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Is there any thing that in this universe that does not oscillate? Look at things around you.
From galaxies and stars in the skies to the inner workings of an atom, we observe never-ending
motion. In this experiment we are going to study the simplest form of periodic motion—
namely simple harmonic motion (SHM) using a webcam and image processing algorithms.
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1 Conceptual Objectives

In this experiment, we will,

1. understand simple harmonic motion and its damping under various conditions;

2. start making simple measurements of lengths and understand the parallax error;

3. understand how errors propagate from an observed to an inferred quantity;

4. identify dimensions and units for simple physical quantities and transform between
physical and logical coordinates;

5. fit experimentally observed curves with mathematically modelled solutions;

6. perform simple image processing and computational tasks on the personal computer;
and last,

7. understand the formation and display of colour on TV and computer screens.

∗This experiment can not be re-used without explicit permission of Muhammad Sabieh Anwar.
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2 Experimental Objectives

The aim of the present experiment is to examine the amplitude of a freely oscillating as well
as an underdamped harmonic oscillator. The experiment requires measuring the damping
constant and then make a quantitative comparison of theory with experimental results.

3 Theoretical Introduction

Stand against a light source. Tie a tennis ball to a string and whirl it over your head in a
horizontal circle. Observe the shadow on the wall that is opposite to the light source. You
will see linear motion of the shadow which is slowest on the edges (where it turns around)
and fastest in the centre. This behaviour, slowing down when moving away from the centre
and speeding up when approaching the center, is the signature of simple harmonic motion
(SHM).

3.1 Characteristic Equation of SHM

Now let’s analyze the above example in somewhat mathematical detail. The motion of the
shadow of the ball cast on the wall can be described by,

x(t) = x0 cos(ωt+ ϕ) (1)

where x(t) is the position of the shadow on the wall, x0, called the amplitude, is the maximum
distance of the shadow from the center, ω the rate at which you are rotating the ball, t is the
time and ϕ, the phase, is the deviation of the wave from a reference. (Also see Fig. 1.)

(a) (b) (c)

Figure 1: Position, velocity and acceleration in SHM. (a) The position x of the shadow, (b)
the slope of x gives the velocity v and (c) the slope of v gives the acceleration a.

The gradient (slope) of equation (1) gives the velocity of the shadow and the sign shows the
direction of the velocity, the negative means that as x increases, v decreases. So the shadow
has maximum velocity at x = 0 and minimum velocity (in fact momentarily zero) at x = x0.

v(t) =
dx(t)

dt
= −ωx0 sin(ωt+ ϕ). (2)

This notion of changing velocity can also be expressed in terms of the acceleration, given by
the gradient (slope) of equation (2).
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a(t) =
d2x(t)

dt2
=

d v(t)

dt
= −ω2x0 cos(ωt+ ϕ). (3)

We can replace x0 cos(ωt+ϕ) in the above equation with equation (1) and as a result obtain,

a(t) =
d2x(t)

dt2
= −ω2x(t). (4)

This is the characteristic differential equation describing SHM.

Q 1. A particle is released from rest at a point P , which is 2 m from the origin in the
positive direction. The particle next returns to P after 4 s. Write down the particle’s equation
of motion [1].

Q 2. A balloon performs SHM in a vertical line with a period of 40 s. Its height varies
between 800 m and 850 m. Find the speed of the balloon when it is at 820 m [1].

3.2 Mass-Spring System

Consider a mass attached to a spring. Now combining Newton’s law,

F = ma (5)

and Hooke’s law,

F = −kx (6)

where k is the spring constant, we get

a = − k

m
x. (7)

This can also be written as,

d2x

dt2
+ ω2

0x = 0, (8)

with the definition,

ω2
0 =

k

m
. (9)

Equation (8) is identical to equation (4). Hence the periodic motion of a mass attached to a
spring is simple harmonic. Now let’s analyze the energy of this system. The total mechanical
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energy (ET ) of the mass-spring system is the sum of kinetic and potential energies, EK and
EP ,

ET =
1

2
mv2 +

1

2
kx2, (10)

that can be re-written in light of equation (2) as,

ET =
1

2
m
(dx
dt

)2
+

1

2
kx2. (11)

The conservation of energy ensures that the total energy is unchanging. As a result, kinetic
and potential energies inter-convert keeping the sum constant. At the point of maximum
displacement, the energy is wholly potential (EK = 0, ET = EP ) and at the centre, all the
energy is kinetic (EP = 0, ET = EK).

