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Introduction

This project primarily aims at developing a vibrating sample magnetometer (VSM)
for measuring the magnetization of any material sample. Chapter 1 will deal
with basic physics and methodology of magnetometery. Different magnetometer
schemes are discussed briefly. Special focus is paid to VSM. Chapter 2 gives a
detailed analysis on mechanism required for vibrating a physical sample. Chapter
3 outlines details of the detection schemes with different geometries of Faraday
coils; where as chapter 4 deals with the lab implementation and some experimental
results.
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Chapter 1

Magnetic Properties and Their
Measurements

1.1 Magnetic Properties

Magnetic field is denoted by H⃗, it gives rise to a magnetic induction given by B⃗.
In free space

B⃗ = µoH⃗

where µo is the permeability of free space. In any medium this relation modifies
to

B⃗ = µoµrH⃗ (1.1)

where µr is the relative permeability. In SI units H⃗ is measured in Ampere per
meter (Am−1), B⃗ in Tesla (T) and µo = 4π10−7 Tm/A. However in cgs units B⃗ is

given in Gauss (G), H⃗ in Oersteds (Oe) and µo in G/Oe.

In magnetism the most elementary entity is a magnetic dipole, which is defined as
two magnetic poles of opposite polarity, separated by some distance. If a dipole
has magnetic poles of strength p separated by distance l, then the dipole is said to
have a magnetic moment m given by

m⃗ = p⃗l. (1.2)

When a dipole of moment m is introduced in a magnetic induction B, the mag-
netic induction tries to align the dipole so that the moment m lies parallel to the
induction. The torque experienced by the dipole is simply given by

τ⃗ = m⃗× B⃗

or in case of free space
τ⃗ = µom⃗× H⃗. (1.3)

The energy associated with a dipole moment m in the presence of magnetic induc-
tion B is given by

E = −m⃗ · B⃗ (1.4)
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Since in cgs units B is given in Gauss and E in erg, the magnetic moment m is
measured in erg/gauss or emu. However in SI units the magnetic moment is given
in Am2 (Sommerfeld convention).

The magnetic moment is a vector quantity. In a material sample, magnetic mo-
ments of a number of dipoles add up to give net magnetic moment. This net
magnetic moment per unit volume is called magnetization of that material, de-
noted by M .

M⃗ =

∑
i m⃗i

V
. (1.5)

Consequently the magnetization is measured in emu/cm3 in cgs and in A/m in SI.

When a material is placed in an external magnetic field, the applied field tends
to align the dipoles present within the material. This leads us to an important
property called susceptibility of a material which is denoted by χ,

χ =
M

H
. (1.6)

Increasing the strength of applied field changes the magnetization of sample. How-
ever after certain strength, called saturation magnetization, the induced magneti-
zation becomes constant.

It is important to note that the χ and the saturation magnetization are bulk
properties, i.e., they do not depend on the shape of the material.

1.1.1 Classes of Materials

Depending on susceptibility and other bulk magnetic properties of materials we
can classify them as one of the following categories [1].

• Ferromagnetic: These materials show a large positive χ. Once magnetization
is induced, some of it persists even after the external field is removed.

• Ferrimagnetic: These materials are similar to ferromagnetic substances how-
ever they have two sublattices which are magnetized in opposite directions.
One of the sublattices has a stronger magnetization and hence we are able
to see a net magnetization in the material sample.

• Anti-ferromagnetic: They are similar to ferrimagnetic materials. However
the magnetization of the two opposite sublattices is equal in magnitude. As
a result the magnetization of one cancels out that of the other and there in
no net magnetization in the material.

• Paramagnetic: The atoms or molecules of these materials have a net magnetic
moment because the spin and orbital angular momenta of their electrons do
not cancel out completely. In the absence of external field they are oriented in
random directions. On application of external field they tend to align along
it, however due to thermal energy some still stay in random orientation.
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This partial alignment produces a small magnetization giving the material a
positive χ. The susceptibility of these materials is temperature dependent.
When external field is removed, the induced magnetization vanishes.

• Diamagnetic: These materials have completely filled electron shells as a re-
sult they do not have any dipoles. They tend to cancel the applied magnetic
field which gives them a negative χ. However this effect is minute.

There are a number of methods and instruments for measuring magnetization or
magnetic susceptibility of a material sample. A few of them are discussed next.

1.2 Methods For Measuring Magnetization

Magnetization and magnetic susceptibility can be measured directly or indirectly
by observing any other physical quantities related to these two. Accordingly the
instruments for measuring these two parameters employ different techniques. They
are broadly categorized into following classes:

• Induction methods : In these methods voltage generated through electromag-
netic induction is monitored to find the magnetic flux change in a particular
coil geometry. This in turn provides the change in value of magnetic in-
duction, which can be used to find the magnetization of different materials.
This method is employed in vibrating coil magnetometer, vibrating sample
magnetometer, fluxgate magnetometer and extraction magnetometer etc. A
few of these will be discussed in detail later.

• Force methods : These methods observe the force on a magnetic dipole or a
material sample to find the magnetic properties of that material. Examples
include torque magnetometers, in which the torque on a magnetic dipole
by an external field is measure to find the magnetic moment of the dipole
[5]. In a similar method we introduce the material sample in a field with
constant gradient and measure the force exerted on the sample using an
analytic balance. This can be used to find the magnetization of the sample.
Another important implementation of force methods is alternating gradient
force magnetometer, which is discussed in detail later.

• Magneto-optic methods : These methods make use of changes in optical prop-
erties of media under the action of an external magnetic field to determine
the field strength and ultimately calculate magnetization. Faraday effect and
Kerr effect are the most widely used phenomenons in magneto-optic methods.

• Electrical methods : Certain materials exhibit change in electrical properties
when introduced inside a magnetic field. These are put to use in, for example,
the Hall effect magnetometer. It measures the magnetic field by measuring
the hall voltage produced with in the sample by it. This measurement is
then used to find magnetization. Similarly magnetostrictive devices deploy
materials which change their lengths according to the applied magnetic field.
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Finally Magnetoresistive devices compute the applied magnetic field using
materials that change their resistance in accordance with the field [1][5].

Some of these schemes are discussed in detail next.

