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In statistics, events can be classified either as certain or random. Events whose outcomes
can be predicted definitely, such as the boiling of a substance at its boiling point, are
certain events. However, in experimental physics, we often deal with random events,
i.e., where we can only predict the outcome probabilities e.g., the tossing of a fair coin
or a dice are random events. Poisson statistics arise from the counting of random, rare
statistically independent processes, examples of which abound in nature. One of the main
tasks of this experiment is to statistically verify that radioactivity its statistics are best
described by a Poisson distribution.

KEYWORDS

Radioactivity · Background radiation · Poisson distribution · GM tube and radiation
detector.

APPARATUS

Gamma source (activity = 10.1 µCi) · Geiger Counter · Geiger Muller Tube · Safety
gloves for handling lead.

1 Conceptual Objectives

In this experiment, we will,

1. learn about the Poisson distribution,

2. learn the safe handling of radioactive material,

3. learn about the random statistical nature of radioactivity, and
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4. practice mathematical analysis of data, and perform comparisons of experimental
data with theoretical predictions.

2 Theoretical Introduction

2.1 The Poisson distribution

An important model for predicting the outcome of random, independent events is the
Poisson distribution, named after S. D. Poisson who first proposed it in 1837. Experi-
ments based on observations of rare events during a given unit of time or region of space
are called Poisson experiments. The unit of time may be a minute, an hour, a day or
a month, while the region of space might be a length, area or volume. Some examples
of Poisson experiments are the number of calls received during a fixed time interval, the
number of typing errors on a page, the number of accidents at a busy crossing per month,
and the number of breakdowns or failures of a piece of equipment during a specified time
interval.

The probability density function of the Poisson random variable X represents the number
of occurrences of a particular event in a specified interval, and is given by

P (x, µ) =
µxe−µ

x!
, x = 0, 1, 2 . . . (1)

where µ represents the mean number of occurrences of the event within a specified interval,
e = 2.71828 and x is the number of outcomes occurring in an experiment. For example,
P (x = 1) is the probability that an event occurs once in the specified time interval,
P (x = 2) is the probability that two events occur in the same interval and so on.

The Poisson distribution has its origins in the Binomial distribution, which models the
success of an event x with a given probability p over n measurements, and is given by
the equation:

Pn(x) =
n!

x!(n− x)!
px(1− p)n−x, x = 0, 1, 2 . . . (2)

Fixing the mean rate µ = pn, we can evaluate Pn(x) as n goes to infinity, while p remains
very small, which is true for rare events.
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The second term is 1, the third term simplifies to e−µ while the first term is calculated
as,
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Hence the binomial distribution for large n, reduces to the Poisson distribution,

lim
0→∞

Pr(x) ≈ µxe−µ

x!
. (3)

Q 1. Consider the following series of measurements of the counts per minute from a

detector viewing a 22
11Na source, What is the decay rate and its uncertainty?

Number Counts

1 2201
2 2145
3 2222
4 2160
5 2300

2.2 Radioactivity as a Poisson process

An important property of the Poisson distribution is that the standard deviation is equal
to the square root of the mean value. The poisson distribution can be approached as a
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limiting case of the binomial distribution for large number of occurrences. Experience
shows that the Poisson probability distribution has numerous applications satisfactorily
explaining many natural processes. Radioactivity is a random process in which atomic
decays are independent. This means that the probability of decay in a time interval has
no affect on the probability of decay in any subsequent time interval.

Q 2. This is a challenging, optional question. Show that the mean of a Poisson distri-
bution, Eq.(1) is µ and the standard deviation is also µ

Let us turn to an experiment in which we record counts registered by a Geiger counter in
ten 1− s intervals, and the counts are [2 6 2 3 2 6 2 3 2 1] 2 counts in first 1− s interval,
6 in the second, 2. The mean value of 2.7, the number of counts is 2.7 and the standard
deviation is 1.7.

Counts Frequency

0 0
1 1
2 6
3 2
4 0
5 0
6 2

Table 1: Frequency of counts from background radiation.

The number of successes of an event can be obtained through the frequency distribution.
Table (1) shows a relationship between the number of counts detected and respective
frequencies. The histogram of the data sowing frequency distribution is depicted in the
Figure (1).

Q 3. The number of particles emitted each minute by a radioactive source is recorded
for a period of 10 hours and a total of 1800 counts are registered. During how many
1-minute intervals should we expect to observe [3]

(a) no particles,

(b) 10 particles.

3 Experimental Objectives

The Physlab is authorized by the Pakistan Nuclear Regulatory Authority
(PNRA) for the permissible use of radioactive sources for this experiment.

We will start the experiment with the use of a Geiger-Muller tube, GM counter and data
acquisition script within Matlab, first measuring background radiation. We will then
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Figure 1: A histogram for background radiation, corresponding to Table 1

demonstrate the random nature of radioactive decay by using the gamma source and will
fit our results with the Poisson distribution.

4 Apparatus

The experiment involves the following equipment.

• Geiger Muller tube and counter

• Radioactive source

• Clamp and holders

Photograph for the experimental apparatus is given in Figure (4). Here is a brief descrip-
tion of the important components listed.

