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Problem 5.19

{a) Find the density p of mobile charges in a piece of copper, assuming each atom contribuies
one free electron. [Look up the necessary physical constants.]

{b) Calculate the average electron velocity in a copper wire 1 mm in diameter, carrying a
current of 1 A. [Note: this is literally a snail’s pace. How, then, can you carry on a long
distance telephone conversation?]

{c) What is the force of atiraction between two such wires, 1 cm apart?

{d) If you could somchow remove the stationary positive ions, what would the electrical
repulsion force be? How many times greater than the magnetic force is it?

Problem 5.20 Is Ampére's law consistent with the general rule (Eq. 1.46) that divergence-of-
curl is always zero? Show that Ampére's law cannot be valid, in general, outside magneto-
statics. Is there any such “defect” in the other three Maxwell equations?

Problem 5.21 Suppose there did exist magnetic monopoles. How would you modify Maxwell's
equations and the force law, o accommodate them? If you think there are several plausible
options, list them, and suggest how you might decide experimentally which one is right.

5.4 Magnetic Vector Potential

5.4.1 The Vector Potential

Just as V x E = (} permitted us to introduce a scalar potential (V') in electrostatics,
E=-%NV,

s0 ¥V - B = 0 invites the introduction of a vector potential A in magnetostatics:

B=V xA. (5.59)

The former is authorized by Theorem 1 (of Sect. 1.6.2), the latter by Theorem 2 (the proof
of Thearem 2 is developed in Prob. 5.30). The potential formulation antomatically takes
care of ¥V - B = 0 (since the divergence of a curl is always zero); there remains Ampére’s
law:

VxB=Vx(VxA)=V(V-A) — VA = uol. (5.60)

Now, the electric potential had a built-in ambiguity: you canadd to V any function whose
gradient is zero (which is to say, any constant), without altering the physical quantity E.
Likewise, you can add to the magnetic potential any function whose cur! vanishes (which
is 1o say, the gradient of any scalar), with no effect on B. We can exploit this freedom to

climinate the divergence of A:
'V‘A=[l,| (5.61)
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To prove that this is always possible, suppose that our original potential, A, 1s not
divergenceless. If we add to it the gradient of A (A = A, + VA), the new divergence is

VA=V A, + VA
We can accommodate Eq. 5.61, then, if a function A can be found that satisfies
Vi=-V.A,
But this 1s mathematically identical to Poisson’s equation (2.24),

VEV = —E,
€0

with V- A, in place of p/eg as the “source.” And we know how 1o solve Poisson’s equation—
that’s what electrostatics is all about (“given the charge distribution, find the potential™). In
particular, if o goes to zero at infinity, the solution 1s Eq. 2.29:

] ]
V= f Lar,
dmey 2

and by the same token, if ¥V - A, goes (o zero al infinity, then

A= 1 V'An
T 4 2

dr’.

If V- A, does nor go to zero at infinity, we'll have to use other means to discover the
appropriate A, just as we get the electric potential by other means when the charge distribu-
tion extends to infinity. But the essential point remains: It is always possible to make the
vector potential divergenceless. To put it the other way around: The definiion B =V = A
specifies the curl of A, but it doesn’t say anything about the divergence—we are at liberty
to pick that as we see fit, and zero is ordinarily the simplest choice.

With this condition on A, Ampére’s law (5.60) becomes

(VA = —ugﬂ (5.62)

This again is nothing but Poisson’s equation—or rather, it is three Poisson’s equations, one
for each Cartesian'? component. Assuming J goes to zero at infinity, we can read off the

solution:
Alr) = “—“f‘”—”d:’.. (5.63)
| 4 2 |

131n Cartesian coordinates, VZA = i'i"ailji + f‘C’z.ﬂlJ. ¥+ W“"A;}i, 50 Eq. 5.62 reduces to via ¢ = —gdy,
. . . . - -
Vedy = —pgdy, and C"zﬁa = —pigdz. In curvilinear coordinates the unit vectors themselves are functions of
Loy - . 4.0 a
position, and must be differentiated, so it is nor the case, for example, that V= A, = —itgdy. The safest way o
caleulate the Laplacian of a vecror, in terms of its curvilinear components, is touse VA = T(VF-A) -V = (Vx A).
Remember also that even if vou calcudare integrals such as 5.63 using curvilinear coordinates, you must first express
Join terms of its Carfestan components (see Sect. 1.4.1).
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For line and surface currents,

a b [l [ gt [K (5.64)
47 J = dsr '3 dz J =2
(If the current does nor go to zero at infinity, we have to find other ways to get A; some of
these are explored in Ex. 5.12 and in the problems at the end of the section.)
It must be said that A 1s not as usefie as V. For one thing, it’s still a vector, and although
Eqgs. 5.63 and 5.64 are somewhat easier to work with than the Biot-Savart law, you still have
to fuss with components. It would be nice if we could get away with a scalar potential,