1.2.1 Extraction Method

In this method the sample is inserted in a conducting coil called a ‘search coil’.
Both coil and sample are then placed inside a solenoid. The method is based on
flux change in search coil when sample is extracted from the coil, or both coil and
sample together are removed from the magnetic field of solenoid.

Figure 1.1: Scheme for measuring magnetization using extraction method. The
sample is removed from coil and resulting flux change in coil is used for finding
magnetization.

Flux through a search coil of crossectional area A, before removing the sample is

ϕ1 = (H + 4πM)A (cgs)

or
ϕ1 = µo(H +M)A (SI) (1.7)

and after removing sample the flux reduces to

ϕ2 = HA (cgs)

or
ϕ2 = µoHA (SI)

The fluxmeter measures this change in flux using the voltage induced by it in the
search coil. Since

v = −N
dϕ

dt
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where v is the induced voltage and N is the number of turns in the search coil, the
flux change is given by

∆ϕ = − 1

N

∫
dt.

Using equation 1.7 this can be utilized to measure the magnetization of the sample.

1.2.2 Alternating (Field) Gradient Magnetometer

Figure 1.2: Illustration of an alternating gradient magnetometer

In this technique the sample is mounted at the end of a fiber and then subject to a
fixed (dc) field plus an alternating field gradient, produced by an appropriate coil
pair, as indicated in Figure 1.2. The field gradient produces an alternating force
on sample, which causes it to oscillate, flexing the fiber. If frequency of vibration is

8



tuned to a resonant frequency of the system, the amplitude of vibration increases
by a factor equal to quality factor Q of the vibrating system, which can be of the
order of 100 [1].

To measure the amplitude of vibration of the fiber an optical microscope can be
used. A piezoelectric material can also be utilized for measuring vibrational am-
plitude. It generates an electrical voltage which is proportional to the amplitude
of vibration which in turn is proportional to the magnetic moment and the mag-
netization of the sample.

However there are a few complications involved. This method is very sensitive
to the mass of the sample. Furthermore the presence of a necessary gradient
field means that the sample is never in a uniform magnetic field which can be
problematic for large samples as induced magnetization will not be uniform.

1.2.3 Vibrating Sample Magnetometer

The vibrating sample magnetometer (VSM) is one of the most successful imple-
mentations of a magnetometer. In comparison with alternating gradient magne-
tometer, the VSM is indifferent to mass and size of sample up to a considerable
range. In this scheme the sample is introduced in a constant uniform external
magnetic field which induces a magnetisation in the sample. As the magnetized
sample is then vibrated, it introduces perturbations in the external magnetic field.
A set of coils or some magnetic field sensors can be arranged around the sample to
measure these perturbations. For example in the case of coils, magnetic flux pierc-
ing the coils will change resulting in generation of an emf (electro motive force) in
coils. For a particular coil geometry, the emf generated in coils will depend on (a)
the amplitude and frequency of vibration, (b) external magnetic field and (c) the
magnetization of sample. With proper manipulation, we can deduce the value for
magnetisation from emf. A schematic for VSM is shown in figure 1.3

The project aims at analyzing and developing a VSM that can measure the mag-
netic susceptibility, at room temperature, of magnetic nanostructured samples.

For this scheme the first crucial step is construction of a vibrating mechanism
which can vibrate the sample with measurable and controllable amplitude. Then
we need an electromagnet to provide the magnetic field required to magnetise the
sample. Finally detection coils are required to detect the magnetic field perturba-
tions produced by vibrating the magnetised sample in the applied magnetic field.

The next chapter will deal with the modeling and construction of this mechanism.
It starts with construction of vibration mechanism, subsequently the technique
used to measure amplitude of oscillations is described.
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Figure 1.3: Vibrating Sample Magnetometer (schematic).
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Chapter 2

Modeling The Vibration
Mechanism

The need for a suitable vibration mechanism for VSM cannot be understated.
Since we need to vibrate the sample as well as measure the amplitude of vibra-
tion, we require a vibration mechanism and an amplitude measuring scheme. This
chapter will deal with the construction and analysis of a vibration mechanics. It
starts with description of laboratory implementation of the vibrator, afterwards
mathematical and computational details of amplitude measuring process are dis-
cussed. If we can work out an analytic formula which can give us the amplitude of
vibration at any frequency then we can eliminate the need for amplitude measuring
instrumentation altogether and rely on a calibration of displacement against the
vibrating amplitude. Therefore this chapter will conclude with the calculation of
a transfer function that gives amplitude of vibration at any frequency.

2.1 Mechanical Vibrator

In our setup, mechanical oscillations are achieved by a mechanical wave driver
(SF-9324 by PASCO), which can be driven within a frequency range of 0.1 Hz to
5000 Hz with amplitudes up to 7 mm. To drive this vibrator we have provided a
sine wave excitation signal with 5 V amplitude from a signal generator. This signal
alone does not have enough power to drive the vibrator. To obtain the required
power, it is first fed into a power amplifier and then supplied to the vibrator. The
vibrator is mounted vertically such that it is able to provide oscillations along
the vertical axis. Since the materials used in vibrator are magnetic and we need
to extend the sample into magnetic field, an aluminium shaft is utilized. It is
connected to vibrator from one end and the sample is mounted to the other end.
As aluminium is non magnetic, this shaft makes it possible to safely extend the
sample into the magnetic field.

The schematic and lab implementations of vibration mechanism are shown in figure
2.1.
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Figure 2.1: (a) Mechanical vibrator system schematic (b) Lab implementation
showing the 1 Mechanical wave driver, 2 Shaft, 3 LVDT and 4 Teflon holder for
LVDT.

The first step is determining the amplitude of vibration for calculating the magne-
tization of the sample. For this purpose a linear variable differential transformer
(LVDT) is used. Details on the working of LVDT are discussed next.

2.1.1 LVDT

The LVDT is utilised for making precise measurements of linear mechanical dis-
placement of objects in different applications. It consists of one primary and two
secondary coils and a moveable core (figure 2.2). The primary is centered inbe-
tween the secondaries and within these coils a magnetically permeable core moves
to provide variable coupling between the primary and the secondary coils. The
sense of winding in one secondary coil is opposite to that of the other. The secon-
daries are connected in electrical series. When core is positioned such that there
is equal inductive coupling of two secondaries with primary, then emf generated
in one secondary cancels that generated in the other. This position of the core is
called the ‘Null Point’. As the core moves away from the null point, the inductive
coupling of one of the coil becomes larger than the other. Consequently a net emf
can be observed across the two secondaries. This emf generated in secondaries is
now proportional to position of core and is a function of voltage used to excite
the primary coil and the position of core [2]. This brings us to another important
property of a LVDT, the ‘sensitivity’ S, which is defined as the induced voltage in
millivolts across the secondaries per volt of primary coil excitation per millimeter
core displacement.

