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This section assumes familiarity with
solving differential equations (see e.g.

Boas (1983), Riley et al

(2006)). It

can be omitted at first reading.
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10.1 A closed surface § enclozes

a volume V. The total heat flow out of
S is given by fs J-d85.

The thermal diffusion
equation

In the previous chapter, we have seen how the thermal conductivity
of a gas can be calculated using kinetic theory. In this chapter, we
look at solving problems involving the thermal conductivity of matter
using a technique which was developed by mathematicians in the late
eighteenth and early nineteenth centuries. The key equation describes
thermal diffusion, i.e. how heat appears to ‘diffuse’ from one place to
the other, and most of this chapter introduces techniques for solving
this equation.

10.1 Derivation of the thermal diffusion
equation

Recall from eqn 9.15 that the heat flux J is given by

S (10.1)

This equation is very similar mathematically to the equation for particle
flux @ in eqn 9.26 which is, in three dimensions,

® = —-DVn, (10.2)
where D is the diffusion constant, and also to the flow of electrical
current. given by the current density J. defined by

Jo=0E =—0Vg, (10.3)

where o is the conductivity, E is the electric field and ¢ here is the
electric potential. Because of this mathematical similarity, an equation
which is analogous to the diffusion equation (eqn 9.36) holds in each
case. We will derive the thermal diffusion equation in this section.

In fact in all these phenomena, there needs to be some account of the
fact that you can’t destroy energy, or particles, or charge. (We will only
treat the thermal case here.) The total heat flow out of a closed surface
S is given by the integral

J-ds,

5
and is a quantity which has the dimension of power. It is therefore
equal to the rate which the material inside the surface is losing energy.

(10.4)
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This can be expressed as the rate of change of the total thermal energy

inside the volume V' which is surrounded by the closed surface S. The
thermal energy can be written as the volume integral [ v CT'dV, where  We haven't worried about what the
€ here is the heat capacity per unit volume (measured in JK~!m™3) [31‘31‘0;)0f Llu’r{;ﬁ?ﬂ energy is; there ilOlﬂd
i i . : . 15 e an additive, time-independent,
and is equal to pe, where p is the density and ¢ is the heat capacity per *™° : BN Sl WD
" &g : N i constant in the expression for total
unit mass (the specific heat capacity, see Section 2.2). Hence thermal energy, but since we are going
to differentiate this with respect to time

/b J-d8 = _% / CT dV. (105) to obtain the rate of change of thermal
s SV

o energy, it doesn't matter.

The divergence theorem implies that

/J = | T | (10.6)
J 5 JV
and hence that
nd hence - C@T ik
E— e 10.

Substituting in eqn 10.1 then yields the thermal diffusion equation
which is

a1

— = DV*T, 10.8

where D = x/C is the thermal diffusivity. Since x has units Wm~! K~!
and C' = pec has units JK~'m—*, D has units m2s—1.

10.2 The one-dimensional thermal
diffusion equation

In one dimension, this equation becomes

aT a%r
o = Por (H:9)

and can be solved using conventional methods.

Example 10.1

Solution of the one-dimensional thermal diffusion equation
The one-dimensional thermal diffusion equation looks a bit like a wave
equation. Therefore, one method to solve eqn 10.9 is to look for wave-like
solutions of the form

T(z,t) o expli(ka — wt)), (10.10)

where k = 2/ is the wave vector, w = 2 f is the angular frequency, A
is the wavelength and f is the frequency. Substitution of this equation
into egn 10.9 yields

—iw = —Dk® (10.11)
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and hence

1w

2 e T ‘
R =2 (10.12)

so that
w
k=414 — 10.1:
(1+1)y/ 55 (10.13)

The spatial part of the wave, which looks like exp(ikz), can either be of
the form

exp ((1 — 1} f 2—?‘33‘) ; which blows up as + — —oc , (10.14)

or
exp | (—i+ 1)\/ pE ) which blows up as z — oo . (10.15)

