
Data Processing with Matlab for the Experimental

Physics Laboratory

Amrozia Shaheen, Muhammad Wasif,

Waqas Mahmood and Muhammad Sabieh Anwar

LUMS School of Science and Engineering

September 27, 2011

Data analysis and representation are vital steps in any experimental exercise. They lend mean-

ing to the experiment and provide insight leading to a more fundamental understanding of the

underlying concept. Intelligent data processing and representation also help the experimenter

in re-designing the experiment for increased accuracy and precision. Clever thinking may even

encourage her to adapt and tailor the procedural steps to elicit some otherwise hidden facet.

In the experimental physics lab, we will use Matlab for,

� analyzing experimental data and computing errors,

� curve �tting, and

� graphically representing experimental data.

The present write-up serves as a �rst introduction to Matlab. Students who are not familiar

with Matlab, or even with the computer, need not to worry. We will proceed slowly, allowing

everyone to familiarize and acclimatize with the culture of computing. Luckily, Matlab is a

highly user-friendly and interactive package that is very easy to learn. Furthermore, subsequent

laboratory sessions will give all of us ample opportunity to practice Matlab.

It is important that every student independently works through all the examples given in this

hand-out and attempts all challenge questions. These challenge questions are labelled with

the box Q .

APPROXIMATE PERFORMANCE TIME 6-8 hours of independent work.

1

1 Introduction to Matlab

Matlab is a technical computing language and interactive environment for data visualization,

data analysis, algorithm development and numerical computation. It is an important and

versatile tool used to perform basic arithmetic operations, graph functions, solve equations,

accomplish statistical tests and much more.

1.1 Starting Matlab

You can start Matlab by clicking the Matlab icon located on the Desktop, a special window

called the Matlab desktop. The desktop is a window that contains other windows and a Start

button similar to that used in Window 2000 or XP. The default con�guration of the Matlab

desktop is shown in Figure (1).

Command Window

Workspace

Command History

Current Directory

Figure 1: The default Matlab desktop.

The accessible major tools are,

1. The Command Window

2. The Current Directory

3. The workspace

4. The Edit/Debug Window

The function of these tools will be discussed here.

2

1.2 The Command Window

The Command Window is on the right of default Matlab desktop, whereby a user can enter

commands at the command prompt (�), and they are executed on the spot.

Suppose we want to calculate the area of a circle with a radius of 2:5m. This can be done

by typing,

� area = pi * 2.5 ^ 2

area =

19.6350

Matlab calculates the answer as the command is entered, and stores the answer in a variable.

As in the above example the variable is area. The contents of the variable are displayed in the

Command Window as shown in Figure (2).

Command Window

Figure 2: The Command Window.

1.3 The Current Directory

The current directory shows the contents of the working directory. Whenever you have to

execute any function �le, it is necessary that the executed �le must be in the current directory

of Matlab. For example if you are going to type a lsqcurve�t(@straight,[20 1],n,f) command

in the Command Window, the function �le straight is in the current directory to execute it

without error.

3

1.4 The Edit/Debug Window

An Edit Window is created when you create a new M-�le. You can create a new M-�le with the

File!New!M-�le selection from the desktop menu or with the selection of Start!Desktop

Tools!Editor.

The Edit Window is a programming text editor with the Matlab languages features displayed

in di�erent colours. In an M-�le, comments appear in green, variables and numbers in black,

complete character strings in magenta, incomplete character string in red and language key-

words in blue.

An Edit Window showing an M-�le named calc area.m is depicted in Figure (3). This �le

calculates the area of a circle and displays the result. After saving an M-�le, it can be executed

by typing its name in the Command Window. For the M-�le of Figure (3), the output is,

� calc area

The area of the circle is 19:635

Figure 3: The Matlab Editor as an independent window.

1.5 The Workspace

A workspace contains all the variables and arrays that can be used by the Matlab when a

command, M-�le or function is executing. All commands executed in the Command Window

have a common workspace, a way by which they can all share variables.

A statement such as,

� x=10;

creates a variable named x , stores the value 10 in it and saves it in the Workspace characterized

as a part of the computer memory.

4

The contents of any variable or array may be accessed by typing the appropriate name in the

Command Window, e.g., the contents of string can be found as,

� string

string =

The area of the circle is 19:635

Figure (4) shows the workspace displaying the string content and the Array Editor. The Array

Editor can be accessed by clicking a variable in the workspace Browser, allows to change the

values of a variable.

Workspace

Array Editor

Figure 4: The Workspace and the Array Editor.

A variable can be deleted from the Workspace using the clear command, and it takes the form

as,

� clear x

In order to remove a number of variables in one go, you need to follow the command,

� clear var1 var2 var3

where, var1, var2 and var3 are the names of variables to be deleted. The command clear all

or clear deletes all the variables from the current workspace.

