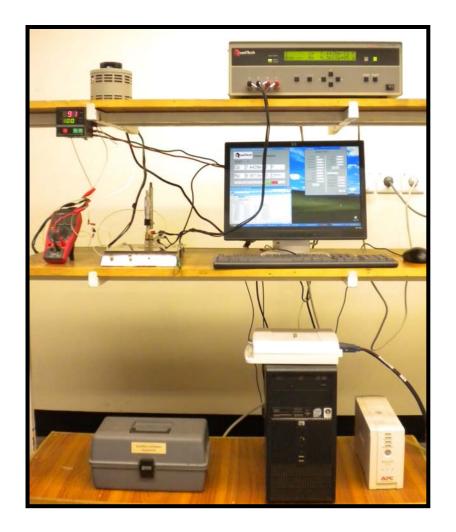
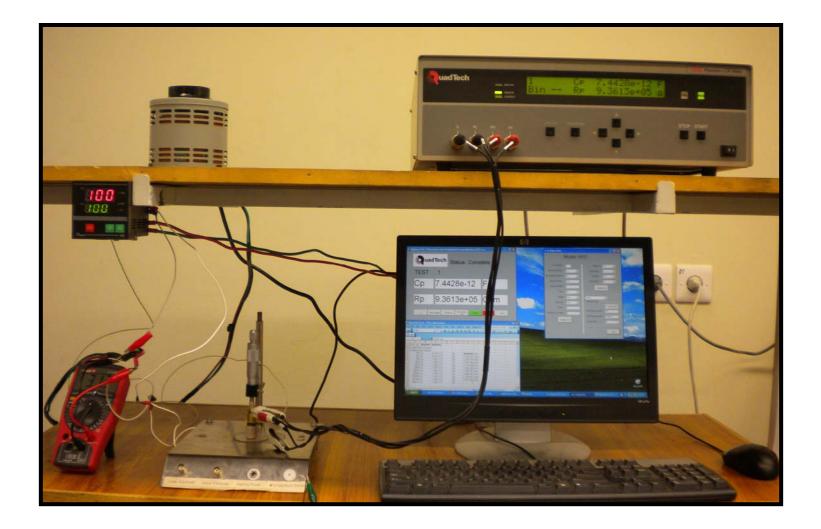
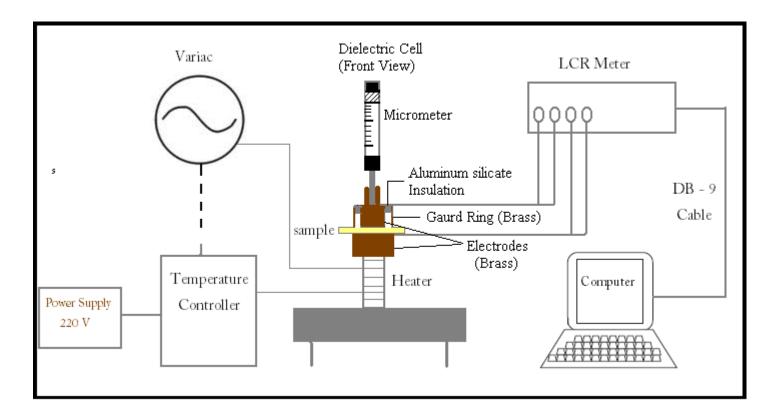
Precise High Temperature Dielectric Measurement System


