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Pitfall Prevention 40.1

Expect to Be Challenged

If the discussions of quantum phys-
ics in this and subsequent chapters
seem strange and confusing to you,
it's because your whole life experi-
ence has taken place in the macro-
scopic world, where quantum effects
are not evident.

The opening to a cavity
inside a hollow object is a
good approximation of a
black body: the hole acts as
a perfect absorber.

Figure 40.1 A physical model of a
black body.

Figure 40.2 The glow emanating
from the spaces between these hot

charcoal briquettes is, 1o a close
approximation, blackbody radia-
tion. The color of the light depends
only on the temperawre of the
briquettes.

theory of relativity, the quantum theory requires a modification of our ideas concerning
the physical world.

The first explanation of a phenomenon using quantum theory was introduced by Max
Planck. Many subsequent mathematical developments and interpretations were made
by a number of distinguished physicists, including Einstein, Bohr, de Broglie, Schrodinger,
and Heisenberg. Despite the great success of the quantum theory, Einstein frequently
played the role of its critic, especially with regard to the manner in which the theory was
interpreted.

Because an extensive study of quantum theory is beyond the scope of this book, this

chapter is simply an introduction to its underlying principles.

40.1 Blackbody Radiation and Planck’s Hypothesis

An object at any temperature emits electromagnetic waves in the form of thermal
radiation from its surface as discussed in Section 20.7. The characteristics of this
radiation depend on the temperature and properties of the object’s surface. Careful
study shows that the radiation consists of a continuous distribution of wavelengths
from all portions of the electromagnetic spectrum. If the object is at room temper-
ature, the wavelengths of thermal radiation are mainly in the infrared region and
hence the radiation is not detected by the human eye. As the surface temperature
of the object increases, the object eventually begins to glow visibly red, like the coils
of a toaster. At sufficiently high temperatures, the glowing object appears white, as
in the hot tungsten filament of an incandescent lightbulb.

From a classical viewpoint, thermal radiation originates from accelerated
charged particles in the atoms near the surface of the object; those charged par-
ticles emit radiation much as small antennas do. The thermally agitated particles
can have a distribution of energies, which accounts for the continuous spectrum of
radiation emitted by the object. By the end of the 19th century, however, it became
apparent that the classical theory of thermal radiation was inadequate. The basic
problem was in understanding the observed distribution of wavelengths in the
radiation emitted by a black body. As defined in Section 20.7, a black body is an
ideal system that absorbs all radiation incident on it. The electromagnetic radiation
emitted by the black body is called blackbody radiation.

A good approximation of a black body is a small hole leading to the inside of
a hollow object as shown in Figure 40.1. Any radiation incident on the hole from
outside the cavity enters the hole and is reflected a number of times on the interior
walls of the cavity; hence, the hole acts as a perfect absorber. The nature of the
radiation leaving the cavity through the hole depends only on the temperature of
the cavity walls and not on the material of which the walls are made. The spaces
between lumps of hot charcoal (Fig. 40.2) emit light that is very much like black-
body radiation.

The radiation emitted by oscillators in the cavity walls experiences boundary
conditions. As the radiation reflects from the cavity’s walls, standing electromag-
netic waves are established within the three-dimensional interior of the cavity.
Many standing-wave modes are possible, and the distribution of the energy in the
cavity among these modes determines the wavelength distribution of the radiation
leaving the cavity through the hole.

The wavelength distribution of radiation from cavities was studied experimen-
tally in the late 19th century. Active Figure 40.3 shows how the intensity of black-
body radiation varies with temperature and wavelength. The following two consis-
tent experimental findings were seen as especially significant:
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1. The total power of the emitted radiation increases with temperature. We
discussed this behavior briefly in Chapter 20, where we introduced Stefan’s
law:

P = gAel* (40.1)

where Pis the power in watts radiated at all wavelengths from the surface
of an object, & = 5.670 % 10" * W/m? - K*is the Stefan-Boltzmann constant,
Ais the surface area of the object in square meters, ¢is the emissivity of the
surface, and 7'is the surface temperature in kelvins. For a black body, the
emissivity is e = 1 exactly.

The peak of the wavelength distribution shifts to shorter wavelengths as
the temperature increases. This behavior is described by the following rela-
tionship, called Wien’s displacement law:

e

Apax T= 2.898 X 1077 m - K (40.2)

max

where A, is the wavelength at which the curve peaks and T'is the absolute
temperature of the surface of the object emitting the radiation. The wave-
length at the curve’s peak is inversely proportional to the absolute tempera-
ture; that is, as the temperature increases, the peak is “displaced” to shorter
wavelengths (Active Fig. 40.3).