B=-VU, (5.65)

but this is incompatible with Ampére’s law, since the curl of a gradient is always zero. (A
magnetostatic scalar potential can be used, if you stick scrupulously to simply-connected.
current-free regions, but as a theoretical tool it is of limited interest. See Prob, 5.28.) More-
over, since magnetic forces do no work, A does not admit a simple physical interpretation
in terms of potential energy per unit charge. (In some contexts it can be interpreted as
momentum per unit charge.'*} Nevertheless, the vector potential has substantial theoretical
importance, as we shall see in Chapter 110,

Example 5.11
A spherical shell, of radius R, carrying a uniform surface charge o, is set spinning at angular
velocity . Find the vector potential it produces at point r(Fig. 5.45).

Solution: It might seem natural to align the polar axis along e, but in fact the integration is
easier if we let v lie on the z axis, so that @ is tilted at an angle . We may as well orient the
x axis so that @ lies in the xz plane, as shown in Fig, 5.46. According to Eq. 5.64,

o [ K)
A = dea’,
{r) 4 f & “

Figure 5.45 Figure 5.46

Y. D, Semon and J. R. Tavlor, Am. J. Phys, 64, 1361 (1996),
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where K = ov,2 = yR2 + r2 — 2Rrcos#’, and da’ = KX sin®’ df’ dg’. Now the velocity
of a point ¥’ in a rotating rigid body is given by @ = 1'; in this case,

i ¥ i
v=@xr =| wsiny 0 () COS
Rsiné'cos¢’ Rsind'sing’  Rcosg’

= Ruw[—(cos  sin 6 sing") & + (cos v sin &' cos ¢’ —sin ¥ cos 8" § + (sin ¥ sing’ sing’) 2]

Notice that each of these terms, save one, involves either sing’ or cos¢’. Since
s 4 ) 2w
f sing' dgp’ = f cosg' dep’ = 0.
0 ]
such terms contribute nothing. There remains
Flowsin T cosd sind’ .
Alr) = - o v (f B di' | §.
2 JO VR 4+ -2 —2Rrcosd’

Letting v = cos#’, the integral becomes

141
*+ " REe 2w Rryy ——e—— |
f l,_....——du:—{—.”}nfﬁ'2+r2—2}?ru|
-1 VR? 2Ry 3R=r<
I v R +r 2Rru _1

1
T [m? +r2 4 ROR —r| = (R® 472 = Rr)(R +rf].

If the point v lies inside the sphere, then R = r, and this expression reduces to (2r /3 RYyifrlies
oltside the sphere, so that B < r, it reduces o (2 R;‘]rzj. Noting that (@ % ¥) = —cr sily ¥,
we have, finally,

R
i (i » 1), for points inside the sphere.
A(r) = ' (5.66)
i R3a . )
3 (@ = r), for points outside the sphere.

Having evaluated the integral, I revert to the “natural” coordinates of Fig. 5.45, in which @
coincides with the 7 axis and the point r is at {r, &, ¢):

ppRuwe

Tr gind \3- r = R),

A(r 0, ¢) = ' 1 (5.67)
R e 5INA -
BS7oré o=zh.

Curnipusly, the field inside this spherical shell is uniform:

2 Re

T L& 2 . 2
B=V=xA= Tfmsﬂ F—sing@) = FH00 Ruwi = i,u:ucﬁ-m. (5.68)
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Example 5.12

Find the vector potential of an infinite solenoid with » turns per unit length, radius &, and
current [,

Solation: This lime we cannot use Eg, 5.64, since the current itself extends to infinity. But
here’s a cute method that does the job. Notice that

564-0‘1:_{('\7’:-cA-}-dll=fB-du=<I-‘. {5.69)

where @ is the flux of B through the loop in question. This is reminiscent of Ampére’s law in
the integral form (5.55},

% B . dl = pglenc.

In fact, it's the same equation, with B — A and pglene — @, If symmetry permits, we can
determine A from @ in the same way we got B from fgpe, in Seet. 5.3.3. The present problem
{with a uniform longitudinal magnetic field pgn/f inside the solenoid and no field outside} is
analogous to the Ampére’s law problem of a fat wire carrying a uniformly distributed current.
The vector potential is “circumferential™ (it mimics the magnetic field of the wire); using a
cireular “amperian loop™ at radius s inside the solenoid, we have

?fa cdl = A(2ms) = fB ~da = ponl (w52,

S0
ppnd

A= sd, fors = R. {(5.7h

For an amperian loop ourside the solenoid, the flux is
f B-da= ugnl (xR,

since the field only extends out t K. Thus

IR .
=“‘TJ" . fors>R. G701

A

If you have any doubts about this answer, check it: Does ¥V x A = B7 Does V- A = (17 [f 50,
we're done.