Afaq Piracha and M. Sabieh Anwar School of Science & Engineering LUMS

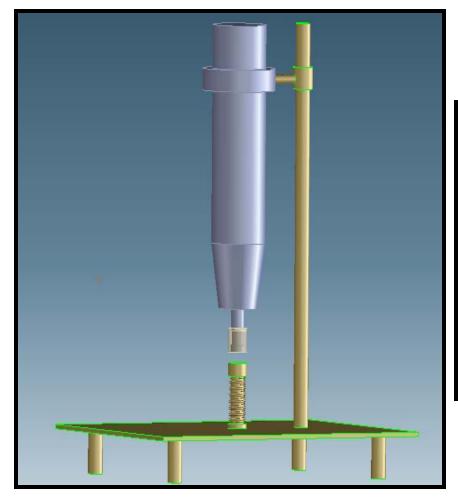
December 24, 2010

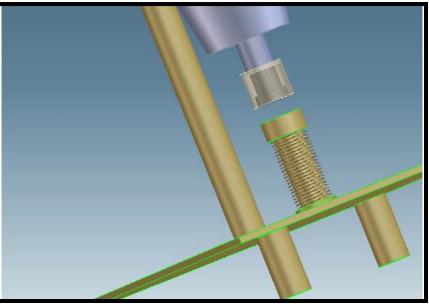

Layout

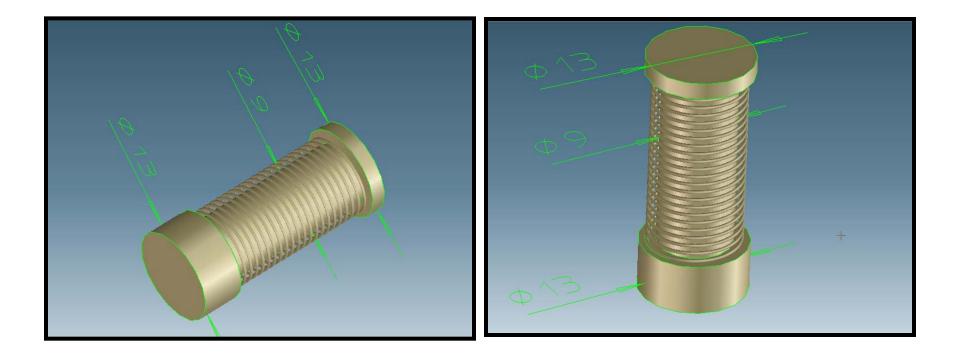
- Mechanical details of Dielectric Cell
- Design and Ratings of Dielectric Cell heater
- Setting up Temperature Controller
- Interfacing LCR meter with Computer
- Measurement of Dielectric Properties


Dielectric Setup in Physlab

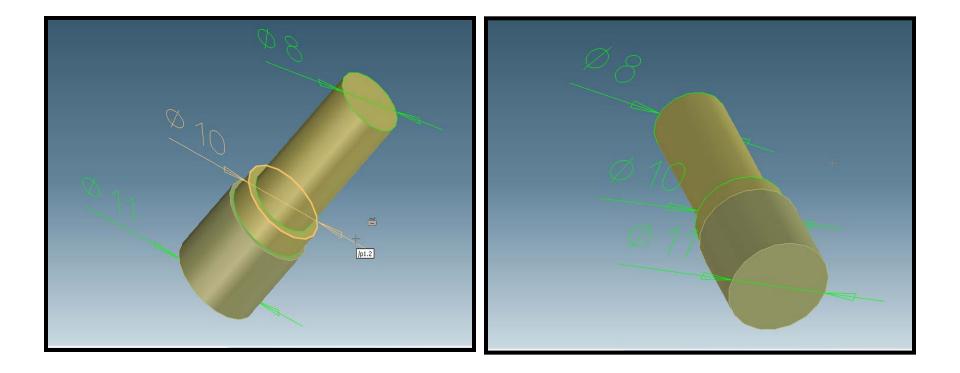
Dielectric Setup in Physlab (Cont...)

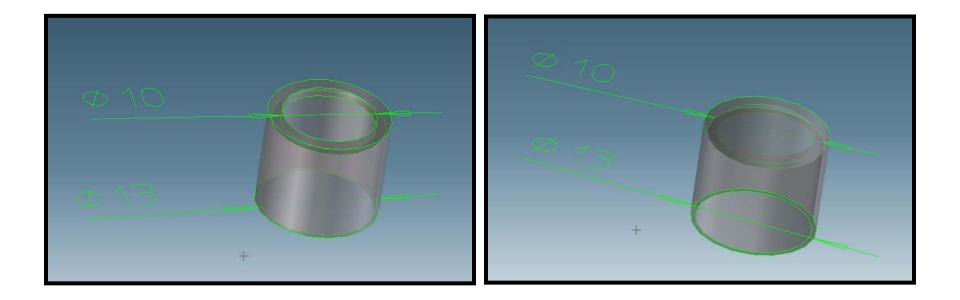


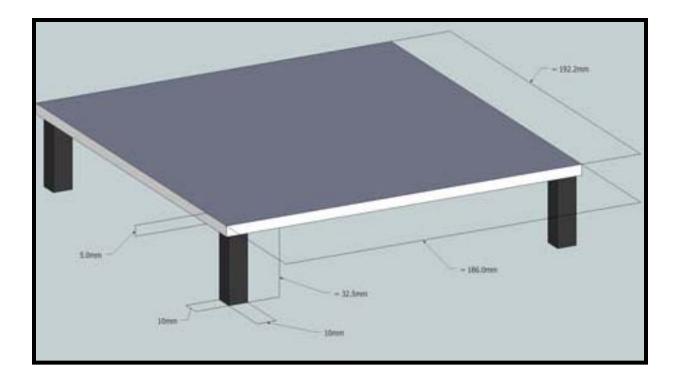

Schematic of Experimental Setup for Dielectric Measurements

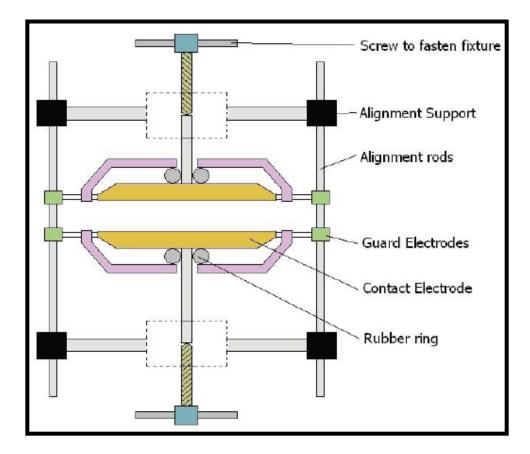

Note: Temperature dependant Dielectric Measurements can be taken only up to 300 degree C through this experimental arrangement . For much higher temperature (up to almost 800 degree C) we are manufacturing another arrangement.

