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My own beliefs are that the road to a scientific discovery is
seldom diract, and it does not ily require great expertise,
In fact, | am convinced that often a newcomer to a field has
a great advantage because he is ignorant and does not know
all the reasons why a paricular experiment should not be
attempted.—/van Giaever (discoverer of tunnefling between
superconductors), Nobel prize address. 1973

CHAPTER

Superconductivity

10.1  INTRODUCTION

P y was di | by H. Kamerlingh Onnes in 1911, three
years after his first liquefaction of helium. The availability of this liquid enabled
him to i igate the electrical resi of metals at low temperatues. He
chose mercury for study since it could be readily purified by distillation and
there was speculation at that time that the resistance of very pure metals might
tend to zero at T = 0. As can be scen from Fig. 10,1, the observed behaviour was
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for materials with higher peratures led to the i igation of
alloys and compounds. In 1972 Nb, Ge was found 1o have a T, of 23 K. For the
next |4 years this remained the record T, and many researchers were misled,
with some theoretical justification, into believing that it would not be possible to
find ials with significantly higher transiti peraturcs. In 1986 there
was a dramatic breakthrough when Bednorz and Muller found that
La,_,Ba,CuO, had a T, of about 35K for x = 0.15. This discovery was
followed by a frenetic scarch for other materials. In 19587 YBa,CuyO,_,
(6 = 0.1) was found to have a T, of 92 K and in 1988 Bi,Sr, ,Ca,Cu 0y, ,
{x=1) raised T, to 110K. At the time at which this book was written
Tl,Ba,Ca,Cu,0,,, ulso discovered in 1988, has the highest known T, of

125 K. These new high-temp P d are di d further
in section 10,6,
No ong has ded in ing a finite to small currents in the

ducting state. The most sensitive method for detecting a small resis-

‘much more dramatic than this; an abrupt to a state of ¥ ECTO
i occurs at a e of about 4.2 K. Onnes described the new state

as the superconducting state, and it was quickly established that there was no

essential connection with high purity; adding substantial amounts of impurity

often has little effect on the sup ducti it ithough the resi

of the normal state (section 3.3.2) is increased considerably.

Subsequently many metals and alloys have been shown to become supercon-
ducting.+ The superconducting transition can be very sharp, with a width of less
than 10~ * K in well annealed single crystals of a metal such as tin. The element
with the highest iti P T, = 9.2 K, is niobium {Nb). The search

t Among common metallic elements that do mar become superconducting at temperatares
currently sccessible ane copper, silver, gobd, the alkali metals and magnetically ordered metals such
ax irom, mickel and cabalt.

P
tance is o look for the decay of a current around a closed superconducting loop.
If the resistance of the loop is R and the self-inductance L then the current
should decay with time constant t = L/R. Failure 1o observe the decay of a
Persistent current has enabled an upper limit of about 1072 0 m to be put on
the resistivity of sup d as d to a value of order 107 * 0 m for
copper at room temperature (problem 10.1).

102 MAGMETIC PROPERTIES OF SUPERCONDUCTORS

1021 Type | superconductors
Superconductors divide into two classes according to their behaviour in a
magnetic field. In this section we describe the simpler behaviour of type 1
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superconductors and in section 10.2.3 that of type 1T superconduciors. All pure
samples of superconducting elements, except Nb, exhibit type I behaviour and
their superconductivity is destroyed by a modest applied magnetic field B,
known as the critical field. B_is shown as a function of temperature for mercury
in Fig. 10.2. To a good ion the dependence of B, is

B(T)= 84‘”[' (TT)!]

It follows from the existence of a critical field that there will be a critical current
for flow along a wire, which occurs when the field due 1o the current equals B;
this is known as the Silsbee hypothesis.

In 1933, Mei and Ochsenfeld i  the in space of the

gnetic field in the neighbourhood of a sup d and discovered that
the field distibution was consistent with the field inside the superconductor
being zero. This exclusion of the magnetic flux from the superconducior is
known as the Meissner effect and is due to electric currents, known as screening
currents, i of the superconductor in such a way as 1o
generate a field equal and opposite to the applied field. The expulsion of the flux
when the field is reduced below B, at constant temperature is illustrated in Fig.
10.3 for a sample in the form of a long cylinder; expulsion also occurs il the
sample is cooled into the superconducting state in a steady applied field. For
many purposes we can lake account of the Messner effect by regarding the
superconductor as a magnetic material in which the screening currents are
replaced by an equivalent magnetization; since we require B = uy(H + M) = 0
we must have 2 rani

(10.1)

M=—-H L (10.2)

Normal

Superconducting

Fig 102 Crirical ficld curve of mercury
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B » Bc

