CHAPTER 49

. LIGHT AND
QUANTUM PHYSICS

Thus far we have studled radiation— including not only light but all
of the electromagnetic spectrum — through the phenomena of reflection.
refraction, interference, diffraction, and polarizaticn, all of which can be understood by
treaiing radiation as a wave. The evidence in support of this wave behavior is overwhelming.

We now move off in a new direction and consider experiments that can be understood only
by making quite a different assumption about electromagnetic radiation, namely, that it
: behaves like a stream of particles.

The concepts of wave and particle are so different that it is hard to understand how light
fand other radiation) can be both. In a wave, for example, the energy and momentum are
distributed smoothly over the wavefront, while they are concentrated in bundles in a stream
of particles. We delay a discussion of this dual nature uniil Chapter 50. In the meantime.
we ask that you not worry about this puzzle and that you consider the compelling
experimental evidence that radiation has this particlelike nature. This begins owr study of
quantum physics, which leads eventually to our understanding of the findamental structure
of matter.

49-1 THERMAL RADIATION

We see most objects by the light that is reflected from
them. At high enough temperatures, however, bodies be-
come self-luminous, and we can see them glow in the
dark. Incandescent lamp filaments and bonfires (see Fig.
1) are familiar examples. Although we see such objects by
the visible light that they emit, we do not have to linger too
long near a bonfire to believe that it also emits copiously
in the infrared region of the spectrum. It'is a curicus fact
that quantum physics, which dominates our modern view
of the world around us, arose from the study—under
controlled laboratory conditions—of ' the radiations
emitted by hot objects. _

Radiation given off by a body because of its tempera-
ture is called thermal radiation. All bodies not only emit
such radiation but also absorb it from their surroundings.
If a body is hotter than its surroundings it emits more
radiation than it absorbs and tends to cool. Normally, it
will come to thermal equilibrium with its surroundings, a
condition in which its rates of absorption and emission of
radiation are equal.

The spectrum of the thermal radiation from a hot solid
body is continuous, its details depending strongly on the
temperature. If we were steadily to raise the temperature
of such a body, we would notice two things: (1) the higher
the temperature, the more thermal radiation is emitted —
at first the body appears dim, then it glows brightly; and
(2) the higher the temperature, the shorter is the wave-
length of that part of the spectrum radiating most
intensely — the predominant color of the hot body shifts
from dull red through bright yellow-orange to bluish
“white heat.”” Since the characteristics of its spectrum
depend on the temperature, we can estimate the tempera-
ture of a hot body, such as a glowing steel ingot or a star,
from the radiation it emits. The eye sees chiefly the color
corresponding to the most intense emission in the visible
range.

The radiation emitted by a hot body depends not only
on the temperature but also on the material of which the
body is made, its shape. and the nature of its surface..For
example, at 2000 K a polished flat tungsten surface emits
radiation at a rate of 23.3 W/cm?; for molybdenum, how-
ever, the corresponding rate is 19.2 W/cm?. In each case
the rate increases somewhat if the surface is roughened.
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Figure 1 Students contemplating thermal radiation. The
study of such radiation, under controlled laboratory condi-
tions, laid the foundations for modern quantum mechanics.

Other differences appear if we measure the distribution in
wavelength of the emitted radiation. Such details make it
hard to understand thermal radiation in terms of simpler
physical ideas; it reminds us of the complications that
arise in trying to understand the properties of real gases in

terms of a simple atomic model. The “gas problem” was -

managed by introducing the notion of an ideal gas. In
much the same spirit, the “radiation problem™ can be
made manageable by introducing an “ideal radiator” for
which the spectrum of the emitted thermal radiation de-
pends only on the temperature of the radiator and not on
the material, the nature of the surface, or other factors.
We can make such an ideal radiator by forminga cavity
within a body, the walls of the cavity being held at a
uniform temperature. We must pierce a small hole
through the wall so that a sample of the radiation inside
the cavity can escape into the laboratory to be examined.
It turns out that such thermal radiation, called cavity radi-
ation,*has a very simple spectrum whose nature is indeed
determined only by the temperature of the walls and not

* Also known as black-body radiation, because an ideal black
body (one that absorbs all radiation incident on it) would emit
the same type of radiation. We assume that the dimensions of the
cavity are much greater than the wavelength of the radiation.