Q 3. What are the units of ω, k, and m?

Q 4. Sketch a graph between ET and time for one oscillation. Now on the same graph
sketch curves for Ek and EP .

Q 5. When the undamped spring is stretched and released, show that the total energy
ET at any given time is,

ET =
1

2
mx2

0ω
2
0 =

1

2
kx2

0. (12)

HINT: Use v = −x0ωsin(ωt) and Equation (10).

Q 6. A spring of natural length 0.6 m is attached to a fixed point A on a smooth horizontal
table. A force of 10 x N is needed to keep the spring extended by x meters. A block of mass
0.1 Kg is attached to the other end of the spring. The block is pulled away from A until it is
0.75 m from A, and then let go. Describe the subsequent motion along with an equation [1].

3.3 The Decay of Vibrations

Equation (4) represents an ideal situation where there is no damping. A mass set in motion
once will continue displaying its oscillations for all times to come. However, as we all very
well know, this is never the case. The amplitude of the oscillating mass keeps on decreasing,
till it eventually comes to a stop. We now investigate this behaviour, called the damping
effect.

Every medium (such as air, water) exerts a frictional force on any object moving inside it.
This resistive force slows down the object, eventually bringing it to rest. In our case, the
medium is air, slowing down the oscillating mass-spring system. One form of Newton’s second
law that models this frictional effect is
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F = −bv, (13)

where v is the velocity of the particle and b is the drag coefficient.

Combining the two forces (-kx and -bv), we obtain

F = −bv − kx = ma (14)

=⇒ a+
b

m
v +

k

m
x = 0. (15)

This can be re-written as,

d2x(t)

dt2
+

b

m

dx(t)

dt
+

k

m
x(t) = 0, (16)

substituting,

b

m
= γ, (17)

k

m
= ω2

0, (18)

the differential equation now becomes,

d2x

dt2
+ γ

dx

dt
+ ω2

0x = 0. (19)

Q 7. What is the difference between Equations (8) and (19)?

In this particular case, the damping is characterized by γ, while ω0 represents the natural
angular frequency of the system if damping were absent.

In the current experiment, we will consider only one kind of damping: underdamped SHM.
As the term underdamped suggests, the oscillations die away, albeit slowly. We will not go
into the details of the various kinds of damping. However Figure 2 gives a good intuitive feel
of how these damped motions look like.

The solution to Equation (19), for the underdamped oscillations, is given by (ϕ = 0),

x(t) = A exp (−γ

2
t)cos(ω1t), (20)

where A is the maximum amplitude at t = 0 and,
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Figure 2: Decaying oscillations for underdamped, overdamped and critically damped har-
monic oscillations. Our experiment is performed in the underdamped regime.

ω1 =

√
ω0

2 − γ

4

2

. (21)

The solution, Equation (20) is the mathematical representation of the underdamped oscil-
lation of the mass-spring system, it shows how the position x(t) varies as time t. This

solution can be divided into two parts, A exp(−γ

2
t) represents the damping of the amplitude

(also called the envelope) whereas cos(ω1t) represents the oscillations of the mass, with a
frequency ω1. Note that ω1 ̸= ω0.

4 Apparatus

Our damped harmonic oscillator apparatus consists of a set of masses (locally fabricated)
attached to the end of a helical spring. The mass is displaced slightly and the resulting
motion is recorded using a web camera that is attached to a computer. The data processing
is performed in Matlab that is equipped with the Image Processing toolbox. The stands
holding the mass-spring system are manufactured in house. Fig. 3 shows the schematic setup
of the experiment.
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Figure 3: Schematic diagram of the experimental setup.