5

2 Basic mathematics

2.1 Arithmetics

It is important to learn how some basic elementary operations are performed in Matlab and

what would be the proper way. In this section we will practice some basic arithmetic operations

being executed in Matlab.

Numbers can be entered directly in the Command Window using the keyboard. For example,

if we type 5 and press Enter, the screen shows,

� 5

ans =

5

The Matlab displays the variable name ans to the resulting quantity if you do not assign a

speci�c name. Suppose we desire to assign the name x to the value 5, so we type,

� x = 5

x =

5

If we terminate the command with the semi-colon,

� x = 5;

the output 5 will not be displayed.

Suppose we wish to add two values to form z1 as the sum, we write,

� z1 = 5 + 3

What do you see? Indeed, 8.

Multiplication of scalars is done by placing (�) between the numbers, hence we can write,

� z2 = 5 � 3;

Similarly division with scalars can be achieved using the forward slash (/),

� z3 = 5 / 3;

However, making use of variables, a better approach is,

� z4 = x / y;

Now take the square of a number, for example, by typing,

� z5 = 5 ^ 2

and verify if you get the correct answer.

The numbers entered so far have all been very simple. What if we have very small or very large

values, for that we make use of the exponential form. For example, a microwave frequency

f = 15GHz (1GHz= 109Hz) can be entered as,

� f = 15e9

6

f =

1:5000e + 010

The square root of a scalar quantity can be written as,

� z6 = sqrt(x);

2.2 Creating vectors and matrices

Matlab is centred around the manipulation of matrices. In fact, the word Matlab is acronym

for MATrix LABoratory. Let us generate a simple list of numbers, called a vector. This vector

comprises all even numbers greater than or equal to 2 and less than 20. We call this vector

evenlist.

� evenlist = [2 4 6 8 10 12 14 16 18]

The vector will be displayed, all entries ranging from 2 to 18 lined up in a row. We have just

created a row vector. A compact way of creating evenlist would be to write,

� evenlist2 = 2:2:18

with the �rst 2 representing the �rst element, the second 2 representing the step size and the

18 showing the last element of the vector. Indeed evenlist and evenlist2 are equal. At some

later stage, if we want to recall what the vector evenlist2 is, we just retype the label.

� evenlist2

How do we make a column vector, where all the entries are arranged vertically instead of

horizontally? We can use the semicolon as a delimiter among rows.

� evenlist3 = [2; 4; 6; 8; 10; 12; 14; 16; 18]

Alternatively, we can avoid keying in the numerical entries by taking the transpose of the row

vector evenlist2.

� evenlist4 = evenlist3';

2.3 Matrix arithmetic

Another simple example illustrates matrix multiplication in MATLAB.

� a = [2 4 6; 1 3 5; 7 9 11];

The above operation generates a matrix of order 3� 3.

2 4 6

1 3 5

7 9 11

 : (1)

7

If we desire to know the size of matrix a, we type,

� size(a)

Type in the command,

� a ^ 2;

This performs the product of the matrices as a a and the resulting matrix is,

 50 74 98

40 58 76

100 154 208

 : (2)

Now perform the following operation on the same matrix,

� a. ^ 2

This operation just takes the square of each entry as shown,

 4 19 36

1 9 25

49 81 121

 : (3)

By typing a' in the command window, we get the transpose of the generated matrix a as,

2 1 7

4 3 9

6 5 11

 : (4)

The inverse of a matrix a is determined by the simple command,

� c = inv(a);

To understand how MATLAB interprets the forward slash / and the backward slash n, we try
some simple commands.

By typing,

� a=4/2

We obtain the answer 2, the result of a division operation. That is, the number on the left

hand side of the forward slash is being divided by the number on the right hand side. On the

other hand, if we type,

� b=4n2
The answer is 0.5, which clearly indicates that the number on the right hand side is being

divided by the number on the left hand side.

8

2.4 Extracting Elements from Matrices

Now suppose, we wish to select some entries from a generated row or column vector or from

matrices. De�ne the row vector,

� a = [2 4 6 8 10 12 14 16 18 20]

We want to extract the entries from column 3 to 7. We write,

� b = a(3:7);

The colon operator will extract the entries from column 3 to 7, thus giving us the output,

� b = [6 8 10 12 14]

Similar procedure can be repeated with a column vector.

We de�ne a matrix by,

� a = [5 8 9; 2 4 6; 1 3 5]

5 8 9

2 4 6

1 3 5

 : (5)

The order of the matrix a is 3� 3. Starting from the easiest concept of selecting one single

entry from a matrix, we will move on to select the whole row or column of that matrix.