in any way by the material of the cavity, its shape, or its
size. Cavity radiation (radiation in a box) helps us to un
derstand the naturg of thermal radiation, just as the ideal
gas (matter in a box) helped us to understand matterinits
gaseous form. ]

Figure 2 shows a cavity radiator made of a thin-walled
cylindrical tungsten tube about 1 mm in diameter and
heated to incandescence by passing a current throughit. A
small hole has been drilled in its wall. It is clear from the
figure that the radiation emerging from this hole is much
more intense than that from the outer wall of the cavity,
even though the temperatures of the outer and inner walls 3
are more or less equal. 4

There are three interrelated properties of cavity
radiation—all well verified in the laboratory —that any: )
theory of cavity radiation must explain. 4

L. The Stefan— Boltzmann law. The total radiated power
per unit area of the cavity aperture, summed over Al
wavelengths, is called its radiant intensity T) and is re-
lated to the temperature by i

. AT =ar* a

in which g (=5.670 X 10-* W/m?-K)isa universalcon-
stant, called the Stefan~ Boltzmann constant. Ordinary
hot objects always radiate less efficiently than do cavity
radiators. We express this by generalizing Eq. 1 to

IT)=eoT?, 2

in which €, a dimensionless quantity, is called the emissiv- 3
ity of the surface material. For a cavity radiator,e = 1,but
for the surfaces of ordinary objects, the emissivity is | 3
always less than unity and is almost always a function of

temperature. E

2. The spectral radiancy, The spectral radiancy R(A)tells
us how the intensity of the cavity radiation varies with

Figure 2 An incandescent tungsten tube with a small hole
drilled in its wall. The radiation emerging from the hole is
cavity radiation.



;wavelength for a given temperature. It is defined so that
the product R(4) dA gives the radiated power per unit area
that Jies in the wavelength band that extends from A to
d3. R(J) is a statistical distribution function of the

' radiant intensity /(T'} for any temperature by adding up

 (that is, by integrating) the spectral radiancy over the
complete range of wavelengths. Thus

)= f “RO)AL (fixed T). 3)
Q

~ Figure 3 shows the spectral radiancy for cavity radia-
 tion at four selected temperatures. Equation 3 shows that
we can interpret the radiant intensity J(T) as the area
‘under the appropriate spectral radiancy curve. We see
" from the figure that, as the temperature increases, so does
 thisarea and thus the radiant intensity, as Eq. I predicts.

' spectral radiancy curves of Fig. 3 that 4,,,, the wave-
" length at which the spectral radiancy is a maximum, de-
| creases as the temperature increases. Wilhelm Wien (Ger-

© man, 1864-1928) deduced that A, varies as /7 and
" that the product i, 7 is a universal constant. Its mea-

- sured value is
AT = 2898 ym - K. : 4)

This relationship is called the Wien displacement law;
Wien was awarded the 1911 Nobel prize in physics for his
~ research into thermal radiation. .

- same type we considered in Chapter 24, We can find the -

" 3. The Wien displacement law. We can see from the
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Sample Problem 1 How hot is a star? The “surfaces” of stars
are not sharp boundaries like the surface of the Earth. Most of
the radiation that a star emits is in thermal equilibrium with the
hot gases that make up the star’s outer layers. Without too much
error, then, we can treat starlight as cavity radiation. Here are the
wavelengths at which the spectral radiancies of three stars have
their maximum values:

Star Anns Appearance
Sirius 240 nm Blue-white
Sun 500 nm Yellow
Betelgeuse 850 nm Red

(@) What are the surface temperatures of these stars? (b) Whatare
the radiant intensities of these three stars? (¢) The radius r of the
Sun is 7.0 X 10° m and that of Betelgeuse is over 500 times
larger, or 4.0 X 10'* m. What is the total radiated power output
(that is, the fuminosity L) of these stars?

Solution  (a) From Eq. 4 we find, for Sirius,

= 2898 ym-K
Amax
_ (2898 um-KY (1000 nm ) _
_-( 240 nm )( 1 um )— 15,0008

The temperatures for the Sun and for Betelgeuse work outin the
same way to be 5800 K and 3400 K, respectively. At 5800 K,
most of the radiation from the Sun’s surface lies within the
visible region of the spectrum. This suggests that over ages of

R (Wrem?2 . um)

g T 20 30
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30 5.0

lower values.