5 The Experiment

5.1 Determining the Spring Constant

You have been provided with the mass hanger (20± 1 g) along with different mass blocks.

Step 1 Attach a steel ruler and a mass hanger with a spring to the provided lab stand.

Step 2 Add weights of equal mass and measure the extension each time a weight is added.

Q 8. What are the units of extension?

Q 9. Use your experimental data to obtain the spring constant k (plot a graph!).

Q 10. What is the error in k?

Q 11. For a mass of 60 g on your spring, calculate an expected value of ω0 using equation
(18). Also predict the period of free oscillations. What is the propagated uncertainty in the
time period?

5.2 Free Oscillations

In this section we would use MATLAB to capture a video of the oscillator using a webcam
and then track its position and make a plot of the simple harmonic motion.

• Set up the apparatus as shown in the schematic diagram given in Figure 3. Make sure
that the mass is in front of the black chart-paper hanging on your station, as we want
it to be the background to your oscillatory motion.

7



• Please make sure that the webcam isn’t already being used by any other software.

• make sure that you have already downloaded the relevant script files from the Exper-
iment 1.1 website1 and have placed them in your working directory. See the pictorial
procedure on the website for your reference.

As you will know by now, you can run MATLAB commands in several ways. One is by
writing in some kind of script or function file (which MATLAB executes line-by-line once you
click the ‘Run’ button). The other is by typing your commands in the command window.
Figure 4 shows the scripting and command windows, respectively.

Figure 4: Your typical MATLAB workspace. The space encircled in red is the scripting
window, while the space encircled in green is the command window.

You might know that if you have a script in your working directory, you can run it by just
typing its name. The following instructions will have you run the scripts you downloaded one
by one in the command window.

Step 1 Start the webcam using the following command:

≫ webcam

This activates a live preview from your webcam and you should be able to see the mass
hanger on your computer screen. Adjust the apparatus to obtain a vertically oscillating mass
appearing on the screen. Try to have the camera looking at the mass head-on, with the mass
resting in the middle on the camera feed. See pictorial procedure on the website for reference.

Step 2 Type in the following command (don’t hit enter yet!) and pull the mass (60 g in
total) down and release it, then hit enter.

1https://physlab.org/experiment/simple-harmonic-motion-is-observed-through-webcam/
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≫ start(vid)

This will begin recording the video frames from the live preview. Observe the parameters
updating themselves in the bottom of the window. Wait till 350 frames are recorded.

Step 3 Use the following command to store these frames in memory:

≫ savedata

This will create two arrays named frames and time which will store the acquired frames
and their time stamped values. You can view them in your variables workspace.

Step 4 Check the size of frames using the following command:

≫ size(frames)

You should see 4 numbers that represent the resolution of the image, the number of colours in
each pixel and the total number of recorded frames. Note that when we save data it removes
the last 50 frames.

Step 5 View the first frame by typing in the following commands:

≫ firstframe = frames( : , : , : , 1)

≫ imtool(firstframe)

The first command creates a variable firstframe from frames, and the second command
shows firstframe as an image.

Q 12. What is the size of the first frame?

Step 6 Try viewing the second, third and the fourth frame.

Step 7 So we have a bunch of frames from our camera showing the motion of the oscillating
mass. But these frames might show more than just the mass and could have irrelevant
information, like image areas outside the black chart-paper, or some other kind of obstruction.
This is why we need to crop our acquired frames. Luckily, MATLAB has a built-in function
called imcrop which can crop an image to a specified rectangle.

View the first frame again and select the Crop Image tool from the Tools dropdown menu
in the imtool window. You should be able to draw a rectangle that encapsulates the area of
motion of the oscillator. Right click on the area and select Copy Position. This will get
you an array of four numbers, which are:

[xmin ymin (xmax − xmin)︸ ︷︷ ︸
width

(ymax − ymin)︸ ︷︷ ︸
height

]

Where xmin, xmax, ymin, and ymax are the minimum and maximum coordinates in the x and
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y axes respectively. You should save this array in a variable named rect. We’ll pass along
rect to the imcrop function so it knows to crop all frames within this rectangle.