Wien’s displacement law is consistent with the behavior of the object mentioned
at the beginning of this section. At room temperature, the object does not appear
to glow because the peak is in the infrared region of the electromagnetic spectrum.
At higher temperatures, it glows red because the peak is in the near infrared with
some radiation at the red end of the visible spectrum, and at still higher tempera-
tures, it glows white because the peak is in the visible so that all colors are emitted.

Quick Quiz 40.1 Figure 40.4 shows two stars in the constellation Orion. Betel-
geuse appears to glow red, whereas Rigel looks blue in color. Which star has
a higher surface temperature? (a) Betelgeuse (b) Rigel (c) both the same
(d) impossible to determine

Betelgeuse

R

Figure 40.4 (Quick Quiz 40.1)

Which star is hotter, Betelgeuse

John Chumack/Photo Researchers, Inc.

or Rigel?

A successful theory for blackbody radiation must predict the shape of the curves
in Active Figure 40.3, the temperature dependence expressed in Stefan’s law, and
the shift of the peak with temperature described by Wien's displacement law. Early
attempts to use classical ideas to explain the shapes of the curves in Active Figure
40.3 failed.

Let’s consider one of these early attempts. To describe the distribution of energy
from a black body, we define /(A,T) dA to be the intensity, or power per unit area,

« Stefan's law

<« Wien's displacement law

The 4 000-K curve has a peak
near the visible range. This curve
represents an object that would
glow with a yellowish-white
appearance.

Intensity

~4 000 K
—
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ACTIVE FIGURE 40.3

Intensity of blackbody radiation
versus wavelength at three tem-
peratures, The visible range of
wavelengths is between 0.4 pm and
0.7 wm. At approximately 6 000 K,
the peak is in the center of the vis-
ible wavelengths and the object
appears white.
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Rayleigh-]eans law »

The classical theory
(red-brown curve) shows
intensity growing without
bound for short wavelengths,
unlike the experimental data
(blue curve).

Intensity

Wavelength

Figure 40.5 Comparison of
experimental results and the curve
predicted by the Rayleigh—Jeans law
for the distribution of blackbody
radiation.

Max Planck

German Physicist (1858-1947)

Planck Introduced the concept of “quantum of
actlon” (Planck's constant, h) In an attempt
1o explain the spectral distribution of black-
body radlation, which lald the foundations for
quantum theory. In 1918, he was awarded the
Nobel Prize In Physlics for this discovery of the
quantized nature of energy.
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emitted in the wavelength interval d\. The result of a calculation based on a classi-
cal theory of blackbody radiation known as the Rayleigh-Jeans law is
I\T) = L]:BI (40.3)
A
where ky is Boltzmann’s constant. The black body is modeled as the hole leading
into a cavity (Fig. 40.1), resulting in many modes of oscillation of the eleciromag-
netic field caused by accelerated charges in the cavity walls and the emission of
electromagnetic waves at all wavelengths. In the classical theory used to derive
Equation 40.3, the average energy for each wavelength of the standing-wave modes
is assumed to be proportional to kT, based on the theorem of equipartition of
energy discussed in Section 21.1.

An experimental plot of the blackbody radiation spectrum, together with the
theoretical prediction of the Rayleigh—Jeans law, is shown in Figure 40.5. At long
wavelengths, the Rayleigh—Jeans law is in reasonable agreement with experimental
data, but at short wavelengths, major disagreement is apparent.

As )\ approaches zero, the function f(A,T) given by Equation 40.3 approaches
infinity. Hence, according to classical theory, not only should short wavelengths
predominate in a blackbody spectrum, but also the energy emitted by any black
body should become infinite in the limit of zero wavelength. In contrast to this
prediction, the experimental data plotted in Figure 40.5 show that as A approaches
zero, I(A,T) also approaches zero. This mismatch of theory and experiment was so
disconcerting that scientists called it the ulivavialel calastrophe. (This “catastrophe”™—
infinite energy—occurs as the wavelength approaches zero; the word ulfraviolet was
applied because ultraviolet wavelengths are short.)

In 1900, Max Planck developed a theory of blackbody radiation that leads to an
equation for f(A,T) that is in complete agreement with experimental results at all
wavelengths. Planck assumed the cavity radiation came from atomic oscillators in
the cavity walls in Figure 40.1. Planck made two bold and controversial assumptions
concerning the nature of the oscillators in the cavity walls:

* The energy of an oscillator can have only certain discrefe values E :

E, = nhf (40.4)

where n is a positive integer called a quantum number,! fis the oscillator’s
frequency, and % is a parameter Planck introduced that is now called Planck’s
constant. Because the energy of each oscillator can have only discrete values
given by Equation 40.4, we say the energy is quantized. Each discrete energy
value corresponds to a different quantum state, represented by the quantum
number n. When the oscillator is in the n = 1 quantum state, its energy is Af;
when it is in the n = 2 quantum state, its energy is 2Af; and so on.

