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Figure 3.3 Emission from a
glowing solid. Note that the
amount of radiation emitted
(the area under the curve) in-
creases rapidly with increasing
temperature.

Blackbody

should be frequently repolished” to ensure reliable operation of the spark.2
Apparently this result was initially quite mysterious to Hertz. In an effort to re-
solve the mystery, he later investigated this side effect and concluded that it
was the ultraviolet light from the initial spark acting on a clean metal surface
that caused current to flow more freely between the poles of the spark gap. In
the process of verifying the electromagnetic wave theory of light, Hertz had
discovered the photoelectric effect, a phenomenon that would undermine the
priority of the wave theory of light and establish the particle theory of light on
an equal footing.

3.2 BLACKBODY RADIATION

The tremendous success of Maxwell’s theory of light emission immediately led
to attempts to apply it to a longstanding puzzle about radiation—the so-
called “blackbody” problem. The problem is to predict the radiation intensity
at a given wavelength emitted by a hot glowing solid at a specific temperature.
Instead of launching immediately into Planck’s solution of this problem, let
us develop a feeling for its importance to classical physics by a quick review
of'its history.

Thomas Wedgwood, Charles Darwin’s relative and a renowned maker of
china, seems to have been the first to note the universal character of all
heated objects. In 1792, he observed that all the objects in his ovens, regard-
less of their chemical nature, size, or shape, became red at the same tempera-
ture. This crude observation was sharpened considerably by the advancing
state of spectroscopy, so that by the mid-1800s it was known that glowing solids
emit continuous spectra rather than the bands or lines emitted by heated
gases. (See Fig. 3.3.) In 1859, Gustav Kirchhoff proved a theorem as important
as his circuit loop theorem when he showed by arguments based on thermody-
namics that for any body in thermal equilibrium with radiation® the emitted
power is proportional to the power absorbed. More specifically,

og=JU ) Ay (3.1)

where eris the power emitted per unit area per unit frequency by a particular
heated object, Asis the absorption power (fraction of the incident power ab-
sorbed per unit area per unit frequency by the heated object), and J(f, T) isa
universal function (the same for all bodies) that depends only on f, the light
frequency, and T, the absolute temperature of the body. A blackbody is defined
as an object that absorbs all the electromagnetic radiation falling on it and
consequently appears black. It has A,=1 for all frequencies and so Kirch-
hoff’s theorem for a blackbody becomes

= J(LT) (5.2)

2H. Hertz, Ann. Physik (Leipzig), 33:983, 1887.

3An example of a body in equilibrium with radiation would be an oven with closed walls at a fixed

temperature and the radiation within the oven cavity. To say that radiation is in thermal equilib-
rium with the oven walls means that the radiation has exchanged energy with the walls many
times and is homogeneous, isotropic, and unpolarized. In fact, thermal equilibrium of radiation
within a cavity can be considered to be quite similar to the thermal equilibrium of a fluid within a
container held at constant temperature—both will cause a thermometer in the center of the cav-
ity to achieve a final stationary temperature equal to that of the container.
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3.2

Equation 3.2 shows that the power emitted per unit area per unit frequency by
a blackbody depends only on temperature and light frequency and not on
the physical and chemical makeup of the blackbody, in agreement with
Wedgwood’s early observation.

Because absorption and emission are connected by Kirchhoff’s theorem, we
see that a blackbody or perfect absorber is also an ideal radiator. In practice, a
small opening in any heated cavity, such as a port in an oven, behaves like a
blackbody because such an opening traps all incident radiation (Fig. 3.4). If
the direction of the radiation is reversed in Figure 3.4, the light emitted by a
small opening is in thermal equilibrium with the walls, because it has been
absorbed and re-emitted many times.