≫ rect = *your copied array*

Step 8 Use the following command to crop your region out of firstframe save the cropped
image ina variable named cropregion:

≫ cropregion = imcrop(firstframe, rect)

Q 13. So now we have the cropped first frame in a nice variable called cropregion. How
might you view cropregion?

Step 9 We’ve successfully cropped one frame, only 299 to go! Although it’ll be easier if
we just run the harmonic script, which automatically crops all 300 frames and saves the
cropped images as an array in the regions variable.

≫ harmonic

Step 10 Once harmonic is done running, we can run the imageprocess script:

≫ imageprocess

This will process all the cropped images inside regions by calculating the x and y pixel
coordinates of the centre of mass for the oscillating object in each frame.

Step 11 To calculate the displacement coordinates for the centre of mass, use the masscen-
tre script:

≫ masscentre

Step 12 Look at the x and y coordinates of the centre of mass through the 300 frames by
typing:

≫ x = centre(:, 1)

≫ y = centre(:, 2)

Q 14. Plot a graph of the x coordinates against time. What does this graph physically
represent?

Q 15. What happens to the x coordinates and explain why?

Q 16. Now plot a graph of the y coordinates with time. Record the approximate time
period of the oscillation in seconds.

Q 17. Compare this result with the time period from Question 11.
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5.3 Damped Oscillations

We now move on to see how the energy changes with time in an underdamped system with
ω0 ≫ γ. The energy at any subsequent time is given by,

E(t) ≈ E0e
−γt. (22)

Where E0 is the energy of an initial oscillation. It is,

E0 =
1

2
mx2

0ω
2
0 =

1

2
kx2

0. (23)

Where x0 is the amplitude of the initial oscillation.

Now place the beaker containing water under the mass-spring system. You might have
to adjust your setup to ensure the mass is completely immersed in water throughout its
oscillations. Repeat the experiment you performed in Section 5.2.

Q 18. What do you observe when you look at your new y vs. time graph?

Q 19. From this graph, obtain amplitudes for some (around 7 should be good) oscillations
and their corresponding times.

Q 20. Plot a graph of ln [
E(t)

E0

] versus time, where E0 represents the energy of the first

oscillation that you took into consideration and E(t) = 1
2
kx2

t represents the energy at any
given time t thereafter.

Q 21. Why do you think plotting a graph of ln[
E(t)

E0

] against time is more appropriate

than a graph of ln[E(t)] against time?

Q 22. Fit the plot and calculate the best estimated value of γ. Also calculate the values
of ω1 and b.

6 Idea Experiments

1. Use glycerine instead of water for damping. Can you determine the viscosity of glycer-
ine? HINT: Use Stokes Law.

2. Solve the differential equation (16) using the quadratic formula and analyze the dis-
criminant for less than, equal to and greater than zero.

3. Try horizontal mass-spring system instead of gravity driven. Discuss friction.

4. Try to find out if friction is surface area dependent or not. HINT:Slide blocks down a
plank and observe using a webcam.
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5. Study the diffusion of ink in water using webcam [2].

6. Demonstrate the damping of a pendulum [3].

References

[1] D. A. Qadling, Elementary Mechanics Vol. 3-4, (Cambridge, 1999).

[2] S. Nedev, and V. C. Ivanova, ”Webcam as a measuring tool in the undergraduate physics
laboratory”, Eur. J. Phys. 27 1213 (2006).

[3] L.F.C. Zonnetti, A.S.S. Camargo, J. Sartori, D. F. de Sousa, and L. A. O. Nunes,
”Demonstration of dry and viscous damping of an oscillating pendulum”,
Eur. J. Phys. 20 85 (1999).

[4] S. Shamim, W. Zia, and M. S. Anwar, ”Investigating viscous damping using a webcam”
Am. J. Phys. 78 433 (2010).

12


