for the ten cars for which a minimum in the standard devi-
ation for the average optimum P /M was found, as indicat-
ed in Table 1. The P /M point for the Ferrari is also shown
as a special case. For modest performance requirements,
that is, accelerating to 60 mph in 7 s or longer, both of the
optimum power-use curves are very close to the ideal, indi-
cating that a high initial acceleration is not important for
minimizing engine size if performance requirements are
modest. For more demanding performance, the two opti-
mum curves climb and diverge rapidly, until at 4.2 s (the
acceleration time for the 1991 Ferrari F40), the P, /M for
0.65 g maximum acceleration is about 170 W /kg compared
with 100 W/kg for 0.9 g maximum acceleration.

In conclusion, we have demonstrated that the minimum
engine size required for an automobile can be approximate-
ly determined from acceleration performance require-
ments based on an optimal acceleration strategy beginning
with maximum acceleration without slipping, followed by
acceleration determined by application of constant maxi-

mum power. Comparison of performance data with opti-
mal performance for 18 automobiles shows that nearly all
modern automobiles achieve nearly optimal acceleration.
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A simple undergraduate laboratory experiment on the determination of Debye temperatures of
solids is described. A sample of the solid is immersed in liquid nitrogen; from the mass of nitrogen
boiled off in cooling the solid, the change in its internal energy is determined. The quantum
corrections to the classical law of Dulong and Petit are calculated and the Debye temperature is

obtained using a simple graphical technique.

L INTRODUCTION

The heat capacity of a constant volume crystal lattice C,
is
_9u

arl,’
where U is the internal energy of the lattice, T is the tem-
perature, and v is the molar volume. C, can be calculated
starting from the fact that a lattice of N atoms has 3NV inde-
pendent vibrational modes, each with two degrees of free-
dom. If all of the modes are assumed to be thermally active
then, by the equipartition of energy, the average vibrational
energy associated with each mode is (E;) = kp T. The vi-
brational contribution to the internal energy is then just

(1

v

U=3 (E) = 3nRT, )

where n = N /N, is the number of moles in the crystal.
This leads to the well-known result of Dulong and Petit'~
for the high temperature molar heat capacity of a lattice at
constant volume,

¢,=C,/n=3R. 3)

Equation (3) is a classical result. At low temperatures
the quantum mechanical nature of the lattice vibrations
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becomes important and not all vibrational modes are ther-
mally active. In this case the average vibrational energy of
the jth mode must be calculated from the more exact
expression
hv, ;
E il = z + — ’ (4
{E;) exp(hv,/k;T) —1 2 )

where v; is the vibrational frequency of the jth mode and
depends on the crystal structure of the lattice. The second
term on the right-hand side of Eq. (4) is due to the zero-
point energy of the quantum oscillators. Since it is indepen-
dent of temperature, it does not contribute to ¢, and will be
neglected below. The internal energy of the lattice cannot
now be calculated analytically and the determination of ¢,
requires some form of approximation. One very useful ap-
proximation scheme, which is exact in the low-temperature
limit, is due to Debye."? In the Debye approximation the
internal energy is

U=3nRTF(®,/T), (5)
where the function F(z#) is given by
3 ( y 6
F(r) =—f d . (6)
( t3Jo y & —1

@, is the Debye temperature of the lattice, defined as®
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®p = yhc/akyg, (7

where ¢ is the speed of sound, appropriately averaged over
all directions in the lattice, and a is the crystal lattice spac-
ing. The coefficient ¥ is a factor of order 1 which depends
on the structure of the lattice. The quantity k5 ®,, can be
thought of as the energy scale of the highest frequency vi-
brations in the lattice, which have a wavelength of order
1/2a and energy E; =~hc/2a. Assuming that the thermal
expansion of the lattice is small, i.e., that changes in the
lattice constant a do not contribute significantly to changes
in the internal energy, c, is in the Debye model

3 T 4
c,,=3R(—T—) Jﬂ yedy (8)
@,/ Jo (& —1)?
At high temperatures, when ©,/7T<1, F(®,/T) = 1 and
we recover the Dulong—Petit result, while at low tempera-
tures the lattice specific heat is proportional to 7>, in agree-
ment with observed behavior.

The Debye model provides a quantitative description of
the thermodynamics of a lattice at low temperatures, and a
qualitative description over a large temperature range; it is
thus of considerable importance in understanding the
properties of real solids. The crystal structure and other
properties of a particular solid are absorbed into the single
parameter ®,. The Debye temperatures of many metals
are comparable with room temperature,'? indicating that
the quantum mechanical nature of the lattice vibrations
manifests itself at relatively high temperatures.

In the remainder of this paper we describe an experi-
ment, the results of which can be analyzed graphically to
provide a reasonably accurate determination of the Debye
temperature of metals. This experiment has been used suc-
cessfully in a second year undergraduate physics laborato-
ry. A rather different technique for determining ®,, is de-
scribed in Ref. 4.