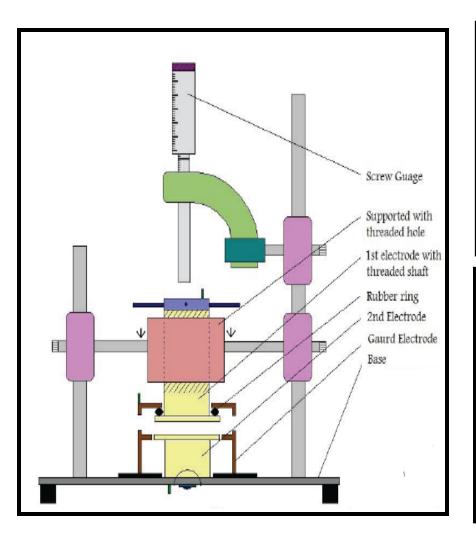
CAD 3D Model of Dielectric Cell Final Design

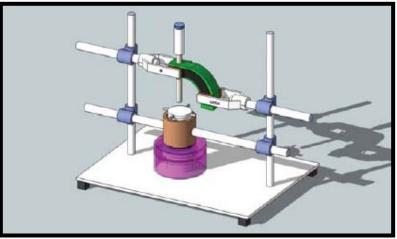


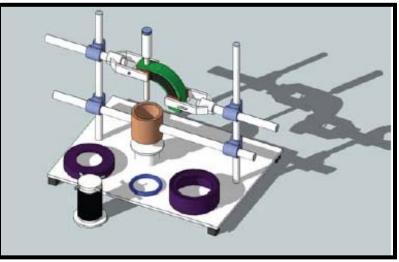

CAD 3D Model of Dielectric Cell (Cont...) Final Design Lower Electrode

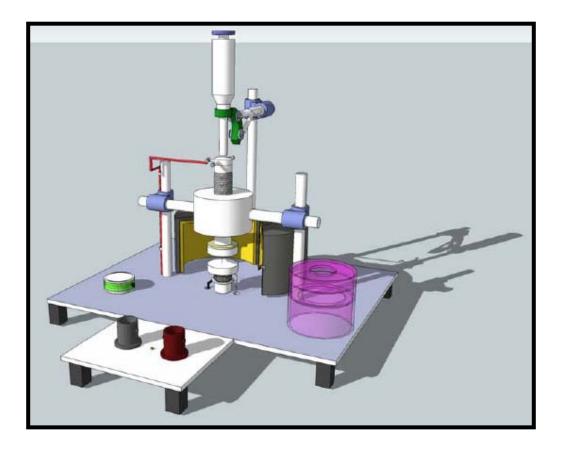

CAD 3D Model of Dielectric Cell (Cont...) Final Design Upper Electrode

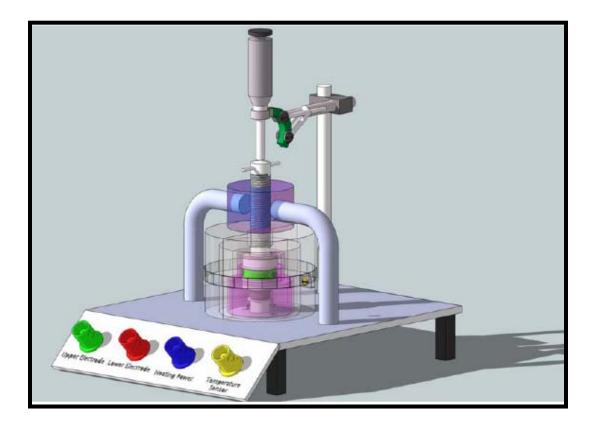

CAD 3D Model of Dielectric Cell (Cont...) Final Design Guard Ring


CAD 3D Model of Dielectric Cell (Cont...) Final Design Base Plate




Initial Dielectric Cell Designs First Design


Initial Dielectric Cell Designs (Cont...) Second Design



Initial Dielectric Cell Designs (Cont...) Third Design

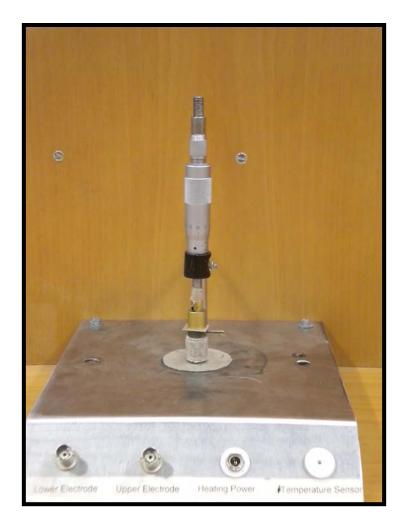
Initial Dielectric Cell Designs (Cont...) Fourth Design