Figure 3 Spectral radiancy curves for cavity radiation at four selected temperatures. Note
that as the temperature increases, the wavelength of the maximum spectral radiancy shifts to




1024  Chaprer 49 Light and Quantum Physics

evolution, eyes have adapted to the Sun to become most sensi-
tive to those wavelengths that it radiates most intensely.

(b) For Sirius we have, from the Stefan-Boltzmann law
(Eq. 1)
I=0¢T*=(567 X 10°¢ meLK")(lZ_,OGO K)*
= 1.2 10° W/m?

The radiant intensities for the Sun and for Betelgeuse work out
to be 6.4 X 107 W/m? and 7.7 X 10° W/m?, respectively.

(¢) We find the luminosity of a star by multiplying its radiant
intensity by its surface area. Thus, for the Sun,

L =4rr®) = (6.4 X 107 W/m?){4z)(7.0 X 10% m)?
=39 X 107 W.

For Betelgeuse the luminosity works out to be 1.5 X 10 W,
about 38,000 times larger. The enormous size of Betelgeuse,
which is classified as a “red giant,” much more than makes up
for the relatively low radiant intensity associated with its low
surface temperature. :

The colors of stars are not stnkmglv apparent to the average
observer because the retinal cones, which are responsible for
color vision, do not function well in dim light. If this were not so,
the night sky would be spangled with color.

49-2 PLANCK’S RADIATION LAW

Is there a simple formula, derivable from basic principles,
that fits the experimental radiancy curves of Fig. 37 In
September 1900 there were two suggested formulas, net-
ther of which could fit the curves over the entire range of
wavelengths.

The first, due originally to Lord Rayleigh but later de-
rived independently by Einstein and modified by James.
Jeans, was developed rigorously from its classical base.
Unfortunately, it completely fails to fit the curves, not
even passing through a maximum. However, the
Rayleigh-Jeans formula, as it is called, does fit the curves
quite well in the limit of very long wavelengths. Figure 4

shows the spectral radiancy curve for cavity radiation at

2000 K, along with the Ravleigh - Jeans prediction. The
good fit we speak of occurs for wavelengths much greater
than 50 um, far beyond the scale of that figure. The
Rayleigh-Jeans formula, unsatisfactory though it may
be, is the best that classical physics has to offer,

Wilhelm Wien also derived a theoretical expression for
the spectral radiancy. His formula (see also Fig. 4) is much
better. It fits the curves quite well at short wavelengths,
passes through a maximum, but departs noticeably at the
long-wavelength end of the scale. However, Wien’s for-
mula was not based on classical radiation theory but in-
stead on a conjecture —it has been called a “guess” —
that there is an analogy beiween the spectral radiancy
curves and the Maxwell speed distribution curves for the
molecules of an ideal gas.

- religious and philosophical issues.
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Figure 4 The solid curve shows the experimental spectral ra-

diancy for radiation from a cavity at 2000 K. The predictions
of the classical Rayleigh-Jeans law and Wien’s Jaw are shown |
as dashed lines. The shaded vertical bar represents the range
of visible wavelengths.

Thus we have two formulas, one agreeing with experi-"
ment at long wavelengths and the other at short wave-
lengths. Max Planck * seeking to reconcile these tworadi-
ation laws, made an inspired interpolation between them
that turned out to fit the data at afl wavelengths. Planck’s
radiation formula, announced to the Berlin Physical Soci-

ety on October 19, 1900, is

a I

R(j') ZF eb’qr_w 1 3

(3)
in which @ and b are empirical constants, chosen ta give
the best fit of Eq. 3 to the experimental data. Figure 5
shows how good the agreement is. Even though correct.
Planck’s formula was originally only empirical and did
not constitute a true theory.