II. EXPERIMENT

The experiment is very simple. A sample of metal is
cooled by immersing it in liquid nitrogen, and the amount
of nitrogen which boils off is measured. This quantity, and
the known initial and final temperatures of the metal, are
used in the manner described below to calculate the change
in internal energy of the metal. The Debye temperature is
determined graphically from the intersection of a straight
line, determined from the experimental data, with the func-
tion F(¢) as illustrated below.

The apparatus is similar to that described by Thomson
and White, and used by them to determine the latent heat
of vaporization of nitrogen and the “average specific heat”
of metals.® A small amount of liquid nitrogen, which boils
at 77 K, is poured into a “dewar” consisting of a stack of
two or three styrofoam coffee cups. An isothermal shield,
consisting of a length of copper tubing approximately 5 cm
in diameter and 5 cm long, was placed inside the innermost
cup to minimize the amount of nitrogen boiled off due to
splashing. The cups, along with the experimental sample,
were placed on the pan of a lab balance with 0.1-g resolu-
tion. The mass was measured for a few minutes to deter-
mine the background nitrogen boil-off rate; in our set-up it
was about 3 g/min. The metal sample was then placed into
the nitrogen.

Boil-off of excess nitrogen, due to splashing when the
metal was dropped into the dewar, was found to be a source
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of systematic error in earlier versions of this experiment.
We minimized this problem by putting the sample—which
consisted of several cylindrical pieces of metal about 0.5 cm
long by 0.5 cm in diameter—into a small nylon bag, whose
heat capacity was negligible. This bag was then lowered
slowly into the nitrogen.

After 1 or 2 min, the rapid boiling of the nitrogen
stopped as the metal cooled to its final temperature, and the
background boil-off rate was again measured for a few min-
utes. The mass of nitrogen m boiled off in cooling the sam-
ple is determined from a plot of the mass as a function of
time. The difference between extrapolations of the data
from before and after the sample was immersed gives m
directly. Typical experimental data for aluminum are
shown in Fig. 1.

III. ANALYSIS

The heat given up by the metal to the nitrogen as it cools
is
AQ=mlL, 9

where m is the mass of gas boiled off and L is the latent heat
of vaporization of nitrogen.® Neglecting any volume
change in the solid accompanying the drop in temperature,
AQis equal to the change in internal energy of the metal, so
from Eq. (5) we have

AQ =U,—U,
= 3nRT,F(®,/T,) — 3nRT,F(@,/T;),  (10)

where T; and T are the initial temperature (room tem-
perature in our case) and the final temperature (77 K, the
boiling point of the liquid nitrogen) of the metal. Equation
(10) could be solved numerically for ®,. However, if
T;<0®, s T;, 0 can be determined approximately using a
simple graphical method. If ¢ is small, F(¢) can be expand-
ed about ¢ = 0 to give

F(t)=1-~3t/84+ ---. (11)
80
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[
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Fig. 1. Mass of the nitrogen dewar and a 7.9-g aluminum sample as a
function of time. The sample was immersed in the nitrogen at about 240's.
The mass of nitrogen boiled off in cooling the sample was 5.5 g, deter-

mined from the distance between the two extrapolated background boil-
off rates.
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If®,, % T; we can use this expansion in the first term on the
right-hand side of Eq. (10) to get

30 0
AQ = 3nRT,-(1 - —2) - 3nRT,F(—’3->
87, T,

36 0
=3nR(T, - T)) + 3nRTf(1 - F(—’i)) .
8T, T,
(12)

In fact ®,, ~ T; for the metals used in our experiments, so
this approximation may not be strictly valid; this point is
discussed briefly below. The first term on the right-hand
side of Eq. (12) can be identified with the classical contri-
bution to the internal energy of the lattice vibrations,

AU, =3nR(T, — T}). (13)

The remaining terms on the right-hand side of Eq. (12) are
quantum corrections to the classical result. We therefore
write

AU, =3nRT;(1 - 30,/8T, — F(©,/T;)). (14)
Defining t = ©,/T}, Eq. (12) can be rewritten as

a—3t=F(1), (15)
where the quantity « is defined as
a=1+ (AU, — AQ)/3nRT, (16)

and may be calculated from the measured value of AQ and
the known temperatures T; and T. The solution of Eq.
(15) is the intersection of the curve F(t), which was calcu-
lated numerically, with the line @ — 3¢ /8. Thus ®, can be
determined by drawing a straight line of slope — 3/8 and
intercept determined from the experimental measurements
using Eq. (16), on a plot of F(¢). .

IV. RESULTS

We performed experiments on three metals: aluminum
(99.999% pure), copper (99.9%), and (white) tin
(99.75%)."” The Debye temperatures of these metals, tak-
en from Ref. 2, are given in Table I in the column labeled
©%. Table I also shows our experimental results. The
quoted uncertainties in AQ, a and the experimental values
of @, reflect a (random) uncertainty of about 2% in the
measurement of m, the mass of nitrogen boiled off in cool-
ing the metal. We give two experimental values of @, in the
table. @)’ was found from a numerical solution of Eq.
(10), with no approximations. ®} was found using the
approximate graphical procedure described above and il-
lustrated in Fig. 2, which shows a plot of F(¢) and a — 37 /8
for our three samples. As can be seen from the data in the
table, our values of @)’ are in good agreement, within ex-
perimental error, with the textbook values ®%.'> The ap-

Table 1. Experimental results.