If a sinusoidal excitation is used for the LVDT’s primary coil then the voltage for
primary coil Vp is given by
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Figure 2.2: (a) Primary and Secondary coils of LVDT. The dots represent sense of
winding. (b) LVDT held by a teflon holder.

Figure 2.3: Secondary coil voltage for core placed at (A) left (B) null and (C) right
positions. The blue and red lines represents VS1 and VS2 respectively. The dashed
green line shows sum of the two voltages according to equation 2.1.

Vp = Ap sin(ωLt)
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where Ap is the amplitude and ωL is the frequency, the L represents LVDT exci-
tation. Let the two secondary coils be represented as S1 and S2 then the voltages
induced in these will be given by

VS1 = AS1 sin(ωLt+ ϕS1)

and
VS2 = AS2 sin(ωLt+ ϕS2)

where ϕS1 and ϕS2 are the phase shifts of the secondary coils with respect to the
primary and AS1 and AS2 are amplitudes of induced voltages in these two coils.
These amplitudes are linear functions of core’s position provided the core is placed
within a range, specific for each LVDT, around the null point. This range is called
the ‘stroke range’ of the LVDT. The graphs of voltages induced in the secondaries
are shown in figure 2.3. Since the sense of winding in one secondary is opposite to
that in the other, the induced voltages are 1800 out of phase with each other and
we can write

ϕS2 = ϕS1 + π.

Let ϕS1 = ϕL then ϕS2 = ϕL + π. If the secondaries are connected in series then
the core’s position will simply depend on the difference of AS1 and AS2. The emf
induced across secondaries will be

VS = VS1 + VS2

= (AS1 − AS2) sin(ωLt+ ϕL)

Let AS1 − AS2 be AS then

VS = AS sin(ωLt+ ϕL), (2.1)

which is the voltage observed across secondaries for some fixed core position. If
the core is displaced within the stroke range, then AS can be written (in linear
regime as)

AS = A0x (2.2)

where x is the displacement of the core from the null point and A is a constant
which is determined by the sensitivity and primary coil excitation voltage of the
LVDT. For x = 0, AS = 0 and for x = ±1, AS = ±A0.

The next section deals with details of how an LVDT was specifically employed
in our construction to measure the amplitude of vibration for the oscillations of
vibrator. The final goal was to calibrate the magnitude of oscillation as a function
of the excitation voltage.

2.2 Measuring Amplitude of Vibration

Since the vibrator was mounted vertically to provide oscillations along vertical
axis, the LVDT (E300 by Schaevitz Sensors) was also aligned along the vertical

14



axis using a homemade teflon holder (Figure 2.2b). The LVDT had a sensitivity
of 47.2 mV/V/mm and a stroke range of 7.62 mm. The LVDT’s core was attached
to the vibrator using a non-magnetic shaft which was attached to the vibrator
and the LVDT core by m 3 treading. It was then positioned at the null point.
The position of the core is measurable only if it stays at the same point until the
voltage induced in the secondaries reaches its maximum value because we are using
the amplitude of this voltage for calculating the displacement [2]. It is therefore
recommended to have a primary coil excitation frequency which is 10 times the
mechanical frequency of the core [2]. We are interested in measuring amplitude
for vibrations which themselves have a frequency around 100 Hz, therefore the
primary coil of the LVDT was driven using a sinusoidal voltage of 5 V amplitude
at 1000 Hz from the signal generator.

Figure 2.4: Amplitude measurement of the vibrator using an LVDT

When the vibrator was turned on, the core started to oscillate. Suppose the
frequency of oscillation was ω0 (note that this frequency is distinct from ωL) then
the position of the core is approximately given by

x = d sin(ω0t+ ϕ0) (2.3)

where d is the amplitude and ϕ0 is the phase of oscillation of the core with respect
to some reference. Consequently from (2.1), (2.2) and (2.3), the voltage across
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secondaries becomes

VS = Ad sin(ω0t+ ϕ0) sin(ωLt+ ϕL)

VS =
Ad

2

[
cos

(
(ωL − ω0)t+ (ϕL − ϕ0)

)
− cos

(
(ωL + ω0)t+ (ϕL + ϕ0)

)]
. (2.4)

Figure 2.5 shows a simulation for VS which suggests that this is a beat like pattern
with a carrier frequency of ωL + ω0 and an envelope of ωL − ω0. Furthermore the
phase shifts do not have any effect on the overall pattern.

Figure 2.5: A simulation showing waveform of equation 1. The Matlab code file
simulation.m is given in the appendix.

It was observed that the voltage from the secondary coils was too small to be
measured directly. Therefore it was amplified using an instrumentation amplifier
(AD624) since it provides a very broad range of gain and has low input noise. The
amplifier’s pin connections are shown in figure 2.6. The gain G of the amplifier is
given by

G =
40000

R
+ 1Ω

By fixing the value of the resistor R (Figure 2.6) the amplifier was calibrated to
provide a gain of 6.5.

The amplified voltage was then observed and recorded in LabView using a data
acquisition card (DAQ) NI USB 6229. Figure 2.7 shows the schematic for this
setup. A block diagram of the LabView file ‘data collector’ used to measure the
amplified voltage is shown in figure 2.8. A high pass filter with a cutoff frequency of
100 Hz is used to remove any low frequency noise signals and an offset introduced
by the AD628 amplifier. The filtered data was saved in a file.
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Figure 2.6: Pin connections of the instrumentation amplifier AD624.

Figure 2.7: Complete setup showing vibration mechanism and amplitude measur-
ing system

The data showed the presence of harmonics in addition to ωL − ω0 and ωL +
ω0 (Figure 2.9). In order to obtain meaningful information from the signal, it
was exported to Matlab, where curve fitting was utilized to identify as well as
quantitatively measure the presence of each harmonic in the signal.