Suppose we want to select the entry 4 in the above matrix. We look at the position of that

speci�ed entry inside the matrix. The element is located in the second row and second column

of the matrix.

� b =a(2,2)

This command takes the value from second row and second column of a and saves it in b.

The displayed output is 4.

To select a complete row or column of any matrix we have to use the colon operator, \:"

which means that all entries of that speci�ed row or column will be selected. For example,

� a(2,:)

displays all the entries of the second row of the matrix, and

� a(:,2)

displays all the entries in the second column of the matrix a.

If we write d=a(:,:) in the command window, we get the complete matrix again, i.e., we have

selected all the rows and all the columns.

9

3 Data manipulation

3.1 Introduction to `for' Loops

For loops are very powerful when we want to continuously update elements of any vector.

The typical structure of a for loop is

for (condition)

statements

end

Now de�ne a row vector,

� a = [1 2 3 4 5 6 7 8 9 10]

A row vector stores information in the following way,

 a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) a(10)

1 2 3 4 5 6 7 8 9 10

If we now want to add +1 to all the elements of a, we can write a for loop,

� for k = 1:10

� a(k) = a(k) + 1;

� end

Matlab now updates every element of a by +1. The new array will look like,

 a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) a(10)

2 3 4 5 6 7 8 9 10 11

Note that a for statement needs an accompanying end statement marking the end of the

statements that are being executed.

4 Exercises

Q 1. Suppose that u = 1 and v = 3. Evaluate the following expressions using Matlab.

(a) 4u
3v

(b) 2v�2

(u+v)2

10

(c) v3

v3�u3

(d) 4
3
�v 2

(e)
p
13� v 2

(f) �1:6� 10�19 � �3

Q 2. The distance traveled by a ball falling in the air is given by the equation

x = xo + vot +
1

2
at2:

Use Matlab to evaluate the position of the at time t = 5 s if xo = 10m, vo = 15m/s and

a = 9:81m/s2.

Q 3. Assume that a, b, c and d are de�ned as follows,

a =

(
1 0

2 1

)
; b =

(�1 2

0 1

)
; c =

(
3

2

)
; d = 5:

What is the result of each of the following mathematical operations?

(a) a + b

(b) a � b

(c) a � c

(d) a: � d

(e) a: � b

(f) a�1b�1

Q 4. Answer the following questions for the array shown below. Show command typed into

Matlab.

c =

1.1 �3.2 3.4 0.6

0.6 1.1 �0.6 3.1

1.3 0.6 5.5 0.0

 :

(a) What is the size of c?

(b) What is the value of c(2; 3)?

(c) List the subscripts of all elements containing the value 0:6.

(d) How do you access all the elements of second row?

11

(e) Determine c(1 : 2; 2 : end), c(4 : end), c(1 : 2; 2 : 4), and c([1 3]; 2). Brie
y describe

your results.

Q 5. A certain physical system has three unknown variables, x1, x2 and x3, that can be

described by the following linear equations:

x1 + 2x2 � x3 = �8
�x1 + x2 + 3x3 = 7

3x1 + 2x2 + x3 = 4

Solve for the three unknowns using matrix algebra. (Hint: Use Ax = b).

Q 6. Use for loop to calculate squares, square roots and cube roots of all integers between

1 and 10.

5 Graphs and plotting

Graphs are extremely important in experimental physics. There are three important uses of

graphs [1].

� First, with the help of graphs we can easily determine slopes and intercepts.

� Second, they act as visual aids indicating how one quantity varies when the other is

changed, often revealing subtle relationships. These visual patterns also tell us if there

exist conditions under which simple (linear) relationships break down or sudden transi-

tions take place.

� Third, graphs help compare theoretical predictions with experimentally observed data.

It is customary to plot the independent variable (the \cause") on the horizontal axis and the

dependent variable (the \e�ect") on the vertical axis. In Matlab, the data for the independent

and dependent variables are typed in as vectors.

5.1 Introduction to plotting

Matlab has the capability to generate plots of many types, including linear plots, line plots, log-

arithmic plots on both scales, logarithmic plots on one scale, bar graphs and three-dimensional

plots. In order to achieve a two-dimensional plot, we need to create two vectors containing

the x and y values and use the plot function.

Let's consider an example of a stretched string �xed at one end to a rigid support, is strung

over a pulley and a weight of 1:2 kg is attached at the other end. The sting can be set

under vibrations using a mechanical oscillator (woofer) connected to the signal generator.

