use of noise as a source of countmg statistics' and on
noise thermometry® have appeared in this journal.

The use of Fourier transforms is also an important part of
the undergraduate physics curriculum. An understanding of
the mathematical properties of Fourier transforms is neces-
sary in the study of such topics as optics and quantum me-
chanics, and laboratory experiments in optics and acoustics
have been standard vehicles to illustrate the practical impor-
tance of Fourier transforms.

It is much less common to combine an investigation of
both electrical noise and Fourier transforms as a way to bet-
ter understand both. Yet modern data acquisition makes this
quite easy. One way this can be done is to use the autocor-
relation function as a way of investigating the properties of
noise. Understanding how the autocorrelation function pro-
‘vides information about the noise requires some knowledge
of Fourier transforms and their propertles Both a theoretical
paper on the autocorrelatlon function® and experimental pa-
pers on autocorrelators* and light statistics® have appeared in
this journal.

We describe an experiment which uses a homemade noise
generator, some resistors and capacitors, and a computer
equipped with an A/D board, to calculate the autocorrelation
function of “white” noise after it has passed through a low-
pass filter. This experiment grew out of a desire to place
some rather abstract ideas of photon correlation spectroscopy
into a more accessible format. In order to appreciate the re-
sults of the experiment, one must understand the basic char-
acteristics of noise, the action of a low-pass filter, the prop-
erties of Fourier transforms, and the technique of computer-
aided data acquisition. The combination of a variety of
theoretical ideas with some very straightforward uses of
modern instrumentation make it quite suitable for the under-
graduate curriculum.
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II. THEORY

The definition of white noise is that all frequencies are
contained in the noise with equal amplitudes. The math-
ematical way of stating this is to say that if Vy(r) is the
time-dependent noise voltage, then |Vy(w)|?, where Vy(w)
is the Fourier transform of Vy(t), is independent of w in the
limit of a long sampling time for the Fourier transform cal-
culation. An interesting question is this: what is the nature of
the output, V(¢), if white noise passes through a low-pass
filter composed of a resistor R and a capacitor C?

This questlon is a standard one in linear, time-independent
networks.%” One way to develop the answer is to realize that
the time-varying input voltage, Vy(¢), can be represented by
a series of impulses. If one knows how the circuit responds
to an impulse, then its response to a time-varying input is the
sum of a series of impulse responses of the proper magni-
tudes and delayed by the proper times. To be more specific,
let h(t) be the impulse response of the circuit and let
Vx(t) be the input to the circuit. The output at any time ¢
from the impulse voltage appearing at the input at time 7,
Va(7), is just Vy(7)h(t— 7). To find the output due the ac-
tual input voltage Vy(?), one must integrate Vy(7)h(t— 1)
over all 7. Thus the output from the circuit is

Vo= [~ V(o= mar, 1)

which is just the convolution of the two functions Vy(¢) and
h(t). One can therefore say that the response of a circuit to
an input signal is just a convolution of the impulse response
function of the circuit with the input signal.

A fundamental 8property of Fourier transforms is the con-
volution theorem,® which states that the Fourier transform of
the convolution of the two functions is the product of the
Fourier transforms of the two functions being convoluted.
Mathematically, this can be written

Vo(w)=Vy(@)h(), @
where Vg(w) is the Fourier transform of Vy(¢) and h(w) is
the Fourier transform of A(¢).

The autocorrelation function, Z(¢), of the output voltage is
defined to be

Z(t)= j:oVO(T)VO(t+ 7)dT. 3)
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By the correlation theorem,” the Fourier transform of the
autocorrelation function, Z(w), is given by the modulus
squared of the Fourier transform of V(t),

Z(0)=VE(0)Vo(w)=|Vy(w)|*. @)

These general ideas can be applied to a low-pass filter with
noise as the input. All one must realize is that the impulse
Tesponse function for an RC low-pass filter is just a decreas-
ing exponential with a time constant equal to RC.! That is,

re) 0

where £(0) is the value of the output voltage at =0 due to
an impulse at ¢=0. Since

. h(0)RC
©)=T1iaRC’

then by Eqs. (2) and (4) the Fourier transform of the auto-
correlation function is

h(t)= h(O)exp(

(6)

£y = (@) ()= () PERC]
(0)=|Vy(@)h(0)|*={V){w 17 (wRC)?
T1+(wRC)? @
where K =|Vy(w)|?[#(0)RC1?. Finding the inverse Fourier
transform of Z(w) gives
t
Z(t)=K exp( RC) (8)

where K’ =K/(2RC)= }|V)(w)|*h%(0)RC. Thus the auto-
correlation function of the output of a low-pass filter is a
decreasing exponential with a decay constant equal to RC in
the limit of a long sampling time for the autocorrelation
function calculation.