4.1 Geiger Muller (GM) tube and counter

The precision Geiger counter manufactured by (Daedalon), takes input from the GM
tube (also from Daedalon), detecting the radiation particles and feeding the signal into
the computer. The GM counter clicks every time a particle is detected. The GM tube
works best when supplied with 900 V. Below this value, its efficiency decreases and we
risk losing our data but remember higher voltage levels can also damage the GM tube.
So do not increase the input voltage beyond 900 V.
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(a) (b)

(c) (d)

Figure 2: The apparatus provided in the experiment. (a) GM counter, (b) GM tube,
(c) Absorbers, Left to Right: Lead sheet, Aluminum sheet and Aluminum foil (d) source
holder.

The GM tube is the sensing element of the Geiger counter that detects a single particle
of ionizing radiation. It consists of a tube filled with a low pressure (0.1 atm) inert gas
(helium, neon or argon). When a radiation beam is incident on it, the gas ionizes creating
ions and electrons. The ions move towards the cathode and electron towards the anode
due to strong electric field created by the electrodes. The tube is schematically shown
in Figure (3). The ions pairs gain sufficient energy to ionize further molecules through
collision, and in this way a short, intense current pulse is produced that is detected by
the counter.

Electrons

Cations

Cathode

Anode

Inert gas atoms
Mica window

Counter

Radioactive rays

Figure 3: The construction and working model of the Geiger Muller tube.
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4.2 Radioactive sources

Some properties and reaction schemes of radioactive sources used in this experiments are
listed in Table (2),

Radiation Source Activity Half life Reaction scheme

Alpha Polonium, 210
84 Po 0.1 µCi 133 days 210

84 Po→206
82 Pb+4

2He

Beta Strontium, 90
38Sr 0.1 µCi 28.6 years 90

38Sr→90
39Y+e− + ν̄

Gamma Cobalt, 60
27Co 10.1 µCi 5.26 years 59

27Co+1
0n→60

27Co→60
28N+e− + γ

Table 2: Important properties of radioactive sources
.

4.3 Lead source holders

The sources will be placed inside the lead source holders and mounted on the metal
clamp holder. Note that gloves should be worn while handling lead, and sources
should not be touched with bare hands. The forceps should be used to hold the
sources at all times. The provided Allen key can be used to loosen or tighten the clamps
in the setup.

You must ask the demonstrator to issue you the sources, which must be safely
returned to him/her after completion of the experiment. Do not leave the
experimental arrangement unattended.

5 Experimental Method

5.1 Background radiation measurement

Q 4. Turn the VOLTAGE ADJUST knob of EN-03 Geiger counter fully counter
clockwise and switch it ON from the POWER button. Press MODE button 5 times so
that LED behind VOLTS blinks, and set the voltage to about 900 V. You should hear
distinct clicks from the counter. First of all you are required to record the background
counts.

Q 5. Familiarize yourself with the downloaded Matlab codes.

• Download the software codes for this experiment, extract and copy them to a di-
rectory of your choice (preferably in drive D: after your registration number i.e. D:
2024001001001)

• By default, the automation script starts collecting data through the default serial
port, with 1 s sample window and 10 minutes session time.
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• All the scripts are fairly commented. You can open each script or use the Matlab
help command to explore a particular script. e.g. help collect data.

• Open Matlab and change the current directory to where you copied the codes. Make
sure you have copied all the script files.

(a)

(b)

(c)

Figure 4: Screenshot of the various components of the PhysLab Geiger Matlab Utility.
(a) Bar graph of the raw counts, (b) histogram, (c) console preview

• Although you can learn advance usage of the included scripts from the help com-
mand, for basic usage enter collect data in the command window and follow the
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on-screen instructions to begin collecting the data. The script asks for the duration
of session and collection window size, and also displays the names of the variables
it uses to save the data. You can use these variables later to plot and analyze the
results.

Q 6. Use Matlab to find, from your data, the mean background count per second, and
the mean background counts per minute. Record this in your notebook. Repeat this
experiment 5-6 times, and take the mean background rate. You need to subtract this
background rate from all the results of the subsequent experiments.

5.2 Investigating the statistical nature of radiation

In this part you will verify that radioactive decay follow the Poisson distribution. You
will use the γ source. You will record counts for a particular time interval. Subsequently,
you will process and analyze your data using MATLAB and do a comparison between
obtained experimental and theoretical results.

PC

Computer

(b)(a)

Absorbing sheets

Lead holder
GM tube

GM counter

Figure 5: Experimental setup: (a) schematic and, (b) assembled views.

You can now collect the radioactive sources from the instructor.

Q 7. Set up the experiment as shown in Figure (5b), but without absorbing sheets.

Q 8. Place the γ-source in the back lead holder using tongs. Ensure that the printed
surface of the γ-source is towards the GM tube. Place the source at a distance of about
2 cm from the GM tube.

Q 9. Enter collect data in the command window and follow the on-screen instruc-
tions to begin collecting the data.

Q 10. Once the session has finished, find the mean value of counts per second (call it
µ) and the standard deviation of the counts per second (call it 5).

Q 11. For a Poisson distribution, one expects s=
√
µ. Is this true for your data?

Q 12. Plot a histogram of the counts per second data. Look up the command hist in
Matlab.
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Q 13. Does this look like a Poisson distribution with mean µ. Use the command
poisspdf in Matlab to verify.

Q 14. Try fitting your histogram from Q14 to a Poisson distribution using the com-
mand histfit in Matlab.

Q 15. Comment on your data.
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Figure 6: Experimental data distribution with overlaid Poisson distribution curves. Time
600 s, d = 2 cm.
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