12

The relation of angular velocity (!) with the wave vector (k) is called the dispersion relation

and given by,

!(k) =

√
T

�
� k = n

√
T

�
� �

L
; (6)

where L (1:5m) is the e�ective length between the wedge and woofer and n is the number of

mode. The experiment is to sweep the signal generator frequency, and note down frequencies

at which the resonance occurs. The data obtained is given in Table (1),

Resonance mode 1 2 3 4 5

Frequency (Hz) 20:82 41:82 61:32 82:32 104:1

Table 1: Relationship between frequency and resonance modes.

Now let's plot frequency as a function of number of mode, keeping frequency on the vertical

and number of mode on the horizontal axis.

The best way to perform the task is to create a row vector containing all values of the

independent variable at which points are to be determined. This can be done by typing the

number of modes, then enclosing the brackets to form a vector.

� n=[1 2 3 4 5];

We can also write it as,

� n=[1:5];

Next, we de�ne a row vector for the dependent variable.

� f=[20.82 41.82 61.32 82.32 104.1];

The general command for a linear plot is,

� plot(n,f)

where n is the horizontal variable and f is the vertical variable. Note that no semicolon at the

end of the command.

If we will enter another plot command, the previous plot is omitted and the new one is

displayed. So in order to avoid this inconvenience, we will prefer to open a new plot window

each time we plot a function.

A new plot window can be opened using the �gure command,

� �gure;plot(n,f)

Usually the desired commands for most of �gures are xlabel, ylabel and title, their names

are self explanatory. First we enter the xlabel command,

� xlabel(`Resonance mode (n)')

Note that the desired quantity is enclosed by (`'). Next, we type the ylabel command,

13

� ylabel(`Frequency (Hz))')

Same as the title command is entered as,

� title('Dispersion relation for a bare string')

The resulting graph is a solid line joining the individual points as depicted in Figure (5a). The

data points can be highlighted using the symbol 'o', ,'+', '�' etc. The colour can also be

adjusted. Suppose we want to plot a solid red line with data points circles, for that we need

to type the command,

� �gure;plot(n,f,'r-o')

Furthermore, if it is required to display the data points only, suppressing the line that connects

between these points, we type,

� �gure;plot(n,f,'ro')

(a) (b)

(c)

Figure 5: (a) Output from �gure; plot(n,f); a solid jagged line connects the data points;

(b) output from �gure; plot(n,f,`r-o'); a solid red line connects the data points that are now

highlighted; (c) output from �gure; plot(n,f,`ro'); showing just the data points.

This latter plot, shown in Fig (1c) in fact, represents a more justi�able picture of the exper-

14

imental data. This is because the lines drawn in (a) and (b) represent more than what the

data warrants: the lines show that the frequency and the resonance mode have some kind of

jagged relationship, something that is highly likely. A more reasonable prediction is that the

relationship is a straight line. In the next section, we will discuss how to draw one such line,

using the procedure of least squares curve �tting.

5.2 Multiple Plots

It is also possible to plot multiple curves on the same �gure. This is a highly useful feature as

you will soon realize. Suppose we wish to plot graphs of the following functions,

y = 2cos(x); and (7)

y = 2sin(x): (8)

for the range of x 2 [0; 4�].

Let's de�ne the input vectors,

� x=0:0.1:4*pi;

� y=2*cos(x);

� y1=2*sin(x);

The cosine function can be plotted by using the command,

� �gure; plot(x,y,`r-d')

where we have used "r-d" for red line with data points in diamond symbol. The output is

shown in the Figure (6 a).

The sine function is plotted as,

� �gure; plot(x,y1,`b-*')

Here we have used \b-*" to plot blue line with data set in star shape as depicted in Figure

(6 b)

To plot both the graphs simultaneously, one on top of another, we will use the hold on

command,

� �gure; plot(x,y,`r-d')

� hold on

� plot(x,y1,`b-*')

The result is shown is Figure (6 c).

15

(a) (b)

(c)

Figure 6: (a) Graph of y = 2cos(x), (b) y1 = 2sin(x), and (c) Overlaid both plots.

5.3 Resolution of the Graph

Suppose we have a sine curve,

sin (t); (9)

sampled at interval of 1 s for a duration of 10 s, it means there are eleven data points contained

within the sampled duration. We know from experience that a plot of the sine function should

be smooth, unlike the irregular curve shown. Why is this discrepancy? The reason is that

we have not sampled enough points. Decreasing the sampling interval to 0:1 s and hence,

increasing the number of samples to 101, we recover a smooth sine curve, shown in Figure

(7 b). These plots have been made using the following commands.