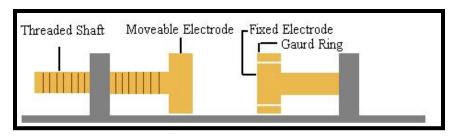
Selection of Design

Factors for selection of design:

- Complexity
- Manufacturability
- Electrical connections
- Material required
- Cost
- Thickness Measurement
- Contact stability

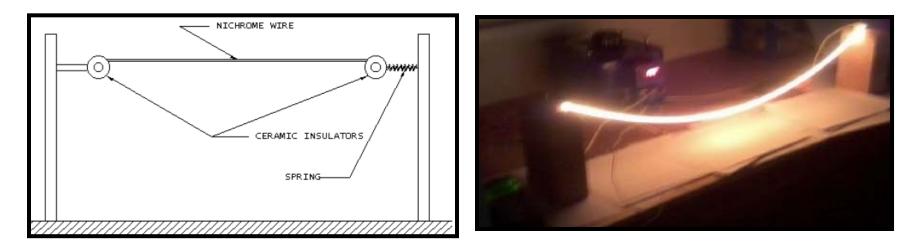
Manufacturing of Dielectric Cell





Manufacturing of Dielectric Cell (Cont...)

Horizontal Dielectric Cell



• This Dielectric Cell is designed in such way that it can be placed in vacuum tube furnace which have a capacity to rise up to 1100 degree C.

- For electrical connections we also have stainless steel vacuum flange contain 6 through brass screw threads fixed on one side of Alumina tube..
- Internal/external electrical probing can be done via high temperature insulated wires.

Designing a Heater for Dielectric Cell Test Phase

- Tests were also performed on coiled NiChrome wire in air and coiled NiChrome wire on Alumina tube.
- Data got from these tests helped us in designing heater for Dielectric Cell.

NiChrome Wire Data

		Ap	oproxima	te Ampe	eres to H	leat NiC	hrome W	/ire			
Gauge Wire	Diameter	٩F	400	600	800	1000	1200	1400	1600	1800	2000
Gauge wire	(mm)	°C	205	316	427	538	649	760	871	982	1093
10	2.591		16.2	23.3	29.7	37.5	46.0	56.0	68.0	80.0	92.0
11	2.311		13.8	19.2	24.8	31.5	39.0	48.0	57.0	67.0	78.0
12	2.057		11.6	16.1	20.8	26.5	33.5	40.8	48.0	56.0	65.0
13	1.829		9.80	13.6	17.6	22.5	28.2	34.2	41.0	48.0	55.0
14	1.626		8.40	11.6	15.0	18.8	23.5	29.0	34.6	40.5	46.0
15	1.448		7.20	10.0	12.8	16.1	20.0	24.5	29.4	34.3	39.2
16	1.295		6.40	8.70	10.9	13.7	17.0	20.9	25.1	29.4	33.6
17	1.143		5.50	7.50	9.50	11.7	14.5	17.6	21.1	24.6	28.1
18	1.016		4.80	6.50	8.20	10.1	12.2	14.8	17.7	20.7	23.7
19	0.914		4.30	5.80	7.20	8.70	10.6	12.7	15.2	17.8	20.5
20	0.813		3.80	5.10	6.30	7.60	9.10	11.0	13.0	15.2	17.5
21	0.7239		3.30	4.30	5.30	6.50	7.80	9.40	11.0	12.9	14.8
22	0.6426		2.90	3.70	4.50	5.60	6.80	8.20	9.60	11.0	12.5
23	0.5740		2.58	3.30	4.00	4.90	5.90	7.00	8.30	9.60	11.0
24	0.5105		2.21	2.90	3.40	4.20	5.10	6.00	7.10	8.20	9.40
25	0.4547		1.92	2.52	3.00	3.60	4.30	5.20	6.10	7.10	8.00
26	0.4039		1.67	2.14	2.60	3.20	3.80	4.50	5.30	6.10	6.90
27	0.3607		1.44	1.84	2.25	2.73	3.30	3.90	4.60	5.30	6.00
28	0.3200		1.24	1.61	1.95	2.38	2.85	3.40	3.90	4.50	5.10
29	0.2870		1.08	1.41	1.73	2.10	2.51	2.95	3.40	3.90	4.40
30	0.2540		0.92	1.19	1.47	1.78	2.14	2.52	2.90	3.30	3.70
31	0.2261		0.77	1.03	1.28	1.54	1.84	2.17	2.52	2.85	3.2
32	0.2032		0.68	0.90	1.13	1.36	1.62	1.89	2.18	2.46	2.76
33	0.1803		0.59	0.79	0.97	1.17	1.40	1.62	1.86	2.12	2.35
34	0.1600		0.50	0.68	0.83	1.00	1.20	1.41	1.60	1.80	1.99
35	0.1422	1	0.43	0.57	0.72	0.87	1.03	1.21	1.38	1.54	1.71
36	0.1270		0.38	0.52	0.63	0.77	0.89	1.04	1.19	1.33	1.48
37	0.1143		0.35	0.46	0.57	0.68	0.78	0.9	1.03	1.16	1.29
38	0.1016		0.30	0.41	0.50	0.59	0.68	0.78	0.88	0.98	1.09
39	0.0889		0.27	0.36	0.42	0.49	0.58	0.66	0.75	0.84	0.92
40	0.0787		0.24	0.31	0.36	0.43	0.50	0.57	0.64	0.72	0.79