The oscillators emit or absorb energy when making a transition from one
quantum state to another. The entire energy difference between the initial
and final states in the transition is emitted or absorbed as a single quantum
of radiation. If the transition is from one state to a lower adjacent state—say,
from the n = 3 state to the n = 2 state—Equation 40.4 shows that the amount
of energy emitted by the oscillator and carried by the quantum of radiation is

E=If (40.5)

An oscillator emits or absorbs energy only when it changes quantum states. If it
remains in one quantum state, no energy is absorbed or emitted. Figure 40.6 is an
energy-level diagram showing the quantized energy levels and allowed transitions
proposed by Planck. This important semigraphical representation is used often in

'A quantum number is generally an integer (although halfinteger quantum numbers can occur) that describes an
allowed state of a system, such as the values of n describing the normal modes of oscillation of a string fixed at both
ends, as discussed in Section 18,3,
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quantum physics.? The vertical axis is linear in energy, and the allowed energy lev-
els are represented as horizontal lines. The quantized system can have only the
energies represented by the horizontal lines.

The key point in Planck’s theory is the radical assumption of quantized energy
states. This development—a clear deviation from classical physics—marked the
birth of the quantum theory.

In the Rayleigh—Jeans model, the average energy associated with a particular
wavelength of standing waves in the cavity is the same for all wavelengths and is
equal to kT Planck used the same classical ideas as in the Rayleigh—Jeans model
to arrive at the energy density as a product of constants and the average energy for
a given wavelength, but the average energy is not given by the equipartition theo-
rem. A wave's average energy is the average energy difference between levels of the
oscillator, weighted according to the probability of the wave being emitted. This weighting
is based on the occupation of higher-energy states as described by the Boltzmann
distribution law, which was discussed in Section 21.5. According to this law, the
probability of a state being occupied is proportional to the factor ¢ ¥ where Eis
the energy of the state.

At low frequencies, the energy levels are close together as on the right in Active
Figure 40.7, and many of the energy states are excited because the Boltzmann factor
¢ EhT s relatively large for these states. Therefore, there are many contributions to
the outgoing radiation, although each contribution has very low energy. Now, con-
sider high-frequency radiation, that is, radiation with short wavelength. To obtain
this radiation, the allowed energies are very far apart as on the left in Active Figure
40.7. The probability of thermal agitation exciting these high energy levels is small
because of the small value of the Boltzmann factor for large values of . At high
frequencies, the low probability of excitation results in very little contribution to
the total energy, even though each quantum is of large energy. This low probability
“turns the curve over” and brings it down to zero again at short wavelengths.

Somewhere between very short and
very long wavelengths, the product of
increasing probability of transitions and
decreasing energy per transition results
in a maximum in the intensity.

Intensity

\ Wavelength \

Atshort wavelengths, there is a
large separation between energy
levels, leading to a low probability
of excited states and few downward
wansitions. The low probability of
transitions leads to low intensity.

At long wavelengths, there is a small
separation hetween energy levels,
leading to a high probability of
excited states and many downward
transitions. The low energy in each
transition leads to low intensity.
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We first saw an energy-level diagram in Section 21.4.
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n Is Again an Integer

In the preceding chapters on optics,
we used the symbol n for the index
of refraction, which was not an inte-
ger. Here we are again using n as
we did in Chapter 18 to indicate the
standing-wave mode on a string or in
an air column. In quantum physics,
n is often used as an integer quan-
tum number to identify a particular
quantum state of a system.

indicate allowed transitions.
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Figure 40.6 Allowed energy levels

for an oscillator with frequency f

ACTIVE FIGURE 40.7

In Planck’s model, the average
energy associated with a given wave-
length is the product of the energy
of a transition and a factor related
to the probability of the transition
occurring.



@ Cengage Learning/Edward L. Dodd, Jr.

1190 CHAPTER 40 | Introduction to Quantum Physics

Planck's wavelength b
distribution function

Planck’s constant

Figure 40.8 An ear thermometer
measures a patient’s temperature by
detecting the intensity of infrared
radiation leaving the eardrum.

Using this approach, Planck generated a theoretical expression for the wave-
length distribution that agreed remarkably well with the experimental curves in
Active Figure 40.3:

27 he?
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This function includes the parameter &, which Planck adjusted so that his curve
matched the experimental data at all wavelengths. The value of this parameter is
found to be independent of the material of which the black body is made and inde-
pendent of the temperature; it is a fundamental constant of nature. The value of &,
Planck’s constant, which was first introduced in Chapter 35, is

h=6.626 % 107] s (40.7)

I(AT) = (40.6)

At long wavelengths, Equation 40.6 reduces to the Rayleigh—Jeans expression,
Equation 40.3 (see Problem 14), and at short wavelengths, it predicts an exponen-
tial decrease in I(A,T) with decreasing wavelength, in agreement with experimental
results.