Typically, the direction of A will mimic the direction of the current. For instance, both
were azimuthal in Exs. 5.11 and 5.12, Indeed, if all the current flows in one direction, then
Eqg. 5.63 suggests that A must point that way too. Thus the potential of a finite segment of
straight wire (Prob. 5.22) is in the direction of the current. Of course, it the current extends
to infinity you can’t use Eq. 5.63 in the first place (see Probs. 5.25 and 5.26). Moreover.
you can always add an arbitrary constant vector to A—this is analogous to changing the
reference point for V', and it won't affect the divergence or curl of A. which is all that matters
(in Eq. 5.63 we have chosen the constant so that A goes to zero at infinity). In principle
you could even use a vector potential that is not divergenceless, in which case all bets are
oft. Despite all these caveats, the essential point remains: Ordinarily the direction of A
will match the direction of the current,
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Problem 5.22 Find the magnetic vector potential of a finite segment of straight wire, carrying
a current 7. [Put the wire on the z axis, from 2| to z3, and use Eq. 5.64.] Check that your
answer Is consistent with Eg. 5.35.

Problem 5.23 What current density would produce the vector potential, A = .h; (where k is
i constant), in cylindrical coordinates ?

Problem 5.24 If B is yniform, show that A(r) = —1};. ir « B) works. That is. check that
V-A=0and V x A = B. Is this result unigue. or are there other functions with the same
divergence and curl?

Problem 5,25

{a) By whatever means you can think of (short of looking it up), find the vector potential a
distance s from an infinite straight wire carrying a curreni /. Check that ¥ - A = 0 and
VxA=8

(b} Find the magnetic potential fnside the wire, if it has radius R and the current is uniformly
distributed.

Problem 5.26 Find the vector potential above and below the plane surface current in Ex. 5.8,

Problem 5.27

{a) Check that Eg. 5.63 is consistent with Eg. 5.61, by applying the divergence.
{b) Check that Eq. 5.63 is consistent with Eq. 5.45, by applying the curl.

(c) Check that Eq..5.63 15 consistent with Eq. 5.62, by applying the Laplacian.

Problem 5.28 Suppose you want to define a magnetic scalar potential &' (Eq. 5.65), in the
vicinity of a current-carrying wire, First of all, you must stay away from the wire itself ¢there
¥V x B s 0); but that's not enough. Show, by applying Ampére’s law 1o a path that starts at a
and circles the wire, returning o r (Fig. 5.47), that the scalar potential cannat be single-valued
(that is, U/ {a) # U(b}, even jf they represent the same physical point). As an example, find
the scalar potential for an infinite straight wire. (To avoid a multivalued potential, you must
restrict yourself o simply-connected regions that remain on one side or the other of every wire,
never allowing you to go all the way around.)

Amperian loop
: J
b
e

Figure 5.47



240

CHAFTER 5. MAGNETOSTATICS

Problem 5.29 Use the results of EX. 5,11 to find the field inside a uniformly charged sphere.
of total charge € and radius B, which is rotating at a constant angular velocity @.

Problem 5.3

{a) Complete the proof of Theorem 2, Sect, 1.6.2. That is, show that any divergenceless vector
field F can be written as the curl of a vector potential A. What you have to do is find Ay, A,.
and A; such that: (i) 84 /dy — Ay iz = Fy; (i) 0A iz — 84 /dx = Fy; and (iil)
dAy/dx — dAy /iy = F,. Here's one way to do it: Pick Ay = 0, and solve (ii) and (iii) for
A, and A;. Note that the “constants of integration™ here are themselves functions of v and
- they're constant only with respect to x. Mow plug these expressions into (i}, and use the
fact that V - F = 0 o obtain

X ¥ X
Ay = f Fox' v o) da’s A f Fytl, ¥, :}d_\"—f Fy(x', y.2) dx’
0 0 0

ib) By direct differentiation, check that the A you obtained in part (a) satisfies Vx A =F. Is
A divergenceless? [This was a very asymmetrical construction, and it would be surprising if
it were—although we know that there exisis a vector whose curl is F and whose divergence is
2er0. ]

(c) As an example, let F = v & 4 =¥ + x £ Calculate A, and confirm that ¥ » A = F. (For
further discussion see Prob. 5.51.)

54.2 Summary; Magnetostatic Boundary Conditions

In Chapter 2, I drew a triangular diagram to summarize the relations among the three
fundamental quantities of electrostatics: the charge density p, the electric field E, and the
potential V. A similar diagram can be constructed for magnetostatics (Fig. 5.48), relating

Figure 5.48