Ohms/1	ft at Ro	om Temp	erature
Gauge Wire	Diameter (mm)	NiCr A	NiCr C
10	2.591	0.06248	0.06488
11	2.311	0.07849	0.08151
12	2.057	0.09907	0.10290
13	1.829	0.12540	0.13020
14	1.626	0.15870	0.16480
15	1.448	0.20010	0.20780
16	1.295	0.24990	0.25950
17	1.143	0.32100	0.33330
18	1.016	0.40630	0.42190
19	0.914	0.50150	0.52080
20	0.813	0.63480	0.65920
21	0.7239	0.80020	0.83100
22	0.6426	1.01500	1.05500
23	0.5740	1.27300	1.32200
24	0.5105	1.60900	1.67100
25	0.4547	2.02900	2.10700
26	0.4039	2.571	2.670
27	0.3607	3.224	3.348
28	0.3200	4.094	4.252
29	0.2870	5.090	5.286
30	0.2540	6.500	6.750
31	0.2261	8.206	8.522
32	0.2032	10.160	10.550
33	0.1803	12.890	13.390
34	0.1600	16.380	17.010
35	0.1422	20.730	21.520
36	0.1270	26.000	27.000
37	0.1143	32.100	33.330
38	0.1016	40.630	42.190
39	0.0889	53.060	55.100
40	0.0787	67.640	70.240

Outcomes to design a NiChrome wire heater

To design and create our own NiChrome wire heater using tables and figures above, we need to play with these parameters.

- **DIAMETER** The smaller the wire, the higher the resistance per foot
- **LENGTH** The longer the wire, the higher the over all resistance
- **HEAT** The more heat a wire generates, the more resistance it will create

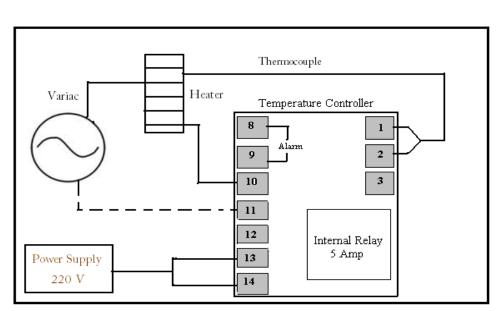
Calculations of Designing heater for Dielectric Cell

- Available Nichrome wire: 37 AWG Dia .1143 resistance 108 ohm/ meter
- Maximum achievable Temp of NiChrome wire = 1100 degee C (NiChrome Wire Data Tables)
- Max current under safety: 0.65 A

We want to make 35 Wattage heater

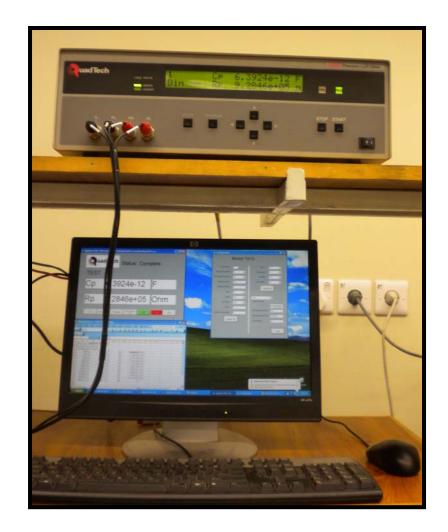
- P=VI V=35/.65 Max Voltage = 53 V
- V=IR R=53/.65 Req. circuit resistance = 81 ohms
- Length of wire = .75 meters

- 37 Gauge Nichrome Wire C 108.2 ohms per meter resistance
- 0.7 meter of length (constraint: Design Space) = 75.6 Ohms resistance
- 0.65 Amps (Temperature desired 1100 degree centigrade)
- V=IR
 V = .65 * 75.6
 Max Voltage = 50 V
 - P=VI P = 50* .65 Wattage = 32 Watts