It is worthwhile to consider this result in physical terms.
Theoretically, white noise is random with no correlation be-
tween the noise voltage at one time and the noise voltage at
another time. The autocorrelation function for such noise is
zero everywhere, except at t=0. For this to happen, the noise
voltage must change rapidly so that voltage levels separated
by short times are not correlated. In order to change rapidly,
the noise must contain high frequency components. But the
action of a low-pass filter is to remove the high frequency
components of the noise, producing an output which no
longer changes rapidly. By allowing only low frequency
components to pass, the filter produces noise with an auto-
correlation function which does show a correlation over
short time intervals, i.e., below RC, the inverse cutoff fre-
quency of the filter.

1. EXPERIMENT

The noise generator was based on digital devices and is
described in Horowitz and Hill."! The clock frequency was 1
MHz and the output of the noise generator repeated itself
after 16.8 s. While the data acquisitions were very short com-
pared to this length of time, muitiple data acquisitions were
necessary to provide reasonable statistics. These multiple ac-
quisitions were taken over times much longer than 16.8 s,
but the start of each acquisition was not dependent on the
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clock signal in any way. Thus the data represented many
small intervals in this 16.8 s sequence of voltages chosen at
random.

The computer was a Maclntosh IIfx, equipped with a Na-
tional Instruments NB-MIO-16 A/D board. The data acquisi-
tion program was written in QuickBASIC™, using a library
of drivers supplied with the board. The computer measured
10 200 voltages, each separated by 0.15 ms. Since the noise
generator output was about 1 V of rms noise voltage around
a constant voltage of approximately 4 V, the computer first
found the average of the 10 200 voltage measurements and
subtracted the average from each measurement. This ensured
that the data to be autocorrelated were centered around zero,
producing an autocorrelation function which decreased to-
ward zero at long times.

The computer then computed the autocorrelation function
for times from 0 to 30 ms by (1) shifting the sequence of the
first 10 000 voltages by a number between 0 and 200, (2)
multiplying these shifted voltages one-by-one with the origi-
nal sequence of voltages, and (3) adding these 10 000 prod-
ucts together. In order to obtain smooth autocorrelation func-
tions, many acquisitions of 10 200 voltages were made, with
the resulting autocorrelation functions added to one another.
No attempt was made to write an efficient program and it
was not compiled before running. Under these conditions,
suitable autocorrelation functions could be obtained in a little
over an hour.

The autocorrelation function of the output of the noise
generator with no low-pass filter attached is shown in Fig. 1.
The vertical axis is arbitrary so the final autocorrelation func-
tion is normalized so that Z(0)=1. Notice that the autocorre-
lation function is zero except for Z(0), indicating that the
noise is white up to at least 10 kHz. Figure 2 displays the
autocorrelation functions for four different values of C and
the same value for R in the low-pass filter following the
noise generator. The lines in Fig. 2 are least-square fits to an
exponential function using 30 ms of data. Table I lists the
values for R and C along with the measurements of RC from
both the autocorrelation function and individual measure-
ments of R and C. The agreement is quite good, with three of
the four measured time constants falling within one standard
deviation of the time constants calculated from the measured
values of R and C.

IV. DISCUSSION

Since only a small amount of time is needed to perform
the actual acquisition of the data, this experiment can be
speeded up significantly by careful programming and com-
pilation of the program. Although slow, QuickBASIC™ was
used so that the student could write the entire program, with
a minimum amount of time devoted to the actual writing and
debugging of the program.

There is a subtle feature of autocorrelation functions
which becomes apparent from using various programs to per-
form the data acquisition and calculate the autocorrelation
function. The subtraction of the average voltage is done so
that the asymptotic limit of Z(¢) at long times is zero rather
than a large number related to the nonzero offset voltage of
the noise generator. When one subtracts the average voltage,
however, it must be kept in mind that it is not the average
voltage of an infinite number of voltages, but the average of
a finite number of voltages. When the autocorrelation func-
tion is calculated using data from which the average of the
finite number of voltages being autocorrelated has been sub-
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Fig. 1. Autocorrelation function of the output of the noise generator with no
low-pass filter attached. The computer acquired 10 200 data points, 0.15 ms
apart, calculated the autocorrelation function, and repeated this procedure 50
times, adding the autocorrelation functions together. The final autocorrela-
tion function was normalized by dividing it by its value at =0.

tracted, a bias is introduced. This bias can be understood in
the following way. Imagine a histogram showing the number
of times each voltage is measured for a very long sequence
of voltages, say one million of them. Let us call this the
parent distribution. Now imagine a histogram for a much
shorter sequence of voltages, say 100. This distribution is a
sample distribution taken from the parent distribution, and
does not have the same average voltage as the parent distri-
bution. If we subtract off the average voltage for the parent
distribution from the sample distribution, then the resulting
histogram, call it distribution 1, does not have an average
voltage of zero. Yet this is the procedure which should be
done if possible, since the average voltage for the parent
distribution is more likely to be closer to the average voltage
for an infinite number of voltages than the average voltage
for the sample distribution. However, if we subtract off the
average voltage for the smaller sample, then the resulting
histogram, call it distribution 2, is likely to be more symmet-
ric about zero and has an average voltage of exactly zero.
Therefore, the computation of the autocorrelation function
for distribution 2 involves more cases of opposite signed
voltages multiplied together than a similar computation for
distribution 1. This results in an autocorrelation function for
distribution 2 (the method we used) which is slightly less
than the autocorrelation function for distribution 1 (the
method we would have preferred to use if possible). This
negative bias is evident in our results by autocorrelation
functions with asymptotic limits at long times which are
slightly negative. As expected, the size of this effect de-
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Fig. 2. Autocorrelation function of the output of the noise generator with
different low-pass filters attached. The computer acquired 10200 data
points, 0.15 ms apart, calculated the autocorrelation function, and repeated
this procedure 50 times, adding the autocorrelation functions together. The
final autocorrelation function was normalized by dividing it by its value at
t=0. The lines represent least-square fits to the data from 0 to 30 ms for a
decreasing exponential function.