With a primary LVDT voltage VL = 5 V, S = 47.2 mV/V/mm and an amplifier
gain Gamp = 6.5, A0 is predicted to be

A0 = 6.5× 5× 47.2

= 1.534 V/mm.
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Figure 2.8: LabView File used for inputting LVDT signal readings.

Figure 2.9: Example of LVDT signal amplified by AD628. This signal is to be
compared with the simulated signal shown in Fig. 2.5.

In order to get an independent experimental confirmation of the above calculated
value for A0, the core was mounted on a translation stage fitted with a micrometer
screw gauge. The amplitude of VS (|VS|) was given by LabView and precise dis-
placement of core was observed from translation stage. Then using |VS| = Ad, A
was calculated to be 1.52 V/mm, in good agreement with the value of 1.53 V/mm.
This means that an output voltage of 1.53 V corresponds to a displacement of 1
mm. All displacements can thus be measured against this calibration factor.

The next section elaborates the details of curve fitting for calculating the amplitude
of mechanical oscillations of the core and also recounts a brief introduction of curve
fitting toolbox in Matlab.

2.2.1 Curve Fitting for extracting the amplitude of the os-
cillation

As pointed out earlier the signal recorded by LabView showed presence of har-
monics in addition to those predicted by equation 2.4. The recorded signal was
imported in Matlab and ‘Curve fitting toolbox’ was utilized to get a mathematical
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expression for it [6]. The curve fitting toolbox provides a number of mathematical
expressions and methods for curve fitting. The graphic interface for this toolbox
is shown in figure 2.10. ‘X data’ and ‘Y data’ represent the independent and de-

Figure 2.10: Curve Fitting Tool Box used for analysing the LVDT signal

pendent variables respectively. The type of mathematical expression we want to
curve fit is selected from the dropdown menu located at upper central portion of
graphic interface as shown in figure 2.10.

As equation 2.4 predicts, a ‘sum of sine’ curve was selected for curve fitting the
recorded signal. The results gave different harmonics, their coefficients and phases
with 95% confidence. The waveform was fit for five unknowns. The two harmon-
ics ωL ± ω0 appear in equation 2.4 duly appear in the LVDT signal. The other
harmonics were ωL ± (2π× 50) and ωL and the raw 50 Hz is from electromagnetic
interference (line noise). The origin of ωL is due to the fact that it is difficult to
position the core at exact null point to begin with, causing the LVDT excitation
frequency ωL to leak through. Hence we can correctly identify the various har-
monics present in the signal, the desired (ωL±ω0) terms as well as the interference
terms.

The coefficients of ωL − ω0 (difference) and ωL + ω0 (sum) terms are obtained
from curve fitting. Ideally, from equation 2.4 both coefficients should be equal to
Ad/2, the amplitude of VS. However curve fitting results showed that the one for
‘sum’ term, Asum, was greater than that for the ‘difference’ term, Adiff . To get
the amplitude of vibration in millimeters, an average of these two coefficients was
utilized. Let this average be Aavg then

Aavg =
Ad

2
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d =
2Aavg

1.53
mm = 1.31Aavg mm (2.5)

which gives us the amplitude of mechanical oscillation for the vibrator in terms of
the measured signal from the LVDT.

We have finally utilized the electrical signal obtained from the LVDT to measure
the amplitude of mechanical vibration. By converting Aavg to d we now have
a scheme to find the amplitude of mechanical oscillations using LVDT. However
if, based on these displacement measurements, we can formulate a mathematical
model for the vibrator then we can eliminate the requirement of the LVDT al-
together. We can simply use that formula to find the amplitude of mechanical
vibration at any mechanical frequencies and driving amplitude of the vibrator.

Mathematical modeling can be done in a number of ways, one of them is by finding
the ‘transfer function’ which will be defined in the next section. Furthermore a
transfer function will be experimentally determined for the vibrator. The transfer
function relates the strength of the mechanical to the electronic input provided by
the function generator.

2.3 Finding the Electromechanical Transfer Func-

tion

2.3.1 Basics of a Transfer Function

A transfer function is the ratio of the output of a system to its input, generally
expressed in Laplace or Fourier domain. For example, suppose we give an input u
to a physical process and obtain an output v. Let the Laplace transform of u and
v be U and V respectively. Then the ratio V /U , representing the physical process
is called the transfer function for the process. The transfer function captures the
frequency response of the system as well.

Conversely if we know the transfer function of a physical process we can find
the temporal mathematical expression governing it by simply taking its inverse
transform. Finding a differential equation may become difficult for complicated
processes. We can determine their transfer function, for example, by observing
their response to sinusoidal inputs, a step or impulse inputs etc. Response to dif-
ferent input frequencies is observed and the frequency response or transfer function
is built up. This procedure is called system identification.

As explained earlier, a sinusoidal signal was generated by the function generator,
amplified by an audio amplifier and then fed to the mechanical oscillator. The
amplitude of mechanical vibrations depends on the amplitude and frequency of
the sinusoidal signal generated by the function generator. To obtain an analytic
function that can give us the mechanical oscillation amplitude at any frequency,
we first calculated the frequency response by driving the mechanical oscillator at
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different frequencies and then calculating the resulting vibrational amplitudes. We
then drew the Bode plots from which the transfer function was estimated.

2.3.2 Bode Plots

If a mathematical function consists of product of different expressions then we can
take its log and convert the product to sum of log of those expression. This implies
that the graph of log of that function will simply be sum of the graphs of the logs
of individual expressions or terms. For example suppose a transfer function (or
any mathematical function for that matter) with multiple terms is given in polar
form as,

G(ω) =
r1e

−iθ1r2e
−iθ2

r3e−iθ3r4e−iθ4

=
(r1r2
r3r4

)
e−i(θ1+θ2−θ3−θ4)

where r′is and θ′is are real functions of ω. Since

|G(ω)| = r1r2
r3r4

,

taking log on both sides gives us

log(|G(ω)|) = log r1 + log r2 − log r3 − log r4.

This shows that if we plot log of magnitude versus log of frequency ω then contri-
butions from these different terms sum up to give the composite curve. Conversely
if we have a composite curve then the transfer function can be calculated by iden-
tifying the individual terms. Such a plot with logarithmic axes is known as the
‘Bode Plot’.

A transfer function is normally composed of three classes of terms [3]:

1. K0(−iω)n

2. (1− iωτ)±1

3. [(−iω
ωn

)2 + 2ζ −iω
ωn

+ 1]±1

where ζ is a damping factor [3]. These three terms can be immediately identified
on the Bode plot as follows.