Excel Sheet for NiChrome wire heater calculations

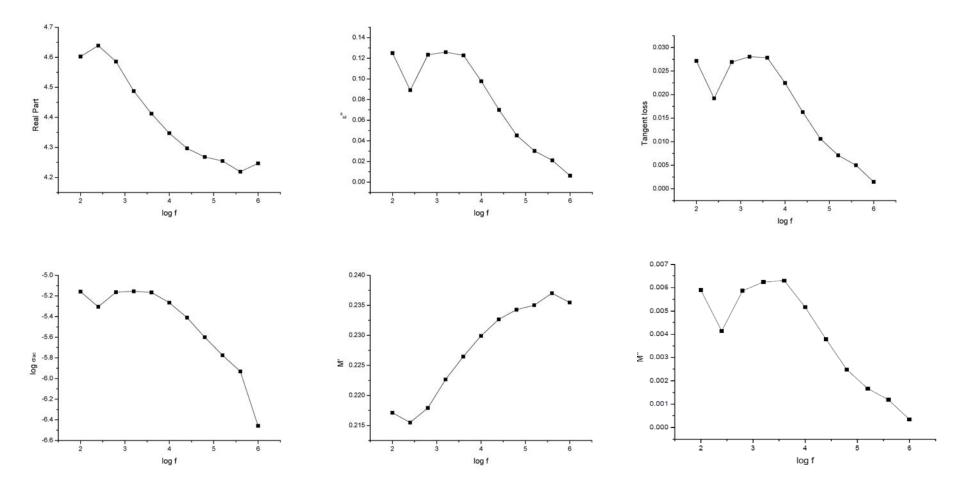
Microsoft Excel - Calculations_1							osoft Excel - C	alculations_1								
:] Elle Edit View Insert Format Iools Data Window Help Adobe PDF							:엘] Eile Edit View Insert Format Iools Data Window Help Adobe PDF									
🗓 📸 🖬 🔓 🖂 🕼 🖏 🖏 🐘 🚵 🖎 • 🟈 🔊 • 🔍 • 😓 Σ • 🗍 ϟ 🛄 🖓 🐵 📲 Verdana 🔹 16 • β Β. Ζ						: 🗋 🞯 🖬 📮 🗃 🖪 🔃 🖤 🛄 Χ 🖻 🏝 • 🏈 ヴ • 🔍 • 🧐 Σ • 💱 🕼 🖓 🎯 📲 Verdana 🔹 10 🔸										
3 1	<u>民</u> 愛。							· 12 12 。								
F8	3 🔹	fx			G	45 🗸	<i>f</i> ∡									
ABCDEFGHIJKLM							В	С	D	E F (н	I	ј к	L	MN	
2						1 2					12	(a)				
3	3 Direct Current(DC) Amps (A), not miliAmps (mA) Ohms							h in Inches								
4							-									
5							1	2								
6	č.	10	2	. 5	-	6 7			1							
7						8		Diameter		Single Wire	mperage for	r Desired Tem	Minimum Vo	oltage Rating		
9			i	Inches	mperage for Desired Tem	10	Gauge Wire	(mm)	Ohms/foot	Resistance	400°F	600%F	400°F	600 %F		
10	Gauge Wi	re Diameter	Ohms/foot	<mark>Aaximum Lengt</mark>	imperage for Desired Tem	11	10	2.591	0.06488	0.0649	16.2	23.3	1.1	1.5		
11		(mm)		of Wire	400 °F 600 °F	12	11	2.311	0.08151	0.0815	13.8	19.2	1.1	1.6		
12	10	2.591	0.06488	924.78	15.2 23.3	13	12	2.057	0.1029	0.1029	11.6	16.1	1.2	1.7		
13	11	2.311	0.08151	736.11	13.8	14	13	1.829	0.1302	0.1302	9.8	13.6	1.3	1.8		
14	12	2.057	0.1029	583.09	11.6 15.1	15	14	1.626	0.1648	0.1648	8.4	11.6	1.4	1.9		
15	13	1.829	0.1302	460.83	38	16	15	1.448	0.2078	0.2078	7.2	10.0	1.5	2.1		
16	14	1.626	0.1648	364.08	84 11.5	17	16	1.295	0.2595	0.2595	6.4	8.7	1.7	2.3		
17	15	1.448	0.2078	288.74	72 200	18	17	1.143	0.3333	0.3333	5.5	7.5	1.8	2.5		
18	16	1.295	0.2595	231.21	<u> </u>	19	18	1.016	0.4219	0.4219	4.8	6.5	2.0	2.7		
19	17	1.143	0.3333	180.02	<u> </u>	20	19	0.914	0.5208	0.5208	4.3	5.8	2.2	3.0		
20	18	1.016	0.4219	142.21	4.6	21	20	0.813	0.6592	0.6592	3.8	5.1	2.5	3.4		
21	19	0.914	0.5208	115.21	43///5/8///	22	21	0.7239	0.831	0.831	3.3	4.3	2.7	3.6		
22	20	0.813	0.6592	91.02		23	22	0.6426	1.055	1.055	2.9	3.7	3.1	3.9		
23	21	0.7239	0.831	72.20	23 43	24	23	0.5740	1.322	1.322	2.58	3.3	3.4	4.4		
24	22	0.6426	1.055	56.87	<u> </u>	25	24	0.5105	1.671	1.671	2.21	2.9	3.7	4.8		
25	23	0.5740	1.322	45.39	2.58 3.3	26	25	0.4547	2.107	2.107	1.92	2.52	4.0	5.3		
26	24	0.5105	1.671	35.91	2.21	27	26	0.4039	2.670	2.670	1.67	2.14	4.5	5.7		
27	25	0.4547	2.107	28.48	1.92 2.52	28	27	0.3607	3.348	3.348	1.44	1.84	4.8	6.2		
28	26	0.4039	2.670	22.47	1.67	29	28	0.3200	4.252	4.252	1.24	1.61	5.3	6.8		
29	27	0.3607	3.348	17.92	1.44 1.84	30	29	0.2870	5.286	5.286	1.08	1.41	5.7	7.5		
30	28	0.3200	4.252	14.11	1.24 1.61	31	30	0.2540	6.750	6.750	0.92	1.19	6.2	8.0		