Fig. 103 Expulsion of flux by 4 long
superconducting cylinder when the
field is reduced below &, In
equilibrium there is no trapped flux

Be < Be S

7 H

Comparison of Eq. (10.2) with Eq. (7.1) shows that a type I superconductor

behaves as though it has a magnetic susceptibility y = —1 and is consequently

often referred to as a perfect diamagnet. Fig. 10.4 illustrates how closely a well

anncaled long cylinder of lead conforms to the behaviour predicted by

Eq. (10.2).
o

0 often show an i effect;

flux is trapped within the material in metastable regions which remain the
normal state when the field is reduced through B, Flux trapping offers a partial
explanation of the 22 year delay between the first observation of superconducti-
vity and the discovery of the Meissner effect. Tt was not realized that the trapped
flux was only a mapifestation of non-cquilibrium behaviour; instead it was

garded as an inevitat of the infinite conductivity of the

e
Ve

&, (mT}

M oAmT)

°

Fig. 1004 Almost reversible
magnetization curve of a well annealed
rod of pure superconducting lead.
(Reproduced with permission from J, P
Livingston, Phys. Rev. 129, 1943 (1963))
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superconducting state because of the following argument. Infinite conductivity
implies vanishing of the electric ﬁcld inside a supe mnndln.‘lur and hence through

Faraday's law, curl E = —B, it indi ati d t magnetic field.
This was erroncously interpreted as implying that n:ny magnmlc field within a
sample would be trapped by a ition to the sup d g state. The

discovery of the Meissner effect showed that the zero flux state was the true
equilibrium state of a long cylindrical sample at all fields below B,.

For ather shapes of sample the complete exclusion of flux, even in weil
annealed specimens, does not occur at all fields less than B,. To explain this,
consider the spherical sample in Fig. 10.5. Because the fluxis expelled from the
interior_of the sphere the field at the equator exceeds the applied ficld. Thus,
when the applied field reaches the value $B_, the field at the equator becomes B,
and the sphere can no longer remain in the Meissner state. It cannot make a
transition to the normal state because this would reduce the field everywhere to
48,, a value at which the normal state is not stable. For applied ficlds between
1B, and B. the sphere is in the intermediate state in which it consists of
alternating macroscopic normal and superconducting regions, shown schemati-
cally in Fig. 10.5(b); the field is B, in the normal regions and zero in the
superconducting regions, The intermediate state of a type 1 superconductor
should not be confused with the mixed state of a type I superconductor
(sections 10.2.3 and 10.5.3).

The existence of the critical field B, is a consequence of the Meissner effect.
The energy stored in the field (8%/2u, per unit volume) is greater for the
Meissner state than for the normal state in which the field penetrates the

\

Wi

fat st

Fig. 10,5 (a) Superconducting sphere in the Meissner state. The field at the equator is

507 higher than the applied field. (b) Intcrmediate state of a type 1 superconducting

sphere, appropriate to applied fields between 5, and B,. With increasing field in this

range the shaded normal regions grow at the expense of the unshaded superconducting
regions. For simplicity the field lines are not shown
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material umrmmirr (we can usua]],y ignore the weak HIlsnﬂlsm of the normal

stateh E y, with i g ic field, the i ic field
energy equals tb: energy difference between the nnrmal and superconducting
states and it b for the I to make a transition to

the normal state. To quantify this argument we must do some simple thermo-
dynamics

10.2.2. Th d ics of the d

The field B, at which the normal (N} and superconducting (S) states are in
equilibrium is indicated by the equality of their Gibbs free energies. We take the
magnetic work term Lo be — M. dB,, where B, is the applied field, and the Gibbs
free energy per unit volume is then}

G=U-T§
where U and § are the internal energy and entropy per unit volume. To see this
we calculate
dG=dU - TdS5 - 5dT =TdS —M.dB, - TdS - 5dT
=—M.dB, - 5dT. (10.3)
Thus G is the th i ion that is
at fixed temperature and applied field.
Consider a long cylinder of superconductor parallel (o the applied field. Eq.

(10.3) can be integrated at constant temperature to deduce the efiect of an
applied field on the free encrgy Gg of a superconductor,

d in thermal equilibrium

B
Gy(B., T) = G0, n—J- M.dB,. (10.4)
o

For a long cylinder we show in appendix B that B, = p,H, where H is the field
inside the superconductor. Inserting M = —H (Eq. (10.2)) for a superconductor
in its Meissner state, we obtain

Go(B,, T) = G0, T)+J.l'&dﬂ -G+ 2 (10.5)
Jy (1) = 3 % “0 . SV zﬂq. L

+ The magnetic energy inside the material is smaller for the Meisines state because B = 0 there,
but the increased energy oulside llUn: than compensates.