(a) K0(−iω)n is a straight line on the Bode plot with a slope n because

log
(
K0|(−iω)n|

)
= logK0 + n log |ω|

It passes through ω = 1 at logK0. Its graph is shown in figure 2.11.

(b) For the second class of terms, (1 − iωτ) ∼= 1 for ωτ ≪ 1 and (1 − iωτ) ∼=
−iωτ for ωτ ≫ 1. This shows that the magnitude of this term approaches one
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Figure 2.11: Bode plot for a Class 1 term.

asymptote at very low frequencies and another at very high frequencies. Below
ω = 1/τ it is approximately constant (1), while above this point it behaves as
class 1 term. This point is known as the ‘break point’. Due to this term the slope
of composite curve will change by 1 at the break point. If slope changes by +1,
this term belongs to the numerator and if by −1, then to the denominator of the
transfer function. This term is graphed in figure 2.12.

(c) Finally [(−iω
ωn

)2 + 2ζ −iω
ωn

+ 1]±1 behaves almost like class 2 term but with a few
notable changes. The break point is now at the natural frequency ωn and the slope
of composite curve is changed by a factor of 2 at the break point due to this term.

2.3.3 Finding the Frequency Response of the Vibrator

For calculating the analytic function for amplitude of mechanical vibrations, the
gain of the audio amplifier was set to 1 and mechanical amplitude was measured
for a frequency range of 1 to 1000 Hz. The resulting frequency response plot is
shown in Figure 2.13. As we move from lower frequencies to higher ones we note
our first asymptote which has a slope 2. To find the value for K0 we look for the
value of displacement corresponding to ω = 1 at the asymptote. It turns out to be
1.02.

Next asymptote, with a slope 0, intersects the first one at the break point ω =
20 rad/s. Since the slope changes by −2, this indicates the presence of a class
three term, with natural frequency ω1 = 20 rad/s, in denominator of the transfer
function.

Third and final asymptote with slope n = −2, intersects the second one at ω = 250
rad/s. It gives another class three term of natural frequency ω2 = 250 rad/s for
the denominator of the transfer function. As result the transfer function turns out
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Figure 2.12: Class 2 term logarithmic graph indicating the break point.

Figure 2.13: The Bode plot for frequency response of the vibrator and the asymp-
totes are overlaid on top of it. Experimentally determined plots are shown as
crosses. The electrical input signal had 5 V amplitude.

to be:

|G(ω)| = |d| = K0(ωi)
2

[( iω
ω2
)2 + 2ζ2

−iω
ω2

+ 1][( iω
ω1
)2 + 2ζ1

−iω
ω1

+ 1]

or |d| = K0ω
2√

(1− ω
ω1
)2 + (2ζ1

ω
ω1
)2
√
(1− ω

ω2
)2 + (2ζ2

ω
ω2
)2

mm (2.6)

where K0 = 1.02, ω1 = 20 rad/sec and ω2 = 250 rad/sec. The terms ζ1 and ζ2
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Figure 2.14: Frequency response for 10V and 7.5V input signals.

Table 2.1: Coefficients for the transfer function
Coefficients 5V Amp 7.5V Amp 10V Amp
K0 0.00654 0.0114 0.0138
ω1 21.1 18.36 18.00
Ω2 247.3 268.3 273.9
ζ1 0.65 0.70 0.66
ζ2 0.57 0.56 0.52

are damping coefficients which can be determined by curve fitting equation 2.6
on the experimentally determined Bode plot. It is difficult to have more readings
for the low frequencies in the Bode plot because we are using a logarithmic scale.
Therefore the absolute difference in the consecutive frequency readings decreases
exponentially which makes it difficult to generate and observe the mechanical os-
cillations at these frequencies. Furthermore in the VSM the vibrator was operated
around 100 Hz, for which the term generated by the low frequencies in the expres-
sion for d, has ignorable effect.

Now we have an analytic function that can give us amplitude of mechanical oscil-
lation at any given frequency. This, however, is applicable to only one mechanical
amplitude. We might need different mechanical amplitudes Hence we find the
transfer function at varying amplitudes Am, G(ω,Am). Therefore three electrical
signals with different amplitudes (5V, 7.5V and 10V) were generated from func-
tion generator and frequency response was calculated for each one of them. Figure
2.14 shows frequency response for 10V and 7.5V amplitude input signals. They
suggest that equation 2.6 still holds however coefficients in the equation will now
be different. The coefficients for all three responses are summarized in table 2.1.
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Chapter 3

Modeling the Detection
Mechanism

As discussed in chapter 1, in a VSM we vibrate a sample inside an applied magnetic
field. The magnetized sample then induces emf in coils placed nearby. These coils
are called detection coils. To calculate the induced voltage and most favourable
placement for the detection coils we first need to find the magnetic field produced
by the vibrating sample and then calculate the magnetic flux through the coils.
In this chapter we will workout the field produced by the magnetized sample.
Afterwards a particular coil arrangement will be selected and the expected emf
will be calculated. Finally an expression for extracting magnetization from induced
emf will be constructed.

3.1 Signal Induced in Detection coils

Suppose our magnetized sample is placed at the origin. If the position of this
sample is varied, sinusoidally, over a small distance δ⃗(t) (figure 3.1) then a change

of flux ∂B⃗(t) that will be induced at a point r⃗ in space will be [4]

∂B⃗(t) = µ0δ⃗(t) · grad{H⃗(r⃗)}. (3.1)

If we place a small coil at r then the voltage induced in it will be given by

V (t) =
∑
p

∑
n

∫
A

(∂B⃗
∂t

)
· dA⃗, (3.2)

where n is the number of turns, A denotes the area vector of a single turn and
p is the number of coils (as we can have multiple coils). The summation over n

includes only those turns which contain elemental area dA⃗ and for which ∂B⃗/∂t is
given by equation 3.1.

Clearly to proceed any further we need to have an analytic formula for H⃗(r⃗). For
this we can approximate our magnetized sample with a magnetic dipole if the
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dimensions (size) of our sample are small as compared to the distances between
the sample and the detection coils. With this approximation we can assume the
vibrating sample to be an oscillating dipole. The magnetic field of a dipole placed
at origin is given by [4].