The next important development in the quest to understand the universal
character of the radiation emitted by glowing solids came from the Austrian
physicist Josef Stefan (1835-1893) in 1879. He found experimentally that the
total power per unit area emitted at all frequencies by a hot solid, ey, was
proportional to the fourth power of its absolute temperature. Therefore,
Stefan’s law may be written as

_ — 4

Cloml = j e df= ol (3.3)
0

where ¢4, is the power per unit area emitted at the surface of the blackbody

at all frequencies, e is the power per unit area per unit frequency emitted by

the blackbody, 7 is the absolute temperature of the body, and o is the

Stefan—Boltzmann constant, given by o = 5.67 X 1078 W-m 2K A body

that is not an ideal radiator will obey the same general law but with a coeffi-
cient, a, less than 1:

— 74
ol = acT

(3.4)

Only b years later another impressive confirmation of Maxwell’s electromag-
netic theory of light occurred when Boltzmann derived Stefan’s law from a
combination of thermodynamics and Maxwell’s equations.

EXAMPLE 3.1 Stefan’s Law Applied to the Sun

Estimate the surface temperature of the Sun from
the following information. The Sun’s radius is given
by Ry = 7.0 X 108 m. The average Earth-Sun distance
is R=1.5 % 10" m. The power per unit area (at all fre- or
quencies) from the Sun is measured at the Earth to be

1400 W/m?. Assume that the Sun is a blackbody.

R
ol (Bs) = ol () R2
s
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Figure 3.4 The opening to the
cavity inside a body is a good
approximation of a blackbody.
Light entering the small opening
strikes the far wall, where some
of it is absorbed but some is re-
flected at a random angle. The
light continues to be reflected,
and at each reflection a portion
of the light is absorbed by the
cavity walls. After many reflec-
tions essentially all of the inci-
dent energy is absorbed.

Stefan’s law

ol (Rg). This comes from the conservation of energy:

ronal (15) - 4'”'R§ = erl(RR) " 47R?

2

Using Equation 3.5, we have

Solution For a black body, we take a = 1, so Equation

3.4 gives
Croml(Ry) = oT? (3.5)

where the notation e,,.,1(R;) stands for the total power
per unit area at the surface of the Sun. Because the prob-

|

(1400 W/m?) (1.5 % 101 m)?

ol (R) -R?

]1/4
oR?

lem gives the total power per unit area at the Earth,

£l (R), we need the connection between ¢, (R) and = b800 K

or
1/4
= [ (5.6 % 10-8W/m2- K')(7.0 X 108 m)2]
5
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Spectral energy density of a
blackbody

As can be seen in Figure 3.3, (he wavelength marking the maximum power
emission of a blackbody, A,y shifts toward shorter wavelengths as the black-
body gets hotter. This agrees with Wedgwood’s general observation that
objects in his kiln progressed from dull red to orange to white in color as
the temperature was raised. This simple effect of Ay, = 77! was not
definitely established, however, until about 20 years after Kirchhoft’s
seminal paper had started the search to find the form of the universal
function f(f, T). In 1893, Wilhelm Wien proposed a general form for
the blackbody distribution law J(f, T) that gave the correct experimental
behavior of Ay, with temperature. This law is called Wien's displacement law
and may be written

AT = 2.898 X 1073 m-K (3.6)

where Ap,y is the wavelength in meters corresponding to the blackbody’s
maximum intensity and 7" is the absolute temperature of the surface of
the object emitting the radiation. Assuming that the peak sensitivity of
the human eyve (which occurs at about 500 nm—blue-green light) coin-
cides with A, for the Sun (a blackbody), we can check the consistency
of Wien’s displacement law with Stefan’s law by recalculating the Sun’s
surface temperature:

- 2898 X 1073 m K
500 % 1079 m

= 5800 K

Thus we have good agreement between measurements made at all wave-
lengths (Example 3.1) and at the maximum-intensity wavelength.

Exercise 1 How convenient that the Sun’s emission peak is at the same wavelength as
our eyes’ sensitivity peak! Can you account for this?