Let us now solve a problem in which a boundary condition is applied
at @ = 0 and a solution is desired in the region z > 0. We don’t want
solutions which blow up as # — oo and pick the first type of solution
(i.e. eqn 10.14). Hence our general solution for x > 0 can be written as

Tl = Z A(w) exp(—iwt) exp ((1 - 1)[%&) . (10.16)

where we have summed over all possible frequencies. To find which fre-
quencies are needed, we have to be specific about the boundary condition
for which we want to solve. '

Let us imagine that we want to solve the one-dimensional problem of
the propagation of sinusoidal temperature waves into the ground. The
waves could be due to the alternation of day and night (for a wave with
period 1 day), or winter and summer (for a wave with period 1 year).
The boundary condition can be written as

T(0,1) = T + AT cos . (10.17)

This boundary condition can be rewritten

AT o ﬂe—im_

T(0,t) =Ty + o ey (10.18)
However, at z = 0 the general solution (eqn 10.16) becomes
T(0,t) =)  Alw) exp(—iwt). (10.19)
e

Comparison of eqns 10.18 and 10.19 implies that the only non-zero values
of Alw) are

A(0) = T, A(----Q):% A4 A(Q):%. (10.20)

Hence the solution to our problem for & > 0 is

T(x,t) = Tp + AT e */® cos (Qt — %) , (10.21)
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: 2D 2K 3
S=va =V (10.22)

is known as the skin depth. The solution in eqn 10.21 is plotted in
Fig. 10.2. [Note that the use of the term skin depth brings out the
analogy between this effect and the skin depth which arises when elec-
tromagnetic waves are incident on a metal surface, see e.g. Griffiths
(2003).]

We note the following important features of this solution:

where

e T falls off exponentially as ¢~ %/¢.
e There is a phase shift of x/d§ radians in the oscillations.
o § o Q712 g0 that faster oscillations fall off faster.

o7

Fig. 10.2 A contour plot and a surface plot of eqn 10.21, showing that the temper-

ature falls off exponentially as ¢~ %/%. The contour plot shows that there is a phase
shift in the oscillations as x increases.
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1See Appendix B.

10.3 The steady state
If the system has reached a steady state, its properties are not time-
dependent. This includes the temperature, so that
arT
ae

Hence in this case, the thermal diffusion equation reduces to

0. (10.23)

VT =0, (10.24)

which is Laplace’s equation.

10.4 The thermal diffusion equation for a
sphere

Very often, heat transfer problems have spherical symmetry (e.g. the
cooling of the Earth or the Sun). In this section we will show that one
can also solve the (rather forbidding looking) problem of the thermal
diffusion equation in a system with spherical symmetry. In spherical
polars, we have in general that V2T is given by!

19 aT G oT L~ O
o I8 %, ORI 0 T . AT
¥ 2 Ir (T 87’) l % sin @ 60 (qmaﬁﬂ)_' r2sin? g 0¢?’ 1520)

so that if T is not a function of @ or ¢ we can write

s 10 (00T -
VT_-'rQ 7w\ 5 ) (10.26)

and hence the diffusion equation becomes

ar w1 8 [ ,0T

- or

I ]

Example 10.2

The thermal diffusion equation for a sphere in the steady state.
In the steady state, 0T /9t = 0 and hence we need to solve

1 @ ¢ 8T
7‘_25 (T'ZE) = U. (1028)

Now if T is independent of r, 8T /9r = 0 and this will be a solution.
Moreover, if 2(87/0r) is independent of r, this will generate another
solution. Now r?(9T/8r) = constant implies that T o r~!. Hence a

general solution is

T = Ay % (10.29)
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where A and B are constants. This should not surprise us if we know
some electromagnetism, as we are solving Laplace’s equation in spherical
coordinates assuming spherical symmetry, and in electromagnetism the
solution for the electric potential in this case is an arbritary constamnt
plus a Coulomb potential which is proportional to 1/r.

(=5 |

A practical problem one often needs to solve is cooking a slab of meat.
The meat is initially at some cool temperature (the temperature of the
kitchen or of the refrigerator) and it is placed into a hot oven. The
skill in cooking is getting the inside up to temperature. How long does
it take? The next example shows how to calculate this for the (rather
artificial) example of a spherical chiclken!