8z Mandl® for a discussion of magnetic work. [t is more common in superconductivity,
altbough Bot in magnetism, to take the work teem 1o be + B, . dM. appropriate (o an internal encTgy.
U = U + M.B,, which includes the energy of interaction, + M. B,, of the specimen with the
sources of the external field, In this approach G is wrillen G = U' — TS5 — M. B,. By not including a
term PV in G we are ignoring the effect of changss in pressure and volumc on the supercanducting
transition.

284 Superconductivity Chap. 10

where the final term reg the additional ic energy associated with
the exclusion of the ic field, as di d at the end of the previous
section. 1T we ignore the weak magnetism of the normal state then the Gibbs free
encrgy Gy, of this state is field-independent,

GylB., T) = G0, T).
Equating the Gibbs free energies at the critical field then gives

32
G0, Ty — =
W0, T) — G0, T) g (10.6)

so that the critical field is directly related to the difference in free cnergies
between the normal and superconducting states in zero field; for this reason B, is
often referred to as the thermodynamic critical ficld. The positive value of
Gy, — g expluins why the wpu:rmnducuns state is more stable than the nnnn::]
state in zero field; this quantity is the ion energy of the

"'8 sl:ale

it is found approxi ly that B_= T, with a constant of
pmporllonahl_v of order 0.01 TK™%; thus, from Eq. (10.6), the condensation
energy is of order 40T7 J m ™", This energy difference corresponds to a fraction
ky T_ /ey of the conduction electrons having their energy reduced by an amount

ky T, as result of the ition to ductivity, and is therefore smaller by a

factor (ky 7, fep)* ~ 10”7 than the total kinetic energy of the electrons,

Two important exact results for type I superconductors can be obtained from
Eq. (10.6). Using § = —{#G/2T) (from Eq. (10.3)) we find that the difference in
entropy density between the two states in zero field is

1 dB} _B.dB,

AS = §; - -
85— Su 240 AT po dT"

(10.7)

and using C = T&5/37, the difference in heat capacity per unit volume in zero

field is
. T d*B} T d*B, dB\?
AC=Cs—Cy= = a, =+ L 0.8
=G 2u, AT* ,pr‘,[ T (dT) } (o)

Using Eqs. (10.7) and (10.8) in conjunction w:lh acritical ﬁeld. cunve oJ'lht form
shown in Fig. 10.2 enables us to make some P qualitat

(1) The eatropy difference AS vanishes at 7, since B, = 0 there, but the heat
capacity difference AC is finite since dB,/dT > 0; lh: discontinuity of the
specific heat at T, is clearly seen in Fig. lrl.ﬁ which shows the measured heat
capacity of alumini The 8 ition in zero applied field is
therefore a second-order phase transition.

(2} AS and AC vanish at T =0 in accordance with the third law of
thermodynamics,

3) For0 < T' < T,, dB,/dT is negative 5o that AS < 0; the superconducting
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Fig 106 Heat capacity of
normal and superconducting
aluminium, The normal state
measurements were made by
applying a field greater than B,
The high Debye temperature of
aluminium means that the
Tattiee contribution 10 the heat
capacity is small in this
termperature range and the
electronic contribution is
dominant. Note the
discontinuity in heat capacity at
7. and the exponentia! fall-off in
Cy at low temperature. (After N,
0 [X E. Phillips, Phys. Rev. 114, 676
TR (1959

state is therefore more ordered than the normal state. We discuss the nature of
the ordering in sectio
(4) Because AS is finite for 0 < T < T, there is a latent heat at the supercon-
ducting transition in a finite field given by TAS; strictly Eq. (10.7) gives the
entropy difference in zero field but AS is field-ind, | Sy, is field-ind

104,

dent because normal state magnetism is very weak and S, is field- mdependznl
because the Meissner effect means that the interior of the superconductor
remains in zero field up o B_.