H⃗(r⃗) =
1

4π

(m⃗
r3

− 3(m⃗ · r⃗)r⃗
r5

)
(3.3)

where r⃗ is the position vector of a point in space and m⃗ is the magnetization of
the sample. Suppose the sample is vibrated sinusoidally along the z-axis and the
external magnetic field is applied along the x-axis as shown in figure ??. Then

δ⃗(t) = sin(ω0t+ ϕ0)d⃗. (3.4)

Figure 3.1: A sample oscillated in a magnetic field and vibrated along the z-axis.
(1) and (2) are the detection coils.

Furthermore let the magnetic moment of the dipole, polarized along x-axis, be

m⃗ = (m, 0, 0)

then the field induced by the sample at the position of a coil r⃗ will be

H⃗(r⃗) =
1

4π

((m, 0, 0)

r3
− 3((mx))(x, y, z)

r5
)

= − 1

4π

(−m

r3
+

3mx2

r5
,
3mxy

r5
,
3mxz

r5
)
.

As a result the gradient of H⃗(r⃗) at r⃗ will be given by
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∇H⃗(r⃗) =

 ∂H⃗
∂x
∂H⃗
∂y
∂H⃗
∂z



∇H⃗(r⃗) = − 3m

4πr7

 x(3r2 − 5x2) y(r2 − 5x2) z(r2 − 5x2)
y(r2 − 5x2) x(r2 − 5y2) −5xyz
z(r2 − 5x2) −5xyz x(r2 − 5z2)

 . (3.5)

Then using equation 3.1, 3.4 and 3.5 we obtain

∂B⃗

∂t
= µ0ω0 cos(ω0t)d⃗ · ∇H⃗(r⃗)

= −3mµ0ω0

4πr7
cos(ω0t)d

(
z(r2 − 5x2)̂i,−5xyzĵ, x(r2 − 5z2)k̂

)
consequently by equation 3.2, we obtain the induced emf,

V = − 3

4π
mµ0ω0 cos(ω0t)d

∑
n

∫
A

dA⃗ ·
( 1
r7
)(
z(r2 − 5x2)̂i,−5xyzĵ, x(r2 − 5z2)k̂

)
.

(3.6)

In this equation the direction of the external magnetic field determines the direction
of m⃗ and the orientation of the axis of the coil determines the direction of the area
vector dA⃗. If we increase the size of the coil, the induced voltage would increase
but it can be increased only to an extent in which the dipole approximation holds.
Otherwise equation 3.6 would be invalid.

3.2 Selecting a Coil Geometry

From inspection of equation 3.6 we can see that by orienting coils along x, y or
z axis, we can select any of the orthogonal components (i’th, j’th or k’th) of the

flux change ∂B⃗
∂t
.

For example if a coil is oriented along z-axis then dA⃗ = dAk̂, as a result from
equation 3.6

V = − 3

4π
mµ0ω0 cos(ω0t)d

∑
n

∫
A

dA
x(r2 − 5z2)

r7

A closer look shows that the induced voltage crucially depends on the term in the
integral. As it is a function of the coil geometry only, we will call it a geometric
factor gz.

gz =
x(r2 − 5z2)

r7
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Similarly geometric factors

gx =
z(r2 − 5x2)

r7
and gx =

−5xyz

r7

dictate the induced voltages in coils oriented along x and y axis respectively. These
geometric factors are to be integrated over the pick up area of the coils.

3.2.1 Closer Look at the Geometric Factors

To select a suitable coil configuration it is important to understand the behaviour
of geometric factors in the region surrounding the vibrating sample. Particularly
we are interested in the contours of these factors. A little manipulation shows that

gx(r, θ, ϕ) = z(r2 − 5x2)/r7 = cos θ(1− 5 sin2 θ cos2 ϕ)/r4

gy(r, θ, ϕ) = −5xyz/r7 = −5

2
sin2 θ cos θ sin(2ϕ)/r4

gz(r, θ, ϕ) = x(r2 − 5z2)/r7 = sin θ(1− 5 sin2 θ) cosϕ/r4.

Their contours are shown in figure 3.2 through figure 3.4. It can be seen that for gx,
a change of sign takes place whenever θ passes through sin−1(1/

√
5 cosϕ). Similarly

gz changes sign at θ = 62054′. However for gy the sign remains unchanged.

Since

V = − 3

4π
mµ0ω0 cos(ω0t)d

∑
n

∫
A

dA⃗ · g⃗

where g⃗ = (gx, gy, gz), the g’s are the factors which sample space and contribute
to the voltage. With coils placed at points dictated by these factors, the induced
voltage is predictable.

3.2.2 Selecting a Coil Configuration

The contours indicate that suitable dimensions for a detection coil are one in which
the sign of the geometric factor stays the same because otherwise the flux change
from regions with opposite signs will cancel each other out. Furthermore the coils
oriented along x-axis will also detect any perturbations in the external magnetic
field which is an undesired artifact and will unnecessarily complicate the analysis at
such a early stage. However coils along y and z axis do not suffer this complication
as their cross-sectional area vectors are perpendicular to the external magnetic
field. Taking these factors into account, we have selected a coil configuration with
two detection coils. These coils will be placed along x-axis, one on each side of the
sample and their cross-sectional areas will be oriented along the z-axis. Therefore
we need to have a closer look at the behaviour of gk.

Figure 3.5 shows a complete volume contour for gk at two values, other values show
similar structure. This indicates that if a positive voltage is induced in the coil
placed at +x axis then an equal negative voltage is produced in an identical coil
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Figure 3.2: Equi-signal contours of gx for ϕ = 450 and 0 ≤ θ ≤ 900.

Figure 3.3: gy equi-signal contours at ϕ = 450 and 0 ≤ θ ≤ 900.

placed at −x. Winding one of the coils clockwise and the other anti-clock wise will
result in generation of the same signed voltage in both coils. We can then connect
them in electrical series to get a stronger signal.
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Figure 3.4: Contours for gz for ϕ = 00 and 0 ≤ θ ≤ 900.

Figure 3.5: Contour for gk presenting surfaces with gk = 0.5 in blue and gk = −0.5
in red. (This figure is best viewed in color).