J i

Example 10.3

The spherical chicken

A spherical chicken? of radius a at initial temperature Ty is placed into
an oven at temperature 7y at time ¢ = 0 (see Fig. 10.3). The boundary
conditions are that the oven is at temperature 77 so that

T(a,t) =11, (10.30)
and the chicken is originally at temperature Ty, so that
T(r,0) =T (10.31)

We want to obtain the temperature as a function of time at the centre
of the chicken, i.e. T(0,¢).

Solution: We will show how we can transform this to a one-dimensional
diffusion equation. This is accomplished using a substitution

Tlr,t) =T + M (10.32)

where B(r,t) is now a function of r and ¢. This substitution is motivated
by the solution to the steady—state problem in eqn 10.29 and of course
means that that we can write B as B = r(1T' — 17).

We now need to work out some partial differentials:

ar  10B
— = ——, 10.33
ot prgt L
oT B 10B
— =t —— 10.34
or e At ( )
and hence multiplying eqn 10.34 by 7? we have that
5 0T 0B
rP— =-B+r—, 10.35
" or T ar’ d )

2The methods in this example can also
be applied to a spherical nut roast.

Fig. 10.3 Initial condition of a spheri-
cal chicken of radius a at initial temper-
ature Ty which is placed into an oven at
temperature T at time ¢ = (.
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Notice that the functions sin(nwr/a)
and sin(mmr/a) are orthogonal unless
m = .

and therefore

ad [ 0T 9°B o
Br ]:T ('-}_]r] —’T’W: (JU'_))(J)
which means that eqn 10.27 becomes
aB J°B e

where D = x/C. This is a one-dimensional diffusion equation and is
therefore much easier to solve than the one with which we started.
The new boundary conditions can be rewritten as follows:

(1) because B = r(T' — T1) we have that B = 0 when r = 0:
B(0,t) = 0; (10.38)
(2) because T'=1T) at r = a we have that:
Bla,t) =0 (10.39)
(3) because T =Ty at t =0 we have that:
B(r,0) = r(Ty — T)). (10.40)

We look for wave-like solutions with these boundary conditions and
hence are led to try .
B = sin(kr)e™", (10.41)

and substituting this into eqn 10.37 yields
iw = Dk2, (10.42)
The relation ka = nx where n is an integer fits the first two boundary

conditions and hence )
. nw
iw=D (—) ; (10.43)
a
and hence our general solution is

B(rt) =3, Ansin (1) P00, (10.44)
n=1

To find A,,, we need to match this solution at + = 0 using our third
boundary condition. Hence

r(To—Ti) =Y Aysin (%) , (10.45)
=1

We multiply both sides by sin (m;rr) and integrate, so that

a = > o ;
/ sin (mm ) r(To—Ty)dr = E A”’j sin (mﬂ-?ﬂ) sin (nﬂ) dr.
L A n=1 0 4 é

(10.46)




The right-hand side yields A,,a/2 and the left-hand side can be inte-
grated by parts. This yields

2a —
A= (T = To)(-1)™, (10.47)
and hence that
2a e
B(r,t) = (T, — To) >, 1) sin(nar/a)e” PO/ (10.48)
- .
n=1

so that using eqn 10.32 the temperature T'(r,?) inside the chicken (r < a)
behaves as

5 = (—=1)*sin(nar/a A
T(r,t) =T +;?G(T1 ~Tp) Y ( n) m(n:? &) o=piue/ot. (10.49)
n=1

The centre of the chicken has temperature

T(0,8) = Ty + 2(Ty = Th) > _(~1)"e~Dlnm/a’t, (10.50)

Fi=1

using the fact that as r — 0,

— —, (10.51)

93

1 . /nmr nar
in
(5]

The expression in eqn 10.50 (see Fig. 10.4) becomes dominated by the
first exponential in the sum as time { increases, so that