� t1=0:1:10;

� x1=sin(t1);

� �gure; plot(t1,x1,`b-s'); (for the sub�gure (a))

� t2=0:.1:10;

16

� x2=sin(t2);

� �gure; plot(t2,x2,`r.'); (for the sub�gure (b))

(a) (b)

(c)

Figure 7: (a) Lower resolution graph, (b)higher resolution graph, (b) the two graphs have

been drawn on top of each other.

These plots can be overlaid one on top of each other using the command,

� �gure; plot(t1,x1,`b-s'); hold on; plot(t2,x2,`r.');

The result is shown in Figure (7 c).

6 Exercises

Q 7. The de
ection of a cantilever beam is the distance its end moves in responce to a

force applied at the end. The following table gives the de
ection x that was produced in a

particular beam by the given applied force f. Find a functional relationship between x and f

and plot the graph.

17

Force f (Pounds) 0 100 200 300 400 500 600 700 800

De
ection x (inches) 0 0:09 0:18 0:28 0:37 0:46 0:55 0:65 0:74

Table 2: An experiment to measure force and de
ection in cantilever beam.

Q 8. The following Matlab statements plot the function y = 2e�0:2x for the range 0 � x �
10.

Q 9. Draw a graph of the function,

y =
sin t

t
(10)

for 0 � t � 10.

Q 10. For the values of x, 0 � 2�, show by drawing a graph that,

sin2 x + cos2 x = 1: (11)

Q 11. Draw a graph of the function,

z = exp(�0:5t) cos(20t � 6) (12)

for 0 � t � 8.

Q 12. Draw a graph of the function,

y = �x exp(�x) (13)

for 0 � x � 10.

Q 13. Suppose the relationship between the dependent variable y and the independent

variable x is given by,

y = ae�x + b (14)

where a and b are constants. Sketch a curve of y versus x using arbitrary values of a and b.

Is it possible to obtain a straight line that represents this functional relationship?

7 Curve Fitting

Linear relationships occur naturally in numerous natural instances and that is why they have

become the scientist's favourite. Linear relationships 1 are direct manifestations of direct

proportionality. If the variables x and y are directly proportional (x / y), an equal increase

in x always results in an equal increase in y . Be it the extension of a spring when loaded

with masses, the acceleration of an object as it experiences a force or the magnetic �eld that

winds around a current carrying conductor, linear relationships are ubiquitous. When these

linear functions are drawn on paper (or on the computer screen), they become straight lines.

1F = ma

(Newton's law)

F = �kx

(Hooke's law)

B = �0NI

(Ampere's law)

18

7.1 Least Squares Curve Fitting of Linear Data

Suppose we have a data set of Table (1). The graph between frequency and the resonance

mode is shown in Figure (8). Can we draw a straight line through these points, not necessarily

touching them? What could be the signi�cance of such a line?

1 1.5 2 2.5 3 3.5 4 4.5 5
20

30

40

50

60

70

80

90

100

110

F
re

qu
en

cy
 (

H
z)

Resonance mode (n)

Figure 8: Data points from vibrations on a string and resonance.

y = mx + c

y
i

x
i

 mxi + c

origin

d
i

Figure 9: Setting for the least squares best �t.

Consider Figure 9 where a straight line has been drawn around a set of experimentally measured

data points (xi ; yi). In this example we have N = 7 pairs of measurements. The line is

represented by the equation,

y = mx + c (15)

where m is the slope and c is the intercept. Of the many lines that can be drawn, this

particular line has a special property that we now investigate. If the reading along the abscissa

(x axis) is xi , the corresponding measurement along the ordinate (y axis) is yi , but the line

we have just drawn takes up the value, mxi + c instead, which in general, is di�erent from yi .

This di�erence

di = yi �mxi � c (16)

19

is called the residual or deviation. The special line we have drawn has the property that it

minimizes the sum of the squares of the deviations,

S = �N
i=1d

2
i = �N

i=1(yi �mxi � c)2; (17)

and hence the name least squares curve �t. If the di 's are considered to be the errors, the

least squares curve �t is the best �t in the sense that it minimizes the squares of the errors.

Now we will �t the data given in Table 1 to a least squares curve using Matlab. The input

vectors are,

� n=[1 2 3 4 5];

� f=[20.82 41.82 61.32 82.32 104.1];

Our best �t will be of the form,

y=mx+c; (18)

where m is the slope and c is the intercept. The curve �tting procedure determines approxi-

mations to these parameters, m and c .

Instead we use the inbuilt Matlab command lsqcurve�t. We �rst make a new function �le

named straight.m that contains the �tting function. Follow the below mentioned steps to

make a new function �le, also called an \M-�le".

1. From the File menu item, click New and M-�le. A blank text editor opens.

2. Type in the following text in the editor window.

function fout=straight(p,�n)

fout=p(1)*�n+p(2);

end

and save the �le in the current working directory as straight.m.