Learning from figure 3.4 each coil will have 1 cm diameter and 1 cm hight. They
will be placed at ±2 cm along x-axis. This will ensure that each coil is completely
in a region with constant sign for gk. Figure 3.6 shows the schematic for this coil
configuration.
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Figure 3.6: Schematic of detection coils. Dots show that both have opposite sense
of winding

Then using equation 3.6 the voltage induced across this coil arrangement will be

V = 2
(
− 3

4π
mµ0ω0 cos(ω0t)d

∑
n

∫
A

dA
x(r2 − 5z2)

r7
)

V = − 3

2π
mµ0ω0 cos(ω0t)αd (3.7)

where α =
∑

n

∫
A
dAx(r2−5z2)

r7
.

3.3 Magnetization from Induced Voltage

The factor α in the expression for V only depends on the dimensions of the coils
and is a constant for our coil arrangement. For calculating factor α assume the
detection coil centered at (2, 0, 0). Each turn of the coil is like a circular disk
placed at (2, 0, z) where z is the hight of each turn. Integrating gz over every
circular disk and summing it up would give α. By symmetry the coil placed at
(−2, 0, 0) will have same α. The matlab file for calculating alpha is given in the
appendix. The coils which were constructed for this project had 91 turns each,
which gives α = 16.5118.

From equation 3.7 the amplitude of induced voltage is given by

|V | = 3

2π
mµ0ω0αd

which upon rearrangement gives,

m =
2πV

3µ0ω0αd
(3.8)

Hence we will attempt to investigate the magnetization m of the sample based
upon equation 3.8.
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Chapter 4

Construction and
Characterization

So far we have discussed the details of vibration and detection mechanisms and
based on these, selected a suitable detection coil configuration. Furthermore from
the voltage induced in detection coils we can now workout the magnetization of the
sample. In this chapter the practical implementation of the VSM will be discussed
with details of mechanical and electrical components. Finally, the VSM will be
tested on a few samples and the results will be analyzed. A complete schematic
for our VSM is provided in Figure 4.1.

4.1 Construction

To provide the required magnetic field, an electromagnet (GMW model 3470) is
used. For continuous operation it has a maximum input power of 0.11 kW (3.5
A/ 31 V). This limit is imposed by the resistive heating of the electromagnet coils.
However the electromagnet can be water-cooled, with water cooling the maximum
input power can be safely increased to 0.22 kW (5 A/ 44 V). Each pole piece of
the electromagnet has a 40 mm diameter which tappers off to 20 mm pole face as
shown in the figure 4.4. The maximum magnetic field that can be achieved under
the input power limits, critically depends on the distance between the poles, the
pole gap.

A bipolar operational power supply (KEPCO BOP 50-8D) is utilized to provide
the current for the electromagnet. The power supply acts as a constant current
source for the electromagnet. It can provide current from −8 A to 8 A and can be
controlled directly from its front panel as well as remotely from any computer. The
remote control is achieved by providing a voltage to the current programming input
on the front panel of the power supply. This voltage is called the control voltage.
The control voltage is simulated in a LabView file (Figure 4.10) and then generated
by a DAQ (NI USB-6229) after which it is applied to the current programming
input of the power supply. As the control voltage is linearly increased from −10
V to 10 V, the output current linearly increases from −8 A to 8 A.
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Figure 4.1: Schematic for the complete VSM.

The magnetic field generated at the center of the pole gap depends on the current
provided to the electromagnet and the pole gap itself. With 40 mm pole gap the
magnetic field at the center as a function of input current is shown in figure 4.2.
The magnetic field was measured using a gauss meter (LakeShore 410) with a
precision of 0.01 kG. The graph shows a linear relation between the input current
and the resulting magnetic field. However a deviation from this relationship is
seen after 6 A. If this limit is not crossed, the magnetic field at the center of the
pole gap is directly proportional to the electromagnet current. Therefore we can
use the input current as a measure of the magnetic field itself using a conversion
factor of 0.49± 0.01 kG/A.

The pole pieces are made of soft iron. Their hysteresis plot is shown in figure 4.3
which indicates a maximum width of 20.4 Gauss at I = 0. The magnetic field was
measured at the center of the pole gap using the gauss meter (LakeShore 410).
The current was tuned from the controls provided on the front panel of the power
supply.
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Figure 4.2: Calibration curve for the electromagnet. The slop provides a conversion
factor of 0.49 kG/A valid up to 6 ampere current.

Figure 4.3: The hysteresis plot for the pole pieces of the electromagnet. It has a
maximum width of 20.4 Gauss at I = 0

The detection coils are two single-layered coils, each being 1 cm in diameter and
1 cm in hight. The assembly is drawn in figure 4.4. Both are wound by hand
on a hollow paper core using a 0.09 mm thick copper wire. One is wound in the
clockwise and the other in the anti-clockwise sense. Their resistance is measured
by a simple multi-meter and their induction is observed using a digital inductance
meter. Their specifications are summarized in table 4.1. The two coils are then
secured in a wooden block with a center to center distance of 3 cm. In between
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the two coils a cavity is carved out of the wooden block to provide space for the
sample to vibrate. From one end to the other this assembly is 4 cm in length along
the x-axis. As a result, a bare minimum gap of 4 cm is introduced between the
poles of the electromagnet. This setup is shown in figure 4.5

Figure 4.4: A sketch for the detection coil assembly.

Figure 4.5: Detection coils in wooden block held between the poles of the electro-
magnet. In between the two coils is the sample placed inside the sample holder.

With the electromagnet placed as shown in figure 4.1, the magnetic field is gen-
erated in the horizontal direction and the sample is vibrated along the vertical
direction at the center of the pole gap. This is achieved by mounting the vibrator
over the electromagnet using a post. The vibrator is basically a speaker which is
sensitive to external magnetic fields. To keep it safe from the fringing magnetic
field of the electromagnet we have provided sufficient distance between the electro-
magnet and the vibrator. The sample is held in a nonmagnetic holder made from
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Table 4.1: Specifications of detection coils
Property Coil 1 Coil2
Resistance (Ω) 106± 1 104± 1
Number of turns 91 91
Inductance (µH) 62.3± 0.1 62.3± 0.1
Wire diameter (mm) 0.09± 0.01 0.09± 0.01
Height (cm) 1± 0.01 1± 0.01
Diameter (cm) 1± 0.01 1± 0.01

Table 4.2: Elemental Composition of the iron strip sample
Element Percentage
Iron 90
Cobalt 6-7
Molybdenum 0.97
Chromium 0.75
Nickel 0.64

aluminium and attached to the vibrator using an aluminium shaft which extends
the sample safely into the magnetic field of the electromagnet. The shaft, the
vibrator and the sample holder are connected to each other by threading. This
structure is shown in figure 4.6.