F(t), a—(31/8)

Fig. 2. A plot of F( tyanda — 3t /8 vs ¢, where t = ®,/ T, for samples of
aluminum, copper, and tin. a is determined from the experimental data as
described in the text. @ is determined from the intersection of the
straight line with the F(7) curve.

proximation of Eq. (11), which allows the simple graphi-
cal determination of ®3, gives results which are roughly
20% lower than both ®)’ and @%.

We note that, strictly speaking, the approximation of Eq.
(11) is valid for ®,/T; €1, while ®,,/T; ~ 1 for both alu-
minum and copper. It is possible to improve the accuracy
of the results obtained from the graphical determination of
the Debye temperature by replacing this approximation
with a linear interpolation that gives a more accurate ap-
proximation to the function F(¢) in the temperature range
of interest. However, the overall accuracy of the experi-
mental technique and the inherent uncertainty involved in
the definition of ®, (Ref. 3) do not justify such a proce-
dure.

V. CONCLUSIONS

We have described a simple procedure for determining
the Debye temperatures of solids, suitable for use in an
undergraduate laboratory. The theory, and the analysis of
the experimental results, involve the use of several impor-
tant concepts from a first course in thermodynamics. These
include heat capacity and latent heat, the equipartition of
energy, lattice vibrations, and the notion that quantum me-
chanical effects can have a measureable influence on the
properties of materials even near room temperature. The
experiment, although relatively simple, must be carried out
with some care if meaningful results are to be obtained, and
the graphical solution of Eq. (15) is a nice illustration of
how some careful thinking can eliminate the need for lots of

Material 03 (K) Mass (g) AQ (D) AQ (J/mol) AU, (J/mo!) a O (K) 0% (K)
Aluminum 428 791 1100(20) 3750(75) 1696 1.88(4) 456(10) 345(10)
Copper 343 22.64 1500(30) 4250(85) 1225 1.64(3) 354(10) 272(10)
Tin 200 21.42 900(20) 4990(100) 463 1.24(2) 191(10) 162(10)
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messy and uninteresting calculation, at the expense, in this
case, of some experimental accuracy. Our results for ®¢
agree within our experimental error with values given in
the literature,” while the approximate results @3 are
about 20% lower.
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The occurrence in Fourier series of an overshoot effect near function discontinuities, called the
Gibbs phenomenon, is discussed from a pedagogical viewpoint. The reader is led along a path to
discover why the phenomenon depends only upon the existence of the discontinuity, but not on
other properties of the function that is Fourier analyzed.

L. INTRODUCTION

An understanding of Fourier series and their generaliza-
tions is important for physics and engineering students, as
much for mathematical and physical insight as for applica-
tions. Students are usually confused by the so-called Gibbs
phenomenon—the persistent discrepancy, an *“overshoot,”
between a discontinuous function and its approximation by
a Fourier series as the number of terms in the series be-
comes indefinitely large. Although the phenomenon is
mentioned under Fourier series in almost every textbook of
mathematical physics,! the treatment is often confined to
the square-pulse example, so that students are often left
wondering what aspect of this pulse gives rise to the phe-
nomenon and whether it depends upon the function inves-
tigated. The subject has also been discussed in this Jour-
nal,>* but only from a limited perspective. The aim of this
paper is to lead the reader along the steps to solving the
mystery of the Gibbs phenomenon.

Historically, the explanation of the Gibbs phenomenon
is usually attributed to one of the first American theoretical
physicists, J. Willard Gibbs, in two notes published in 1898
and 1899 (Ref. 5). Gibbs was motivated to make an excur-
sion into the theory of Fourier series by an observation of
Albert Michelson that his harmonic analyzer (one of the
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first mechanical analog computers) produced persistent
oscillations near discontinuities of functions that it Fourier
analyzed, even up to the maximum harmonic (80) that the
machine could handle. Examples of these oscillations are
shown in the 1898 paper® by Michelson and Stratton. The
phenomenon had, however, already been observed and es-
sentially explained by the English mathematician Henry
Wilbraham 50 years earlier’ in correcting a remark by
Fourier on the convergence of Fourier series. It might be
more appropriate to call it the Wilbraham—Gibbs phenom-
enon than the Gibbs phenomenon.

The first extensive generalization of the Gibbs phenome-
non, including the conditions for its existence, was pro-
vided by the mathematician B6cher in 1906 (Ref. 8). Both
this treatment and those in subsequent mathematical trea-
tises on Fourier series’ are at an advanced level, usually
unsuitable for physics students. In the following we consid-
er by a method accessible to physics and engineering stu-
dents the problem of Fourier series for functions with dis-
continuities. The method is rigorous; it contains the
essence of the mathematical treatments without their com-
plexity; and it discusses how to estimate the overshoot nu-
merically.

The presentation is organized as follows. In Sec. II a
generalization of the sawtooth function is made, to include
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