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In statistics, events can be classi�ed either as certain or random. Events whose outcomes

can be predicted de�nitely, such as the boiling of a substance at its boiling point, are certain

events. However, in experimental physics, we often deal with random events, i.e., where we

can only predict the outcome probabilities e.g., the tossing of a fair coin or a dice are random

events. Poisson statistics arise from the counting of random, rare statistically independent

processes, examples of which abound in nature. One of the main tasks of this experiment is to

statistically verify that radioactivity its statistics are best described by a Poisson distribution.

KEYWORDS
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APPARATUS

Gamma source (activity = 10:1 �Ci) � Geiger Counter � Geiger Muller Tube � Safety gloves for
handling lead.

1 Conceptual Objectives

In this experiment, we will,

1. learn about the Poisson distribution,

2. learn the safe handling of radioactive material,

3. learn about the random statistical nature of radioactivity, and

4. practice mathematical analysis of data, and perform comparisons of experimental data

with theoretical predictions.
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2 Theoretical Introduction

2.1 The Poisson distribution

An important model for predicting the outcome of random, independent events is the Poisson

distribution, named after S. D. Poisson who �rst proposed it in 1837. Experiments based on

observations of rare events during a given unit of time or region of space are called Poisson

experiments. The unit of time may be a minute, an hour, a day or a month, while the region

of space might be a length, area or volume. Some examples of Poisson experiments are the

number of calls received during a �xed time interval, the number of typing errors on a page, the

number of accidents at a busy crossing per month, and the number of breakdowns or failures

of a piece of equipment during a speci�ed time interval.

The probability density function of the Poisson random variable X represents the number of

occurrences of a particular event in a speci�ed interval, and is given by

P (x; �) =
�xe��

x!
; x = 0; 1; 2 : : : (1)

where � represents the mean number of occurrences of the event within a speci�ed interval,

e = 2:71828 and x is the number of outcomes occurring in an experiment. For example,

P (x = 1) is the probability that an event occurs once in the speci�ed time interval, P (x = 2)

is the probability that two events occur in the same interval and so on.

The Poisson distribution has its origins in the Binomial distribution, which models the success

of an event x with a given probability p over n measurements, and is given by the equation:

Pn(x) =
n!

x!(n � x)!
px(1� p)n�x ; x = 0; 1; 2 : : : (2)

Fixing the mean rate � = pn, we can evaluate Pn(x) as n goes to in�nity, while p remains very

small, which is true for rare events.
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The second term is 1, the third term simpli�es to e�� while the �rst term is calculated as,

lim
n!1

[
n!

nx(n � x)!

]
= lim

n!1

n(n � 1)(n � 2) : : : (n � x + 1)(n � x)!

(n � x)!nx
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[(n
n
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n
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n

)
: : :

(n � x + 1

n
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1
(
1� 1

n

)(
1� 2

n

)
: : :

(
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= 1

Hence the binomial distribution for large n, reduces to the Poisson distribution,

lim
0!1

Pr(x) � �xe��

x!
: (3)

Q 1. Consider the following series of measurements of the counts per minute from a detector

viewing a 22

11
Na source, What is the decay rate and its uncertainty?

Number Counts

1 2201

2 2145

3 2222

4 2160

5 2300

2.2 Radioactivity as a Poisson process

An important property of the Poisson distribution is that the standard deviation is equal to

the square root of the mean value. The poisson distribution can be approached as a limiting

case of the binomial distribution for large number of occurrences. Experience shows that the

Poisson probability distribution has numerous applications satisfactorily explaining many natural

processes. Radioactivity is a random process in which atomic decays are independent. This

means that the probability of decay in a time interval has no a�ect on the probability of decay

in any subsequent time interval.

Q 2. This is a challenging, optional question. Show that the mean of a Poisson distribution,

Eq.(1) is � and the standard deviation is also �

Let us turn to an experiment in which we record counts registered by a Geiger counter in ten

1 � s intervals, and the counts are [2 6 2 3 2 6 2 3 2 1] 2 counts in �rst 1 � s interval, 6 in

the second, 2. The mean value of 2:7, the number of counts is 2.7 and the standard deviation

is 1.7.
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Counts Frequency

0 0

1 1

2 6

3 2

4 0

5 0

6 2

Table 1: Frequency of counts from background radiation.

The number of successes of an event can be obtained through the frequency distribution. Table

(1) shows a relationship between the number of counts detected and respective frequencies.

The histogram of the data sowing frequency distribution is depicted in the Figure (1).
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Figure 1: A histogram for background radiation, corresponding to Table 1

Q 3. The number of particles emitted each minute by a radioactive source is recorded for

a period of 10 hours and a total of 1800 counts are registered. During how many 1-minute

intervals should we expect to observe [3]

(a) no particles,

(b) 10 particles.

3 Experimental Objectives

The Physlab is authorized by the Pakistan Nuclear Regulatory Authority (PNRA) for the

permissible use of radioactive sources for this experiment.

4



We will start the experiment with the use of a Geiger-Muller tube, GM counter and data

acquisition software (Geiger), �rst measuring background radiation. We will then demonstrate

the random nature of radioactive decay by using the gamma source and will �t our results with

the Poisson distribution.

4 Apparatus

The experiment involves the following equipment.

� Geiger Muller tube and counter

� Radioactive source

� Clamp and holders

Photograph for the experimental apparatus is given in Figure (4). Here is a brief description

of the important components listed.

(a) (b)

(c) (d)

Figure 2: The apparatus provided in the experiment. (a) GM counter, (b) GM tube, (c)

Absorbers, Left to Right: Lead sheet, Aluminum sheet and Aluminum foil (d) source holder.