When Planck presented his theory, most scientists (including Planck!) did not
consider the quantum concept to be realistic. They believed it was a mathematical
trick that happened to predict the correct results. Hence, Planck and others con-
tinued to search for a more “rational” explanation of blackbody radiation. Subse-
quent developments, however, showed that a theory based on the quantum concept
(rather than on classical concepts) had to be used to explain not only blackbody
radiation but also a number of other phenomena at the atomic level.

In 1905, Einstein rederived Planck’s results by assuming the oscillations of the
electromagnetic field were themselves quantized. In other words, he proposed that
quantization is a fundamental property of light and other electromagnetic radia-
tion, which led to the concept of photons as shall be discussed in Section 40.2.
Critical to the success of the quantum or photon theory was the relation between
energy and frequency, which classical theory completely failed to predict.

You may have had your body temperature measured at the doctor’s office by an
ear thermomeler, which can read your temperature very quickly (Fig. 40.8). In a frac-
tion of a second, this type of thermometer measures the amount of infrared radia-
tion emitted by the eardrum. It then converts the amount of radiation into a tem-
perature reading. This thermometer is very sensitive because temperature is raised
to the fourth power in Stefan’s law. Suppose you have a fever 1°C above normal.
Because absolute temperatures are found by adding 273 to Celsius temperatures,
the ratio of your fever temperature to normal body temperature of 37°C is

Troer  38°C + 273°C
T ~87°C + 273°C

normal

= 1.003 2

which is only a 0.32% increase in temperature. The increase in radiated power,
however, is proportional to the fourth power of temperature, so

Pioer _ (SS"C - 273°c)“ ~lois
37°C + 273°C

P, normal

The resultis a 1.3% increase in radiated power, which is easily measured by modern
infrared radiation sensors.

l Example 40.1 ] Thermal Radiation from Different Objects

(A) Find the peak wavelength of the blackbody radiation emitted by the human body when the skin temperature is

3b2E.



40.1 | Blackbody Radiation and Planck’s Hypothesis 191

[ 40.1cont. ]

SOLUTION

Conceptualize Thermal radiation is emitted from the surface of any object. The peak wavelength is related to the sur-
face temperature through Wien's displacement law (Eq. 40.2).

Categorize We evaluate results using an equation developed in this section, so we categorize this example as a substitu-
tion problem.

898 % 10 m - K
Solve Equation 40.2 for A, (1) Apax = 2%

. 2.898 X 10 °m - K
Substitute the surface temperature: max —
308 K

= 941 pm
This radiation is in the infrared region of the spectrum and is invisible to the human eye. Some animals (pit vipers, for
instance) are able to detect radiation of this wavelength and therefore can locate warm-blooded prey even in the dark.

(B) Find the peak wavelength of the blackbody radiation emitted by the tungsten filament of a lightbulb, which oper-
ates at 2 000 K.

SOLUTION
2808 X 10°m-K

Substitute the filament temperature into Equation (1): Amax = 2000 K 1.45 pm

This radiation is also in the infrared, meaning that most of the energy emitted by a lightbulb is not visible to us.

(C) Find the peak wavelength of the blackbody radiation emitied by the Sun, which has a surface temperature of
approximately 5 800 K.

SOLUTION
) ) ) 2898 X 10~ m - K
Substitute the surface temperature into Equation (1): M = T BBOK

= 0.500 pzm

This radiation is near the center of the visible spectrum, near the color of a yellow-green tennis ball. Because it is the
most prevalent color in sunlight, our eyes have evolved to be most sensitive to light of approximately this wavelength.

l Example 40.2 ] The Quantized Oscillator

A 2.00-kg block is attached to a massless spring that has a force constant of k = 25.0 N/m. The spring is stretched 0.400 m
from its equilibrium position and released from rest.

(A) Find the total energy of the system and the frequency of oscillation according to classical calculations.

SOLUTION

Conceptualize We understand the details of the block’s motion from our study of simple harmonic motion in Chapter
15. Review that material if you need to.

Categorize The phrase “according to classical calculations” tells us to categorize this part of the problem as a classical
analysis of the oscillator. We model the block as a particle in simple harmonic motion.

Analyze Based on the way the block is set into motion, its amplitude is 0.400 m.

Evaluate the total energy of the block—spring system E=$kA* = 3(25.0 N/m)(0.400 m)* = 2.00]
using Equation 15.21:

Evaluate the frequency of oscillation from 1 [& 1 [250N/m

Equation 15.14: f= 2\ = o7 Hm = 0.563 Hz
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