So far, the power radiated per unit area per unit frequency by the black-
body, J( f, T) has been discussed. However, it is more convenient to consider
the spectral energy density, or energy per unil volume per unil frequency of the radi-
ation within the blackbody cavity, u( f. T). For light in equilibrium with the walls,
the power emitted per square centimeter of opening is simply proportional to
the energy density of the light in the cavity. Because the cavity radiation is
isotropic and unpolarized, one can average over direction to show that the
constant of proportionality between J( /. T) and u(f, T') is ¢/4, where ¢ is the
speed of light. Therefore,

JULT) = u(f. T)e/4 (3.7)

An important guess as to the form of the universal function u(f T) was
made in 1893 by Wien and had the form

u( f, T)=Af3 BT (3.8)

where A and B are constants. This result was known as Wien’s exponential law;
it resembles and was loosely based on Maxwell’s velocity distribution for gas
molecules. Within a year the great German spectroscopist Friedrich Paschen
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Figure 3.5 Discrepancy between Wien's law and experimental data for a blackbody
at 1500 K.

had confirmed Wien’s guess by working in the then difficult infrared range of
1 to 4 wm and at temperatures of 400 to 1600 K.*

As can be seen in Figure 3.5, Paschen had made most of his measurements
in the maximum energy region of a body heated to 1500 K and had found
good agreement with Wien’s exponential law. In 1900, however, Lummer and
Pringsheim extended the measurements to 18 um, and Rubens and Kurlbaum
went even farther—to 60 pwm. Both teams concluded that Wien’s law failed
in this region (see Fig. 3.5). The experimental setup used by Rubens and
Kurlbaum is shown in Figure 3.6. It is interesting to note that these historic

e

Figure 3.6 Apparatus for measuring blackbody radiation at a single wavelength in
the far infrared region. The experimental technique that disproved Wien’s law and
was so crucial to the discovery of the quantum theory was the method of residual
rays (Restrahlen). In this technique, one isolates a narrow band of far infrared radia-
tion by causing white light to undergo multiple reflections from alkalide halide crys-
tals (P,—P,). Because each alkali halide has a maximum reflection at a characteristic
wavelength, quite pure bands of far infrared radiation may be obtained with
repeated reflections. These pure bands can then be directed onto a thermopile (7))
to measure intensity. E is a thermocouple used to measure the temperature of the
blackbody oven, K.

“We should point out the great difficulty in making blackbody radiation measurements and the
singular advances made by German spectroscopists in the crucial areas of blackbody sources, sen-
sitive detectors, and techniques for operating far into the infrared region. In fact, it is dubious
whether Planck would have found the correct blackbody law as quickly without his close associa-
tion with the experimentalists at the Physikalisch Technische Reichsanstalt of Berlin (a sort of
German National Bureau of Standards) —Otto Lummer, Ernst Pringsheim, Heinrich Rubens,
and Ferdinand Kurlbaum.
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Figure 3.7 Comparison of theoretical and experimental blackbody emission curves at
51.2 pm and over the temperature range of —188° to 1500°C. The title of this modified
figure is “Residual Rays from Rocksalt.” Berechnet nach means “calculated according to,”
and beobachtet means “observed.” The vertical axis is emission intensity in arbitrary

units. (From H. Rubens and S. Kurlbauwm, Ann. Physik, 4:649, 1901.)

experiments involved the measurement of blackbody radiation intensity at
a fixed wavelength and variable temperature. Typical results measured at
A = 51.2 pm and over the temperature range of —200° to +1500°C are shown
in Figure 3.7, from the paper by Rubens and Kurlbaum.

Enter Planck

On a Sunday evening early in October of 1900, Max Planck discovered the fa-
mous blackbody formula, which truly ushered in the quantum theory. Planck’s
proximity to the Reichsanstalt experimentalists was extremely important for
his discovery—earlier in the day he had heard from Rubens that his latest
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measurements showed that u(/f, T), the spectral energy density, was propor-
tional to T for long wavelengths or low frequency. Planck knew that Wien’s law
agreed well with the data at high frequency and indeed had been working
hard for several years to derive Wien’s exponential law from the principles of
statistical mechanics and Maxwell’s laws. Interpolating between the two limit-
ing forms (Wien’s exponential law and an energy density proportional to tem-
perature), he immediately found a general formula, which he sent to Rubens,
on a postcard, the same evening. I1is formula was®

. Sahf? 1
u(f, 1) = 3 (‘,lif/kBT_ 1 )

where £ is Planck’s constant = 6.626 X 107* J-s and kp is Boltzmann’s
constant = 1.380 X 1072 J/K. We can see that Equation 3.9 has the correct
limiting behavior at high and low frequencies with the help of a few approxi-
mations. At high frequencies, where of/kpT >=> 1,