4.1 Geiger Muller (GM) tube and counter

The precision Geiger counter manufactured by (Daedalon), takes input from the GM tube (also

from Daedalon), detecting the radiation particles and feeding the signal into the computer.
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The GM counter clicks every time a particle is detected. The GM tube works best when

supplied with 900 V. Below this value, its e�ciency decreases and we risk losing our data but

remember higher voltage levels can also damage the GM tube. So do not increase the input

voltage beyond 900 V.

The GM tube is the sensing element of the Geiger counter that detects a single particle of

ionizing radiation. It consists of a tube �lled with a low pressure (0:1 atm) inert gas (helium,

neon or argon). When a radiation beam is incident on it, the gas ionizes creating ions and

electrons. The ions move towards the cathode and electron towards the anode due to strong

electric �eld created by the electrodes. The tube is schematically shown in Figure (3). The

ions pairs gain su�cient energy to ionize further molecules through collision, and in this way a

short, intense current pulse is produced that is detected by the counter.

Electrons

Cations

Cathode

Anode

Inert gas atoms
Mica window

Counter

Radioactive rays

Figure 3: The construction and working model of the Geiger Muller tube.

4.2 Radioactive sources

Some properties and reaction schemes of radioactive sources used in this experiments are listed

in Table (2),

Radiation Source Activity Half life Reaction scheme

Alpha Polonium, 210

84
Po 0:1 �Ci 133 days 210

84
Po!206

82
Pb+4

2
He

Beta Strontium, 90

38
Sr 0:1 �Ci 28:6 years 90

38
Sr!90

39
Y+e� + ��

Gamma Cobalt, 60

27
Co 10:1 �Ci 5:26 years 59

27
Co+1

0
n !60

27
Co!60

28
N+e� + 


Table 2: Important properties of radioactive sources

.
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4.3 Lead source holders

The sources will be placed inside the lead source holders and mounted on the metal clamp

holder. Note that gloves should be worn while handling lead, and sources should not be

touched with bare hands. The forceps should be used to hold the sources at all times. The

provided Allen key can be used to loosen or tighten the clamps in the setup.

You must ask the demonstrator to issue you the sources, which must be safely returned to

him/her after completion of the experiment. Do not leave the experimental arrangement

unattended.

5 Experimental Method

5.1 Background radiation measurement

Q 4. Turn the VOLTAGE ADJUST knob of EN-03 Geiger counter fully counter clockwise

and switch it ON from the POWER button. PressMODE button 5 times so that LED behind

VOLTS blinks, and set the voltage to about 900 V. You should hear distinct clicks from the

counter. First of all you are required to record the background counts.

Q 5. Familiarize yourself with the Geiger software provided by the manufacturer.

� Open the Geiger 3:1 application by selecting it from the Desktop or Windows menu.

� Go to the Measure menu to change the total experiment time, or the size of the time

interval. The screen shows a bar graph of the data acquired, i.e, a bar whose height shows

counts recorded by the Geiger counter in each time interval (set to 1 s by default).

� Now, click the RUN button. The software shows the counts recorded as vertical bars

during each second as shown in Figure (4a). You can also click the histogram button

to show the histogram generated after each time interval.

� After the data collection is over, go to File ! Export to ASCII File and select the

name and location (your Z drive) where you want the data to be stored. This stores all

the data from the counter in a text �le.

� Make sure you also write down all this information in your lab notebook.

� For processing and analyzing the data, you need to access the data in Matlab by using

the command:

load(`Filename.txt').

Q 6. Use Matlab to �nd, from your data, the mean background count per second, and the

mean background counts per minute. Record this in your notebook. Repeat this experiment

5-6 times, and take the mean background rate. You need to subtract this background rate

from all the results of the subsequent experiments.

7



(a)

(b) (c)

Figure 4: Screenshot of the various components of the Geiger software. (a) Bar graph screen,

(b) histogram mode, (c) measurement menu.

5.2 Investigating the statistical nature of radiation

In this part you will verify that radioactive decay follow the Poisson distribution. You will use

the 
 source. You will record counts for a particular time interval using Geiger software 3:1.

Subsequently, you will process and analyze your data using MATLAB and do a comparison

between obtained experimental and theoretical results.

You can now collect the radioactive sources from the instructor.

Q 7. Set up the experiment as shown in Figure (5b), but without absorbing sheets.

Q 8. Place the 
-source in the back lead holder using tongs. Ensure that the printed surface

of the 
-source is towards the GM tube. Place the source at a distance of about 2 cm from
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PC

Computer

(b)(a)

Absorbing sheets

Lead holder
GM tube

GM counter

Figure 5: Experimental setup: (a) schematic and, (b) assembled views.

the GM tube.

Q 9. Open the Geiger 3:1 software and select a 1 second interval and a total experiment

time of 60 min in the measurement menu. This means that you have data from 3600 intervals

(also called bins) which you will eventually use to build-up the Poisson distribution.

Q 10. Now click RUN. As the program proceeds, you can see a graph resembling a Poisson

distribution developing on the histogram screen.

Q 11. Export your data, e.g, in the �lename (radiation.txt).

Q 12. Now load your data into a variable named (counts) by typing

counts=load(`radiation.txt').

Q 13. Find the mean value of counts per second (call it �) and the standard deviation of

the counts per second (call it 5).

Q 14. For a Poisson distribution, one expects s=
p
�. Is this true for your data?

Q 15. Plot a histogram of the counts per second data. Look up the command hist in

Matlab.

Q 16. Does this look like a Poisson distribution with mean �. Use the command poisspdf

in Matlab to verify.

Q 17. Try �tting your histogram from Q14 to a Poisson distribution using the command

hist�t in Matlab.

Q 18. Comment on your data.
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Figure 6: Experimental data distribution with overlaid Poisson distribution curves. Time 600 s,

d = 2 cm.
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