For holding spherical and flat samples, two different sample holders are made. In
both of them the sample is placed in a cavity and held fixed by an aluminium
screw. These assemblies are shown in figure 4.7. The mechanical assembly was
built in the Physlab workshop.

The voltage signal generated in the coils was sent to LabView software by a DAQ
(NI USB 6229) interface, where it was filtered and recorded.

4.2 Experimentation

For testing the VSM, a 4 mm diameter ball-bearing and a 7.3 × 6.4 mm strip
of iron were used as the two test samples. The iron strip was cut out of a core
plate extracted from a transformer. X-ray fluorescence spectroscopy showed that
it contained 90 % iron The complete elemental composition is summarized in table
4.2. In the X-ray fluorescence spectroscopy, X-rays are shined upon the sample.
As a result, different elements present in the sample give off their characteristic
X-ray radiations which are then utilized to determine the elemental composition
of the sample. High iron percentage indicates a soft magnetic nature for the iron
strip sample i.e. it will show little hysteresis.

The ball-bearing sample is vibrated at 100 Hz with a mechanical amplitude of 0.5
mm. The induced voltage is shown in figure 4.8. Since the sample is vibrated
sinusoidal, a sinusoidal signal should be induced in the coils. Furthermore increas-
ing the applied magnetic field should increase the magnetization of the sample
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Figure 4.6: Mechanical structure of VSM showing (a) extension rod, (b) holding
post (c) vibrator (d) electromagnet, (e) sample holder with a ball-bearing as sample
and (f) detection coil.

which should result in an increase in the induced voltage. Both these artifacts can
be clearly seen in the figure 4.8. The magnetization calculated from the induced
voltage using equation 3.8 is summarized in table 4.3
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Figure 4.7: Aluminium sample holders for holding samples in VSM

Table 4.3: Magnetization of the ball-bearing sample
Applied field (kG) Magnetization (A/m)
0.00 3.14
0.49 37.0
0.97 77.8
1.94 155
2.43 207

It was observed that the magnetized sample experiences a considerable force due
to the external magnetic field. This results in bending of the extension rod. To
prevent this the extension rod was passed through a teflon ring mounted in a
wooden block fixed on the electromagnet. It can be seen in figure 4.6 above the
detection coils.

To observe the magnetic hysteresis of the sample the electromagnet power supply
is remotely controlled from a computer. For this purpose a LabView file is con-
structed which is shown in figure 4.10. It controls the electromagnet current and
tunes the magnetic field linearly in a programable number of steps and time. With
an additional command structure, shown in figure 4.9, the same LabView file is
utilized to record the induced voltage as well. The induced voltage is converted to
magnetization of the sample using equation 3.8. If all terms are in SI units then
the magnetization is given in ampere per meter by equation 3.8.

The hysteresis loop for ball-bearing vibrated at 100 Hz with 0.5 mm mechanical
amplitude is shown in figure 4.11. The induced voltage was measured continuously
at a sample rate of 1 kHz with strength range of±10mV by LabView-DAQ interface
and the applied magnetic field was tuned within ±2.93 kG in 200 steps. Therefore
the loop appears stair-shaped. However we can make it smooth by choosing more
number of smaller steps. The voltage readings were converted to the magnetization
of the sample using equation 3.8.
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Figure 4.8: Voltage induced in the detection coils. The horizontal axis mark time
in seconds and voltage is give along vertical axis in volts. The magnetic field is
increased from (A) through (E). Applied magnetic fields are (A) 0 kG, (B) 0.49
kG (C) 0.97 kG, (D) 1.94 kG and (E) 2.43 kG.

The hysteresis loop has a very small thickness indicating soft magnetic nature of
the ball-bearing sample. Furthermore the hysteresis of the pole pieces also plays a
roll in this loop. The slope is almost constant throughout the loop which indicates
that saturation is not achievable within the applied magnetic field limits.

The hysteresis loop for the metal strip sample is shown in figure 4.12. Just like
the ball-bearing sample, it is vibrated at 100 Hz with mechanical amplitude of 0.5
mm. The LabView settings are the same, except that this time a smaller step
size is introduced and the number of steps have been increased to 400. This has
made it smoother than the one for the ball-bearing sample. From the thin width
of the loop it is clear that the metal strip too has a soft magnetic nature. However
a trend towards the saturation magnetization is now clearly observable. Slight
irregularities can be observed at the ends of the loop which are consequence of

39



Figure 4.9: Block diagram for LabView file used to acquire voltage induced in
detection coils.

Figure 4.10: Block diagram of control loop used to operate the current source for
the electromagnet.

unwanted mechanical vibrations in the mechanical structure of the VSM.

A small pellet of ferri magnetic substance (Fe3O4) is also tested. However due to
limited sensitivity of the VSM only a small voltage is observed even at maximum
magnetic field of 3.58 kG (figure 4.13). It is observed that changing the sensitivity
of the LabView-DAQ interface does not improve the observed signal. A possible
solution could be to employ an instrumentation amplifier to magnify the signal
before it is fed to the DAQ.
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Figure 4.11: Hysteresis loop for the 4 mm ball-bearing.

Figure 4.12: Hysteresis loop for the 7.3× 6.4 mm strip of iron.

4.3 Conclusion

The experimental analysis so far suggests that our VSM works in principle. Its
performance for ferro-magnetic samples with considerable size is satisfactory. We
are able to see most of the qualitative and some of the quantitative aspects of
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Figure 4.13: Voltage observed for Fe3O4 pellet at maximum magnetic field.

different samples clearly. However we need to test the validity of the results. This
can be achieved by using a sample of known magnetization and then calculating
its magnetization using our VSM.

For weakly magnetic substances, the performance of the VSM is not satisfactory.
To measure the magnetization of such samples, the sensitivity of VSM needs to be
improved. Furthermore since the sample is vibrated at a particular frequency, a
lock-in amplifier can be used in future to measure the induced voltage for weakly
magnetic samples.
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Appendix

Figure 4.14: Code for finding α

44