(3.9)

1

- = 7 MWRT
AkeT — | €

so that

3 3
Shf ( 1 )m 811"/;5[ o kT

u(f, T) = 3 A kT — | -

and we recover Wien's exponential law, Equation 3.8. At low frequencies,
where hf/kpT << 1,

1 B 1 Y
AT T L
}RB[

and

Sahf> ( 1 )m Smrf?

u( . T) = 3 T ] 3 kpT

This result shows that the spectral energy density is proportional to T'in the
low-frequency or so-called classical region, as Rubens had found.

We should emphasize that Planck’s work entailed much more than clever
mathematical manipulation. For more than six years Planck (Fig. 3.8) labored to
find a rigorous derivation of the blackbody distribution curve. He was driven, in
his own words, by the fact that the emission problem “represents something
absolute, and since I had always regarded the search for the absolute as the lofti-
est goal of all scientific activity, I eagerly set to work.” This work was to occupy
most of his life as he strove to give his formula an ever deeper physical interpreta-
tion and to reconcile discrete quantum energies with classical theory.

- G [ 1

“Planck originally published his formula as u(A, T) = )l_l’ (m), where ) = 8arch and
Cs = he/ky. He then found best-fit values to the experimental data for ¢; and €y and evaluated
h=6.55% 107 J-sand ky = Ny/R = 1.345 ¥ 102 J/K. As R, the universal gas constant, was
fairly well known at the time, this technique also resulted in another method for finding Ny,
Avogadro’s number.
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Figure 3.8 Max Planck (1858-
1947). The work leading to the
“lucky” blackbody radiation for-
mula was described by Planck in

his Nobel prize acceptance
speech (1920): “But even if the
radiation formula proved to be
perfectly correct, it would after
all have been only an interpola-
tion formula found by lucky
guess-work and thus, would have
left us rather unsatisfied. I there-
fore strived from the day of its
discovery, to give it a real physi-
cal interpretation and this led
me to consider the relations be-
tween entropy and probability
according to Boltzmann’s ideas.
After some weeks of the most in-
tense work of my life, light be-
gan to appear to me and unex-
pected views revealed themselves
in the distance.” (AIP Niels Bohr
Library, W. k. Meggers Collection)
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The Quantum of Energy

Planck’s original theoretical justification of Equation 3.9 is rather abstract
because it involves arguments based on entropy, statistical mechanics, and several
theorems proved earlier by Planck concerning matter and radiation in equilib-
rium.® We shall give arguments that are easier to visualize physically yet attempt
to convey the spirit and revolutionary impact of Planck’s original work.

Planck was convinced that blackbody radiation was produced by vibrating
submicroscopic electric charges, which he called resonators. He assumed that
the walls of a glowing cavity were composed of literally billions of these
resonators (whose exact nature was unknown at the time). all vibrating at
different frequencies. Hence, according to Maxwell, each oscillator should
emit radiation with a frequency corresponding to its vibration frequency. Also
according to classical Maxwellian theory, an oscillator of frequency f
could have any value of energy and could change its amplitude continu-
ously as it radiated any fraction of its energy. This is where Planck made
his revolutionary proposal. To secure agreement with experiment, Planck
had to assume that the total energy of a resonator with mechanical

frequency f could only be an integral multiple of hf or
Eresomaor = nhf  m=1,2,3, ... (3.10)

where h is a fundamental constant of quantum physics, i = 6.626 X 10_34_] .5,
known as Planck’s constant. In addition, he concluded that emission of radiation
of frequency foccurred when a resonator dropped to the next lowest energy
state. Thus the vesonator can change its energy only by the difference A according to

AE= If (3.11)

That is, it cannot lose just any amount of its total energy, but only a finite amount, hf,
the so-called quantum of energy. Figure 3.9 shows the quantized energy levels and
allowed transitions proposed by Planck.
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Figure 3.9 Allowed energy levels according to Planck’s original hypothesis for an
oscillator with frequency f. Allowed transitions are indicated by the double-headed arrows.

SM. Planck, Ann. Physik, 4:553, 1901.
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