T = T — 9Ty~ T PRI (10.52)

for t > a?/Dn?. Analogous behaviour is of course found for a warm
sphere which is cooling in a colder environment. A cooling or warming
body thus behaves like a low-pass filter, with the smallest exponent
dominating at long times. The smaller the sphere, the shorter the time
before it warms or cools according to a simple exponential law,

i |

10.5 Newton’s law of cooling

Newton’s law of cooling states that the temperature of a cooling body
falls exponentially towards the temperature of its suwrroundings with a
rate which is proportional to the area of contact between the body and
the environment. The results of the previous section indicate that it is
an approximation to reality, as a cooling sphere only cools exponentially
at long times.

Newton’s law of cooling is often stated as follows: the heat loss of a
solid or liquid surface (a hot central heating pipe or the exposed sur-
face of a cup of tea) to the surrounding gas (usually air, which is free

10.5

Newton’s law of eooling 95
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Fig. 10.4 The sum of the first
few terms of T(0,t) = T1 +
201, —TD}Efﬂ ,__]}1'ae—D(n'.-r;‘a)'ét are
shown, together with 17(0.¢) evaluated
from all terms (thick solid line). The
sums of only the first few terms fail near
t = 0 and one needs more and more
ferms to give an accurate estimate of
the temperatures as ¢ gets closer to 0
{although this is the region where one
knows what the temperature is any-
wayl!).

Temperature, T'

| | 1 |
a’ / Dr’ 24 / D’ 34 / Dr’ 4d° / D’

-]

Time, {

to convect the heat away) is proportional to the area of contact mul-
tiplied by the temperature difference between the solid/liquid and the
gas. Mathematically, this can be expressed as an equation for the heat
flux J which is

J = hAT, (10.53)

where AT ig the temperature difference between the body and its envi-
ronment and h is a vector whose direction is normal to the surface of
the body and whose magnitude h = |h| is a heat transfer coefficient. In
general, i depends on the temperature of the body and its surroundings
and wvaries over the surface, so that Newton's “law” of cooling is more
of an empirical relation.

This alternative definition generates an exponential decay of temper-
ature as demonstrated in the following example.

Example 10.4

A polystyrene cup containing tea at temperature T, at ¢ = 0 stands
for a while in a room with air temperature T.;.. The heat loss through
the surface area A exposed to the air is, according to Newton's law of
cooling, proportional to A(T'(t) — Thi, ), where T'(¢) is the temperature of
the tea at time t. Ignoring the heat lost by other means, we have that

_C“B_T = JA — h/].(T = 'Tair):\

7 (10.54)



where .J is the heat flux, €' is the heat capacity of the cup of tea and h
is a constant, so that

= Tair + (Thot = Ta,ir)e_)\t

where A = Ah/C.
| |

What makes these types of calculations of heat transfer so difficult is
that heat transfer from bodies into their surrounding gas or liguid often
is dominated by convection.® Convection can be defined as the transfer
of heat by the motion of or within a fluid (i.e. within a liquid or a gas).
Convection is often driven by the fact that warmer fluid expands and
rises, while colder fluid contracts and sinks; this causes currents in the
fluid to be set up which rather efficiently transfer heat. Our analysis
of the thermal conductivity in a gas ignores such currents. Convection
is a very complicated process and can depend on the precise details of
the geometry of the surroundings. A third form of heat transfer is by
thermal radiation and this will be the subject of chapter 23.

10.6 The Prandtl number

How wvalid is it to ignore convection? It's clearly fine to ignore it in
a solid, but for a fluid we need to know the relative strength of the
diffusion of momentum and heat. Convection dominates if momentum
diffusion dominates (because convection involves transport of the gas
itself} but conduction dominates if heat diffusion dominates. We can
express these two diffusivities using the kinematic viscosity v = n/e,
(with units m®s™!) and the thermal diffusivity D = x/pe, (also with
units m?s™!), where p is the density. To examine their relative mag-
nitudes, we define the Prandtl number as the dimensionless ratio oy,
obtained by dividing v by [, so that

v ey

(_}'p:—:

= (10.56)

. |29 . P .