Let's parse this �le, line by line. The �rst line starts with the label function indicating that

this m-�le is a function �le, or in other words, this �le contains the declaration of a function

named straight that can be called from inside the command window.

The function straight takes in two vector arguments, p and �n. The former is a vector

containing the unknown parameters. In our case p has two elements p(1) and p(2) which are

respectively m and c . The latter �n is the input vector, in our case this is the vector containing

the frequency values. The second line de�nes the �tting function; this is the Matlab way of

writing Equation (18). Finally, the m-�le ends with the statement end.

Once the �tting function has been de�ned, we can �nd the least squares curve 2 using the

command,

� lsqcurve�t(@straight,[21 1],n,f)

2lsqcurve�t requires the optimization toolbox

20

The �rst argument in small bracket references the function straight we have just created.

The second argument is a vector containing initial guesses of the unknown parameters. It will

be easier for Matlab if we could make intelligent guesses of these parameters. The last two

arguments, n and f are the x-axis and y-axis variable names.

After you enter the above mentioned command in the Command Window, Matlab returns the

values of the parameters, m = 20:7060, c = �0:0420. The initial data points and the higher

resolution curve �t are then plotted using the set of commands given below.

� n1=1:0.1:5; (high sampling rate for plotting the �tted curve)

� c�t=20.7060*n1-0.0420;

� �gure; plot(n,f,`ro'); hold on;

� plot(n1,c�t);

The results are shown in Figure ??. The command,

� [x,resnorm]=lsqcurve�t(@sinusoid,[21 1],n,f)

also returns the sum of the squares of the residuals,

N∑
i

d2i (19)

which is a measure of the goodness of the �t.

7.2 Exercise

Q 14. Suppose a rocket is �red into the space from rest. The distance covered (in miles)

by the rocket and the height gained (in miles) is given in the table below,

Distance (miles) 0 1 2 3 4 5 6 7 8 9 10 11 12

Height (miles) 0 0:53 0:75 0:92 1:07 1:20 1:31 1:41 1:51 1:60 1:69 1:77 1:85

Table 3: Height of a rocket versus Distance.

Plot the graph of distance against height and perform curve �tting using the equation,

y = a
p
bx: (20)

Q 15. An object covers a distance d in time t. A measurement of d with respect to t

produces the set of values given in Table 4 [5].

Plot the distance with respect to t. Then plot with respect to t2. If the object was initially

at rest, calculate the acceleration. Use curve �tting.

21

t (s) 1 2 3 4 5 6 7 8

d (m) 0:20 0:43 0:81 1:57 2:43 3:81 4:80 6:39

Table 4: Measurements of distance as a function of time.

Q 16. Biomedical instruments are used to measure many quantities such as body temper-

ature, blood oxygen level, heart rate and so on. Engineers developing these devices often

need a response curve that describes how fast the instrument can make measurements. The

response voltage v can be described by one of these equations,

v(t) = a1 + a2e
�3t=T

v(t) = a1 + a2e
�3t=T + a3te

�3t=T

(21)

where t is the time and T is an unknown constant. The data given in Table 5 gives the

voltage v of a certain device as a function of time. Which of the above functions is a better

description of the data [7]?

t (s) 0 0:3 0:8 1:1 1:6 2:3 3

v (V) 0 0:6 1:28 1:5 1:7 1:75 1:8

Table 5: Response of a biomedical instrument switched on at time t = 0.

Q 17. In an RC series circuit, a parallel plate capacitor having capacitance C charges

through a resistor R. During the charging of capacitor, charge Q starts to accumulate on the

plates of the capacitor. The expression for growth of charge V is given by,

V = Vo(1� exp (�t=�)) (22)

where the time constant � = RC. Fit the given data in Table 7 to the equation for the voltage

increase and �nd the value of � .

t (s) 0 3 6 9 12 15 18 21 24 27 30

V (V) 0 6:55 10 13 14:5 15 16 16:2 16:3 16:5 16:55

Table 6: Charging pattern for a capacitor in an RC circuit.

Q 18. When a constant voltage was applied to a certain motor initially at rest, its rotational

speed S(t) versus time was measured. The table given below shows the values of speed against

time.

Time (s) 1 2 3 4 5 6 7 8 10

Speed (rpm) 1210 1866 2301 2564 2724 2881 2879 2915 3010

Table 7: Motor speed when it is given a push.

Try to �t the given data with the function given below. Calculate the constants b and c.