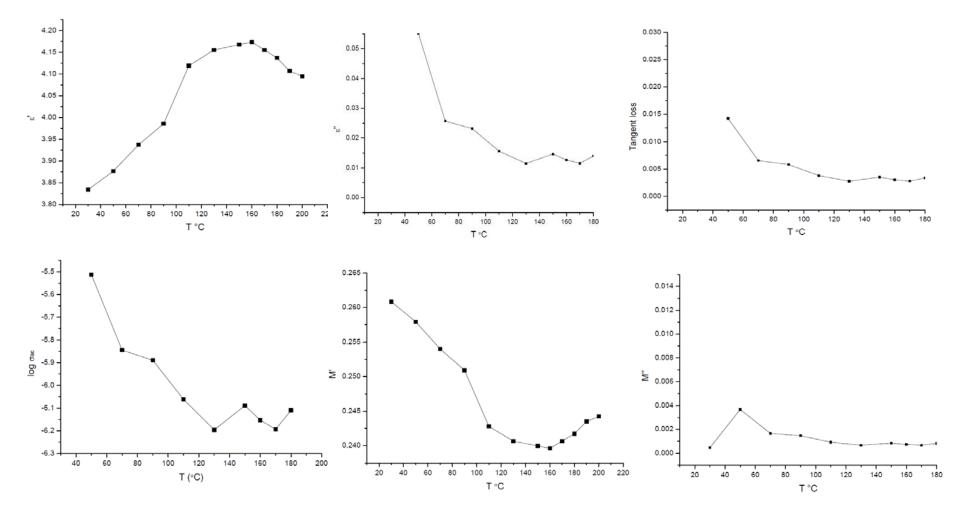
Setting up Temperature Controller with Dielectric measurement system