For an ideal gas, we can use ¢, /ey = v = 3, and using eqn 9.21 (which
states that x = cyn) we arrive at o, = However, eqn 9.21 resulted
from an approximate treatment, and the corrected version is eqn 9.44

(which states that x = gney ), and hence we arrive at

wolo

(10.57)

For many gases, the Prandt]l number is found to be around this value.
It is between 100 and 40000 for engine oil and around 0.015 for mer-
cury. When o, > 1 diffusion of momentum (i.e. viscosity) dominates
over diffusion of heat (i.e. thermal conductivity), and convection is the
dominant mode of heat transport. When o, < 1 the reverse is true, and
thermal conduction dominates the heat transport.

10.6  The Prandtl number 97

30One ean cither have forced convec-
tion, in which fluid is driven past the
cooling body by some external input of
work (provided by means of a pump,
fan, propulsive motion of an aircraft
etc.), or free convection, in which any
external fluld motion is driven only by
the temperature difference between the
cooling body and the surrounding fluid.
Newton's law of cooling is actually only
correct for forced convection, while for
free convection {which one should prob-
ably use for the example of the cool-
ing of a cup of tea in air) the heat
tranafer coefficient iz temperature de-
pendent (h oc (AT)1/* for laminar How,
hooc (AT)Y3 in the turbulent regime).
We examine convection in stars in more
detail in Section 35.3.2.



98  The thermal diffusion equation

10.7 Sources of heat

If heat is generated at a rate H per unit volume, (so H is measured in
Win~?), this will add to the divergence of J so that eqn 10.7 becomes

T N
V-J=-C5 +H, (10.58)

and hence the thermal diffusion equation becomes

cor H
=" - 10.59
¥ KoOf &’ 10,680
or equivalently
O cope. B
a7 = DV°T + ok (10.60)

Example 10.5

A metallic bar of length L with both ends maintained at 7' = T passes
a current which generates heat H per unit length of the bar per second.
Find the temperature at the centre of the bar in steady state.
Solution: In steady state,

ar

— =0, 10.61
=g (10.61)
and so
8T H
— = 10.62
dx? K ( )
Integrating this twice yields
H - .
T £ S, (10.63)
2K

where o and J are constants of integration. The boundary conditions
imply that

i (L — ), (10.64)

T

-1 =
so that at @ = L/2 we have that the temperature is

7T 2
T =75+ L . (10.65)
o
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e The thermal diffusion equation (in the absence of a heat source) is
ar
== DA (10.66)
i
where D = x/C is the thermal diffusivity.
e ‘Steady state’ implies that
5% (physical quantity) = 0. (10.67)
e If heat is generated at a rate H per unit volume per unit time,
then the thermal diffusion equation becomes
aT H
— =DV’T + —. 10.68
at C ( )
e Newton's law of cooling states that the heat loss from a solid or
liquid surface is proportional to the area of the surface multiplied
by the temperature difference between the solid/liquid and the gas.
|
Exercises
(10.1) One face of a thick uniform layer is subject to sinu- I. The temperature of its surface is fixed at Ty us-
soidal temperature variations of angular frequency ing water cooling. Show that the temperature 7'(r)
w. Show that damped sinusoidal temperature os- inside the wire at radius r is given by
cillations propagate into the layer and give an ex- G
-« Yo : . . : T
pression for the decay length of the oscillation am T(r) = To + 102 = e,
plitude. An?alxk
A ‘c‘o.llar 13. bul‘lt rundergmund and is (:(?vc‘ered by a (b) The wire is now placed in air at temperature Tair
ceiling which is 3m thick and made of limestone, 1 } ¢ S R P
Th e ture is subsect 1o dailv and the wire loses heat from its surface according to
18 OuLEIOe L(?mper; L;rc iranbjecy torcaly uctu—‘ Newton’s law of cooling (so that the heat flux from
ations of amplitude 10°C and annual fluctuations of : e g
- ; . , . the surface of the wire is given by a(7T(a) — Thi),
20°C. Estimate the magnitude of the daily and an- ; o i : :
LT, N where o is a constant). Find the temperature T(r).
nual temperature variations within the cellar. As- : ) ;
suming that January is the coldest month of the (10.3) Sho“’ that f(_)r the problem Olt & Spht?rlcal chicken be-
vear, when will the cellar’s temperature be at its ing cooked in an oven considered in Example 10.3
ovwests in this chapter, the temperature T gets 90% of the
way from T to 7} after a time ~ o In 20 f?rz I
[The thermal conductivity of limestone is . : . i
e T “ ; i (10.4} A microprocessor has an array of metal fins at-
1.6 Wm™ K, and the heat capacity of limestone ) L .
is 25 % 106 JK—1 m—> ] v tached to it, whose purpose is to remove heat gen-
" ’ erated within the processor. Each fin may be rep-
(10.2) (a) A cylindrical wire of thermal conductivity &, ra- resented by a long thin cylindrical copper rod with