S(t) = b(1� ect) (23)

22

Q 19. The yield stress of many metals, �y , varies with the size of the grains. Often, the

relationship between the grain size, d, and the yield stress is modelled with the Hall-Petch

equation,

�y = �0 + kd�1=2 (24)

d (mm) 0:006 0:011 0:017 0:025 0:039 0:060 0:081 0:105

�y (MPa) 334 276 249 235 216 197 194 182

Table 8: Measurement of
ow velocity.

Determine the constants and best �t the data points.

8 Appendix

A Linear Relationships

Figure 10(a) is a reproduction of the data points as given in Table (9), taken from the

Millikan's experiment [4]. However, in this graph we have also drawn two straight lines.

Why straight lines? The straight lines we have drawn in Figure 10(a) represent a kind of

Frequency (Hz) 0:5488 0:6914 0:7413 0:8219 0:9597 1:1834

Stopping voltage (Volts) - 2:1 - 1:524 - 1:367 - :9478 - :3718 :3720

Table 9: Millikan's readings for the stopping voltage as a function of frequency of the incident

length; results extracted from [4].

interpolation. In the real experiment, we measure the variables, (xi ; yi). In our case these

are frequency and stopping voltage. In a set of measurements, we have six pairs of data

points (x1; y1); (x2; y2); : : : ; (x6; y6). What if we want to determine the stopping voltage for a

frequency that was not used by Millikan? We could either repeat his experiment with a light

source with the desired frequency or estimate using available data. In the latter case, we draw

a straight line around the available measurements (xi ; yi). This line negotiates data points not

available to the experimenter.

But what straight line do we actually draw? This is a matter of choice. For example, we have

drawn two lines in the Figure. The light colored line takes the �rst and the last data points

as reference and connects these points; whereas the dark colored line connects the mean (or

the centre of gravity of the data) to the end point. Both lines are di�erent and at the outset,

are equally suitable for de�ning the linear relationship between the variables of interest.

Let's brie
y digress to see how we plotted, say, the red line. To plot a line, we need an

equation for the line. Given two points (x1; y1) and (x6; y6), a straight line through these will

be given by,
y � y1
y6 � y1

=
x � x1
x6 � x1

; (25)

23

5 6 7 8 9 10 11 12

x 10
14

5 5..5 6 6..5 7 7..5 8 8..5 9
f / Hz

0.5

0

-0.5

-1

-1.5

-2

-2.5

V
s

/ V

V
s

/ V

f / Hz

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

x 10
14

Figure 10: (a) Data points from Millikan's experiment [4] with two possible lines de�ning the

functional relationship between f and Vs ; (b) magni�ed region from the graph (a), closely

showing the data points and the straight lines.

and in our case (x1; y1) = (0:5488 � 1015;�2:1) and (x6; y6) = (1:1834 � 1015; 0:3720).

(These numbers have been taken from the row vectors f and vs.) After some basic arithmetic

(also done in Matlab) we arrive at the following equation for the red line,

y = 3:895� 10�15x � 4:2375; (26)

where in our particular case y is the stopping voltage vs and x is the frequency f . Similarly,

the equation for the blue line was computed by �rst calculating the means of the x and y

values. The resulting equation is,

y = 3:895� 10�15x � 4:2018; (27)

yielding a line parallel to the �rst, but displaced upwards. Figure 10(b) shows a close-up of

(a), revealing that these lines do not actually touch a majority of the data points, they just

graze within that region.

The graph has been plotted by using the following set of commands.

� line1=3.895e-15*f-4.2375;

� line2=3.895e-15*f-4.2018;

� �gure; plot(f,vs,`ro',f,line1,`g-',f,line2,`b-');

Q 20. Why do we minimize the sum squares of the residuals �N
i=1d

2
i instead of the sum of

the residuals �N
i=1di?

There is an algorithmic procedure for deriving the equation for the least squares �t. The goal

is to �nd the parameters m and c that minimize the quantity S. The minimum of S can be

determined from elementary calculus. Take the derivative of S, �rst with respect to m and

then with respect to c and put the derivatives equal to zero,

24

@S

@m
= �2

N∑
i=1

xi(yi �mxi � c) = 0 (28)

@S

@c
= �2

N∑
i=1

(yi �mxi � c) = 0: (29)

Rearranging Equation 29, we obtain,

N∑
i=1

(yi �mxi � c) = 0

N∑
i=1

yi �m

N∑
i=1

xi � cN = 0

=) c =

∑N
i yi �m

∑N
i xi

N
; (30)

where

N∑
i

�
N∑
i=1

: (31)

The expression for c is inserted into Equation 28 and after some algebraic manipulation,