Planck set to work at once to derive his formula from
simple assumptions and, in 2 months, he succeeded. In
the process he recast his formula slightly, presenting the
two arbitrary constants it contained in adifferent form.In
this new notation, Planck’s radiation law becomes

* Max Planck (1858~ 1947) was a German theoretical physicist
whose specialization in thermodynamics led him to the study of
thermal radiation and the discovery of the quantization of en-
ergy, for which he was awarded the 1918 Nobel prize in physics.
Under his leadership, theoretical physics flourished in Germany
in the 1920s: young physicists trained by Planck and his col-
leagues produced a complete mathematical formulation of the
quantum theory. In his later life, Planck wrote extensively on




T = 1595 K

¥ fre 5 Planck’s radiation law fitted to cxpenmental data
fora cavity radiator at 1593 K.

R = h—cjﬁ "eiw.leT,.:—i- - (6)
two adjustable constants 4 and b in Eq. 5 are here
aced by quantities involving two different constants,
Boltzmann constant k (see Section 23-1) and a new
stant, now called the Planck constant h; the quantity ¢
e speed of light.

By fitting Eq. 6 to the experimental data, Planck could
fnd values for k and A. His values were within a percent or
aof their presently accepted values, which are

k=1.381 X 1072 J/K

h=6.626 X 1073 I-s.

ample Problem 2 Figure 4 suggests that Planck's radiation
(Eq. 6) approaches the classical Rayleigh - Jeans law at long
elengths. To what expression does Planck’s law reduce as

2ncth 1
B

R(A)=

[ hat
| xl x3 S
- Erl e

(see Appendix H) allows us to make the approximation

ef=l=x
hus we have o
27zc2h | 2mcth 2nckT
e 5 A’_(hc)_ X

| gNote that the Planck constant #, a sure identifier of a quantum
wrmula, conveniently cancels out as we approach the classical
long-wave limit. The above result, in fact, is precisely the classi-
al Rayleigh —Jeans expression for the spectral radlancy
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hich x = hcfAkT. As A — =, we see that x — 0. Recalling >

49-3 THE QUANTIZATION OF
ENERGY

We turn now to the assumptions made by Planck in deriv-
ing his radiation law and to the significance of the ¢on-
stant 4 that appears in it. These assumptions and their
consequences were notimmediately clear to Planck’s con-
temporaries or for that matter (as he confirmed later) to
Planck himself. In what follows we describe the situation
as it appeared some 6 or 7 vears after Planck first ad-
vanced his theory. It seems to be true that the basic prem-
ise underlying Planck’s radiation law — the quantization
of energy — was not understood at any earlier date.

Planck derived his radiation law by analyzing the inter-
play between the radiation in the cavity volume and the
atoms that make up the cavity walls. He assumed that
these atoms behave like tiny oscillators, each with a char-
acteristic frequency of oscillation, These oscillators radi-
ate energy into the cavity and absorb energy from it. It
should be possible to deduce the characteristics of the
cavity radiation from the characteristics of the oscillators
that generate it.

Classically, the energy of these tiny osc1llators s a
smoothly continuous variable. We certainly assume this
for large-scale oscillators such as pendulums or mass-
spring systems. [t turns out, however, that in order to
derive Planck’s radiation law it is necessary to make a
radical assumption; namely, atomic oscillators may not
emit or absorb any energy E but only energies chosen fromi
a discrete set, defined by

E = nhy, e e (N

in which v is the oscillator frequency. Here the Planck
constant # is introduced into physics for the first time. We
say that the energy of an atomic oscillator is quantized and
that the integer nisa quantum number. Equation 7 tells us
that the oscillator energy levels are evenly spaced, the
interval between adjacent levels being hv; see Fig. 6.
The assumption of energy quantization is indeed a radi-
cal one, and Planck himself resisted accepting it for many
years. In his words, My futile attempts to fit the elemen-
tary quantum of action [that is, 4] somehow into the
classical theory continued for a number of years, and they
cost'me a great deal of effort.”” Max von Laue, the 1914

‘ Nobel laureate in physics and a student of Planck’s, has

written: “After 1900 Planck strove for many years to

* bridge, if not to close, the gap between the older and the

quantam physics, The effort failed, but it had valuein that
it provided the most convincing proof that the two could
not be joined.”

Let us look at energy quantization in the context of a
large-scale oscillator such as a swinging pendulum. Our
experience suggests that a pendulum can oscillate with
any reasonable total energy and not only with certain
selected energies. As friction causes the pendulum ampli-
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