dius a and resistivity p uniformly carries a current

one end attached to the processor; heat received by
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(10.6)

Frercises

the rod through this end is lost to the surroundings
through its sides.

Show that the temperature 7(z,t) at location x
along the rod at time { obeys the equation

or T 2
— =k — —R(T),
ot dx*  a (T),
where a is the radius of the rod, and R(T) is the rate
of heat loss per unit area of surface at temperature
T

The surroundings of the rod are at temperature 1j.
Assume that R(T) has the form of Newton’s law of
cooling, namely

!’CIJ

R(T) = A(T — Tp).

In the steady state:

(a) obtain an expression for T as a function of z for
the case of an infinitely long rod whose hot end has
temperature Tm;

(b) show that the heat that can be transported away
by along rod (with radius @) is proportional to a2,
provided that A is independent of a.

In practice the rod is not infinitely long. What
length does it need to have for the results above to
be approximately valid? The radius of the rod, a,
is 1.0 mm.

[The thermal conductivity of copper s
3RO0Wm K. The cooling constant A =
250 Wm™2 K1 ]

For oscillations at frequency w, a viscous penetra-
tion depth &, can be defined by

5. — (?E’l)l’&,
fes,

(10.69)

analogously to the thermal penetration depth
e 1/2
5= ( . ) (10.70)
pPpw
defined in this chapter. Show that
2
(6(—;-) = op, (10.71)

where oy, is the Prandtl number ({see eqn 10.56).

For thermal waves, calculate the magnitude of the
group velocity. This shows that the thermal diffu-
sion equation cannot hold exactly as the velocity
of propagation can become larger than that of the

(10.7)

(10.8)

(10.9)

carriers. An alternative equation can be derived as
follows. Consider the number density n of thermal
carriers in a material. In equilibrium, n = ng, so

that
an
Ot

whete 7 is a relaxation time and v is the carrier ve-
locity. Multiply this equation by fiwrv, where hw
is the energy of a carrier, and sum over all k states.
Using the fact that 37, nov = 0 and J = >~ hwnw,
and that |n — ng| < ng show that

= no
—p - N a5

(10.72)

aJ
Jdres = kN T, (10.73)

di
and hence the modified thermal diffusion equation
hecomes
82(1'”
o2
Show that this does not suffer from a group velocity
whose magnitude can ever become infinite. Is this

modification ever necessary?

A
ot

= DVET. (10.74)

A series of N large, flat rectangular slabs with thick-
ness Awmx; and thermal conductivity w; are placed
on top of one another. The top and bottom sur-
faces are maintained at temperature T; and Ty re-
spectively. Show that the heat flux J through the
slabs is given by J = (Ty — Ty)/ >, Ri, where
Rf, = A.’L‘J g

The space between two concentric cylinders is filled
with material of thermal conductivity x. The in-
ner {(outer) cylinder has radius ry {r2) and is main-
tained at temperature 77 (T%). Derive an expres-
sion for the heat flow per unit length between the
cylinders.