N∑
i

xi(yi �mxi � c) = 0

N∑
i

(xiyi)�m

N∑
i

x2i � c

N∑
i

xi = 0

N∑
i

(xiyi)�m

N∑
i

x2i �
[∑N

i yi �m
∑N

i xi
N

] N∑
i

xi = 0

N∑
i

(xiyi)�m

N∑
i

x2i �
1

N

(N∑
i

xi
)(N∑

i

yi
)
+

m

N

(N∑
i

xi
)2

= 0;

(32)

the following expression for m pops out,

m =

∑N
i (xiyi)� 1

N

(∑N
i xi

)(∑N
i yi

)
(∑N

i x2i
)� (∑

N

i
xi

)2
N

: (33)

This cumbersome looking expression can be simpli�ed by noticing that,∑N
i xi
N

= x (34)

is the mean of xi and ∑N
i yi
N

= y (35)

25

is the mean of yi , yielding,

m =

∑N
i (xiyi)� Nx y∑N

i x
2
i � Nx2

: (36)

Furthermore, we can also make use of the following simpli�cations for the numerator and

denominator of the above expression,

N∑
i

(xiyi)� Nx y =

N∑
i

(xiyi)� (

N∑
i

yi)x

=

N∑
i

yi(xi � x); and (37)

N∑
i

x2i � Nx2 =

N∑
i

x2i + Nx2 � 2Nx2

=

N∑
i

x2i + Nx2 � 2x

N∑
i

xi

=

N∑
i

x2i +

N∑
i

x2 � 2x

N∑
i

xi

=

N∑
i

(x2i + x2 � 2xxi)

=

N∑
i

(xi � x)2: (38)

This tedious but fruitful exercise yields the following compact expression for the slope of the

least squares curve �t,

m =

∑N
i yi(xi � x)∑N
i (xi � x)2

: (39)

Substituting the expression for m back into (31) we can determine the intercept,

c = y �mx: (40)

Now we use Matlab to �nd the least squares curve for Millikan's experimental data. The

commands that generate the best �t line are given below.

� numerator=sum(vs.*(f-mean(f)));

� denominator=sum((f-mean(f)).^ 2);

� m=numerator/denominator;

� c=mean(vs)-m*mean(f);

The values are m = 3:9588� 10�15 V/Hz and c = �4:2535 V. We can now easily plot the

least squares �t, shown in Figure 11.

� line3=m*f+c;

� �gure; plot(f,vs,`ro',f,line3,`g-')

26

x 10
14

 -2.5

 -2

 -1.5

 -1

- 0.5

0

0.5

V
s
 /

 V

f / Hz

5 -6 7 8 9 10 11 12

Figure 11: Data points for Millikan's experiment and the least squares curve �t.

The straight line, in fact, has real physical value as well. For example, according to Einstein's

interpretation of the photoelectric e�ect, light is carried in the form of small packets called

photons. Corresponding to the frequency f , the photon carries an energy hf , where h is

Planck's constant. As light is shone on the metal surface, a fraction of the energy called the

work function W < hf is absorbed by the metal surface. The ejected electron carries the

energy di�erence hf �W appearing as its kinetic energy. As the voltage Vs is made more and

more negative, the number of electrons reaching electrode Q diminishes with only the more

energetic electrons being able to overcome the opposing voltage. At the stopping voltage, the

maximum kinetic energy equals the voltage barrier. Given a potential of Vs , the corresponding

potential energy is eVs , e being the charge of the electron. This description allows us to write

the following equation,

eVs = hf �W

Vs =
(h
e

)
f � (W

e

)
: (41)

Comparing this with the least squares �tted equation 15, we immediately recognize that the

slope m is in fact an estimate of h=e and the intercept c is an estimate of W=e. Using

the slope and intercept from the best-�t and a value of e = 1:6022 � 10�19 C, the Planck

constant calculates to h = 6:342� 10�34 J s and the work function to W = 6:814� 10�19 J

or 4:2535 eV.

References

[1] G.L. Squires, Practical Physics, (Cambridge University Press, 1999).

27

[2] http://nsbri.tamu.edu/HumanPhysSpace/focus6/student2.html.

[3] http://zirka.dp.ua/Instructions.htm.

[4] R. Millikan, "A direct photoelectric determination of Planck's \h"", Phys. Rev. 7 355

(1917).

[5] D. W. Preston, "The Art of Experimental Physics", (Cambridge University Press, 1991).

[6] www.maths.dundee.ac.uk/ ftp/na-reports/MatlabNotes.pdf.

[7] W. J. Palm, "Introduction to Matlab 6 for Engineers", (McGraw-Hill Companies, 2000).

[8] The Math Works, "The Language of Technical Computing", (The Math Works, 2000).

[9] Amos Gilat and Vish Subramaniam, "Numerical Methods for Engineers and Scientists",

(Wiley Companies, 2007).

28