creases as the number of voltages used to compute the aver-
age voltage increases. It is therefore important to perform
this experiment using data sets with large numbers of volt-
ages, if subtraction of the average voltage is done. From our
experience, 10 200 voltages are enough to ensure that this
effect is insignificant.

If a programming language with a fast Fourier transform
(FFT) algorithm is available, the time spent waiting while
the autocorrelation function is acquired could be used to in-
troduce the FFT algorithm for later use with the noise gen-
erator and low-pass filter. For example, the computer could
be programmed to: (1) calculate the Fourier transform of
10 000 or so noise voltages using the FFT algorithm; (2) then
calculate the modulus squared of the Fourier transform,
which by Eq. (4) is just the Fourier transform of the autocor-

Table I. Values for the time constant of the different low-pass filters as
computed from the measured values of R and C along with the results of the
fitting procedure. The value of R is 10.14+0.02 k(2.

Computed time Fitted time
C(uF) constant (ms) constant (ms)  Fitted normalization
0.048=0.001 0.49+0.01 0.491+0.002 0.999+0.002
0.105+0.002 1.06%0.02 1.054+0.003 1.001+0.002
0.204+0.005 2.07+0.04 2.026+0.006 0.994+0.002
0.51520.016 522+0.16 4.909+0.011 0.997+0.002
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relation function; and (3) finally calculate the inverse Fourier
transform of the modulus squared of the Fourier transform,
perhaps using an inverse fast Fourier transform algorithm.
The result is the autocorrelation function of the noise, but
this method is much faster than the direct calculation of the
autocorrelation function described previously. Students will
be impressed by the speed of this important numerical tech-
nique.

V. CONCLUSION

The experiment described here creates an opportunity for
students to employ important concepts from electrical cir-
cuits and Fourier analysis, while gaining experience with
digital electronics and modern computer-aided data acquisi-
tion. Although only one experiment is described, there are
many possibilities as soon as a noise generator is connected
to a data acquisition computer. Besides the noise experiments
suggested in Sec. I, simple Fourier analysis of the noise,
perhaps employing the FFT algorithm, would be a very illus-
trative exercise. Once this capacity is present, the introduc-
tion of filters would allow for further exploration of basic
electric circuitry. At this point the computer would be func-
tioning as a spectrum analyzer, which may not make sense if

a spectrum analyzer is available. Still, one of the advantages
in all of these experiments is that the student does all of the
programming without devoting a large amount of valuable
laboratory time to programming.

)Present Address: Department of Electrical Engineering, Princeton Univer-
sity, Princeton, New Jersey 08544.
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About 1930, physicists were increasingly frustrated about the infinities of quantum electrodynamics
and the strange behavior of what were believed to be nuclear electrons. As a way out of the problems
Heisenberg suggested that space be subdivided in cells of finite size, and indicated in a letter to Bohr
the essence of his theory. In Heisenberg’s lattice world, the electron could metamorphose into a
proton, and the atomic nucleus consisted of protons and heavy “photons.” We analyze Heisenberg’s
fascinating (but unpublished) theory in its historical context, and suggest a detailed reconstruction
of the lattice world idea contained in the letter to Bohr. © 1995 American Association of Physics

Teachers.
L. INTRODUCTION

In a paper appearing in the fail of 1930, dealing with the
infinite self-energy of the electron, Werner Heisenberg in-
cluded the following remark’

[It would seem] plausible to introduce the radius r, [of the

electron] in such a way that space is divided into cells of

finite magnitude r3, and the previous differential equations
are replaced with difference equations. In such a lattice
world the self-energy will, at any rate, be finite. However,
although such a lattice world possesses remarkable prop-
erties, one must also observe that it leads to deviations
from the present theory which do not seem plausible from
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the point of view of experiment. In particular, the assump-

tion that a minimal length exists is not relativistically in-

variant, and one can see no way to bring the demand for
relativistic invariance into conformity with the introduc-
tion of a fundamental length,

Most readers of the issue of Zeitschrift fir Physik probably
found this comment rather cryptic, for Heisenberg did not
give the slightest hint of either its context or how he had
derived the results of a cellular space. What he had in mind
was, in fact, a theory sketch which he had worked out earlier
in the year and communicated to Bohr in a private letter. In
the letter, Heisenberg suggested that the world is structured
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