A pipe of radius R is maintained at a uniform tem-
perature T. In order to reduce heat loss from the
pipe, it is lagged by an insulating material of ther-
mal conductivity . The lagged pipe has radius
r > R. Assume that all surfaces lose heat accord-
ing to Newton’s law of cooling J = RAT, where
h = |h| can be taken to be a constant. Show that
the heat loss per unit length of pipe is inversely

proportional to
1. ¥
= (—)
T i ? R/

and hence show that thin lagging doesn't reduce
heat loss if R < &/h.

1

.
o (10.73)



Jean Baptiste Joseph Fourier (1768-1830)

Fourier was born in Auxerre, France, the son of a

tailor. He was schooled there in the Ecole Royale Mil-
itaire where he showed early mathematical promise.
In 1787 he entered a
Benedictine abbey o
train for the priesthood,
but the pull of science
was too great and he
never followed that vo-
cation, instead becoming
a teacher at his old school
in Auxerre. He was also
interested in politics, and
unfortunately there was
a lot of it around at the
time; Fourier became em-
broiled in the Revolution-
ary ferment and in 1794
came close to being guil-
lotined, but following Robespierre’s exccution by the
same means, the political tide turned in Fourier’s
favour. He was able to study at the Ecole Nor-
male in Paris under such luminaries as Lagrange and
Laplace, and in 1795 took up a chair at the Ecole
Polytechnique.

Fourier joined Napoleon on his invasion of Egypt
in 1798, becoming governor of Lower Egypt in the
process. There he carried out archacological explo-
rations and later wrote a book about Egypt (which
Napoleon then edited to make the history sections
more favourable to himself}). Nelson’s defeat of the
French fleet in late 1798 rendered Fourier isolated
there, but he nevertheless set up political institu-
tions. He managed to slink back to France in 1801
to resume his academic post, but Napoleon (a hard
man to refuse) sent him back to an administrative
position in Grenoble where he ended up on such high-
brow activities as supervising the draining of swamps
and organizing the construction of a road between
Grenoble and Turin. He nevertheless found enough
time to work on experiments on the propagation of

Fig. 10.5 J.B.J. Fourier
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heat and published, in 1807, his memoir on this sub-
jeet. Lagrange and Laplace criticized his mathemat-
ics (Fourier had been forced to invent new techniques
to solve the problem, which we now call Fourier se-
ries, and this was fearsomely unfamiliar stuff at the
time), while the notoriously difficult Biot (he of the
Biot-Savart law fame} claimed that Fourier had ig-
nored his own erucial work on the subject (Fourier
had discounted it, as Biot’s work on this subject was
wrong). Fourler’s work won him a prize, but reserva-
tions about its importance or correctuess remained.

In 1815, Napoleon was exiled to Elba and Fourier
managed to avoid Napoleon who was due to pass
through Grenoble en route out of France. When
Napoleon escaped, he brought an army to Grenoble
and Fourier avoided him again, earning Napoleon'’s
displeasure, but he managed to patch things up and
oot himself made Prefect of Rhone, a position from
which he resigned as soon as he could. Following
Napoleon's final defeat at Waterloo, Fourier became
somewhat out of favour in political circles and was
able to continue working on physics and mathematics
back in Paris. In 1822 he published his Théorie ana-
Iytigue de chaleur (Analytical Theory of Heat) which
included all his work on thermal diffusion and the use
of Fourier series, a work that was to prove influential
with many later thermodynamicists of the mmneteenth
century.

In 1824, Fourier wrote an essay which pointed to-
wards what we now call the greenhouse effect; he
realised that the insulating effect of the atmosphere
might increase the Karth’s surface temperature. He
understood the way planets lose heat via infrared ra-
diation (though he called it “chaleur obscure”). Since
so much of his scientific work had been bound up with
the nature of heat (even his work on Fourier series
was only performed so he could solve heat problems)
he became, in his later years, somewhatl obsessed by
the imagined healing powers of heat. He kept his
house overheated, and wore excessively warm clothes,
in order to maximize the effect of the supposedly life-
giving heat. He died in 1830 after falling down the
stairs.
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