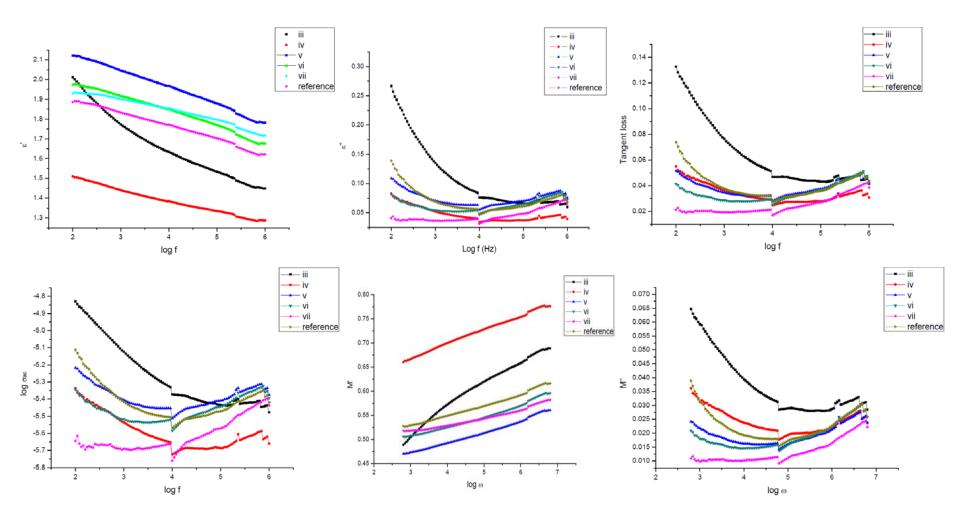
Front Panel of Temperature Controller

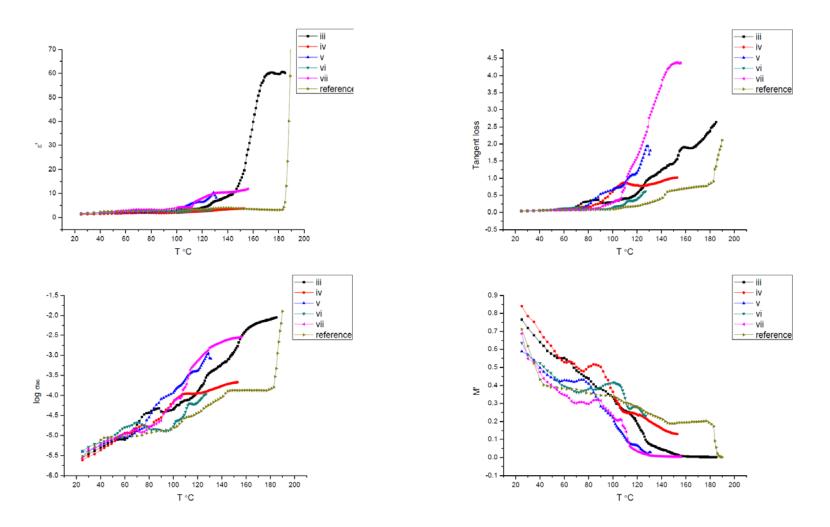
Circuitry for Temperature Control setup

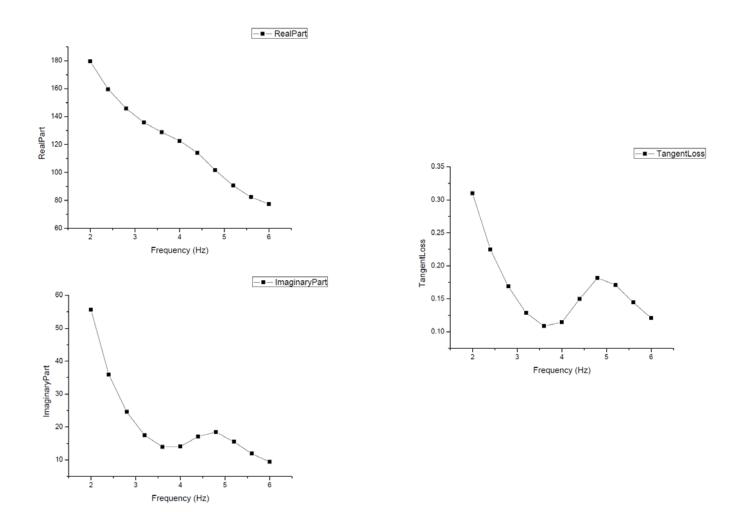

LCR meter/Computer Interface


LCR meter/Computer Interface (Cont...)

Configuration			🛛 🔍 QuadTech 1900 Virtual Front Panel Wiza 🔳 🗖 🔀
	Model 19	910	ComPort: 1 💌 Baud: 9600 💌
Test Number Primary Parameter Secondary Parameter	1 Cp 💌	Median OFF 💌 Cable Comp. 0 💌 Leveling OFF 💌	Finished Exit QuadTech, Inc. 5 Clock Tower Place Maynard, MA 01754 www.quadtech.com 1-800-253-1230 Version 2.0
Frequency (Hz) Voltage (VRMS) Bias	100 1 Off 🗨	Source Res. 25	TEST 1
Range Accuracy	Auto 💌 High 💌	Sweep	Cp 7.6296e-12 F Rp 1.0748e+10 Ohm
Delay Number to Average	4	Start Frequency (Hz) 1000000	Log Stop Logging Configure Not Locked Constant Stop Even 日本 Configure Not Locked Constant Stop Even 同時にの対抗ないた。 「使いたないのでは、ないのでは、ないないのでは、ないないのでは、ないのいのでは、ないいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい
Upda	ite Test	Sweep Steps 10	A B A B C D F G H J K L M N O P O 1 Issue tugg 1/2/2/2010 1/0/2/4 P Real Part Tagle to time part AC Cond log AC cond Real mod Img mod 2 Configuration Changed 7 7/2/6/4 P A/2/6/6 0/2/19 0.125 5/2/6/6 5/2/17/15 0.026897 4 2/1 2/9/2/4 / 0 7/2/6/6/6 0/2/19 0.125 5/2/6/6 5/2/17/15 0.026897 4 2/1 2/9/2/4 / 0 7/2/6/6/6 0/2/17/9 0.126 5/2/6/6 0/2/17/15 0.026897 4 2/1 2/9/2/4 / 0 7/2/6/14 0/2/17/14 0/0/2/17/14 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0/2/17/15 0


Measurement of Dielectric Properties Mica (frequency dependant)


Measurement of Dielectric Properties (Cont...) Mica (temperature dependant)


Measurement of Dielectric Properties (Cont...) MNPs/Polymer (frequency dependant)

Measurement of Dielectric Properties (Cont...) MNPs/Polymer (temperature dependant)

Measurement of Dielectric Properties (Cont...) PbTiO₃ (frequency dependant)