Deductions (13, (2) and {3) remain valid for a type 11 superconductor but they
must be proved by a different method, as type IT superconductors do not exhibit
a sharp transition from the Meissner state 1o the normal state at a field B,

1023 Type 11 superconductors

Although Mb s the only element that is type 1l in its pure state, other elements
generally become type 11 when the electron mean free path is reduced sufficiently
by alloying. Fig. 10.7 compares the magnetization curves of thin cylinders of
pure Pb and a Pb-In alloy: with increasing field the alloy shows a complete
Meissner effect only up to a field B, that is less than the thermodynamic critical
field of pure Pb. Above B, there is partial flux penetration into the alloy
although it retains the ability, istic of the lucting state, o
support dissipationless current flow.t The transition to the normal state and

+The critical cusreat 1, i no related Lo cxiical fed by the Sisbes hypothesés but depeods on
the gical state: the more inh be higher 1, 10.53 for an
explanation)
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Fig. 10.7  Almost reversible magnetization curves for well annealed long rods of: (u)
pure lead (as in Fig. 104); (b) lead made type IT by alloying with 223% indium,
{R: with permission from J. P Livi , Phys. Rev. 129, 1943 (1963))

complete flux penetration occur at the substantially higher ficld B_,. Between its
lower and upper eritical fields, B,, and B_,, the alloy is in the mixed state, the
nature of which will be explained in section 10.5.3.

According to Eq. (10.4) the increase in Gibbs free encrgy associated with the
exclusion of magnetic flux by a superconductor is equal to the area,
J(—M).dB,, under the ization curve. This equation is strictly applicable
only to equilibrium states, characterized by reversible magnetization curves. We
can h apply it approxi 1y to the almost reversible curve for the Ph-In
alley in Fig. 10.7. The arca under this curve is almost equal to that under the
curve for pure Pb; we deduce that alloying produces no substantial change in
the condensation energy. The partial flux penetration in the mixed state allows
the superconductivity to persist to significantly higher fields in the alloy. With
increasing indium concentration B,, decreases and B, increases

Inextreme type I1 superconductors B,, is so small and the flux penetration in
the mixed state so nearly complete that very large values of B, are reached
before the arca under the magnetization curve becomes equal to the condensa-
tion energy. For large B, our thermod ie app h must be lized 10
allow for the decrease in Gibbs free energy associated with the weak paramag-
netism of the normal state. This decrease puts a fundamental upper limit on B_.,
the Clogston limit, of about 1.8T, tesla (see problem 10.4). Fig, 10.8 shows values
of B, as a function of temperature for some extreme type 1T superconductors.

-
103 THE LONDON EQUATION

We saw in section 7.3.2 that the rigidity of an electron wavefunction against
perturbation by a magnetic field led dircctly to diamagnetism with the field
being excluded from the region occupied by the electron except for a surface
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e Superconductor
s

Fig 109 The London
S — equation predicts the
X ial decay of &
magnetic field into a
superconductor occupying the
region x >0

(Fig. 10.9). By combining Eq. {10.9) with Maxwell's equationst curl B = p,jand
div B = 0, we find that the field B inside a superconductor satisfies

#V'B=B (o
where i* = m/u,nee® as in section 7.3.2. The ic ficld in the sup |
tor in the geometry of Fig. 109 is therefore of the form B = B(x)¥, where Bix)
satisfies

&’B
2. =8
dx?

The solution of this equation is
B{x)=ae V4 £ petd, (10.12)

where a and b are constants of integration, The second term, which has B
increasing exponentially with x at large distances from the boundary, is
unphysical and we reject it. To satisfy B = B, at x = 0 then requircs a = 8, 50
that

Bix)= B, e~ (1013

The magnetic field thus decays exponentially with distance into the supercon-
ductor with a characteristic length scale A, kown as the penctration depth, as
shown in Fig. 10.9. To estimate 4 at T = 0 we suppose that all the electrons are

P fucting at this and set ng = 10" m~%, a ypical
conduction electron concentration in a superconducting metal, to obtain

vz
P (ﬂu%) =170 A (10,14}

at in this section we take the screening curremts explicitly into Wnel
rather than repisc m by their equivaknt magnetization. In this approach, which i MOV
appropriate when imvestigatiag the behavioar of superconduciors at a microscopic bevel, % 1Y
M =0 and B = gl
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£ Fig. 108 Upper critical field,
W B, as a Tunction

< 10 temperature for some extreme
5 ! type I superconductors.

(Reproduced with permission
from R. Chevrel,
Supcreonduetor Materials
Science: Fabrication and
fications, ed. S. Foner and
B. Schwartz, Plenum, New
York (1980))
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layer about 100 A thick, The weakness of diamagnetic effects in most materials
is then explained because ordinary atemic wavefunctions are small in extent
1o this ing di The perfect di of |
tors implics that there are wavefunctions extending throughout the material that
are not readily perturbed by a magnetic field.
This possibility was first suggested by Fritz London, who proposed that the

currents ible for the ing should be described by
Peunj= -%% g (109)
m !
Eq. (10.9) is known as the Londan equation and it ‘is the curl of
2
.. (10.10)
m

which is Eq. (7.32) with the replacement 1 = ng to allow for the possibility lh':u
only a fraction ng/n of the electrons (the snperconducting fraction) have a rigid
wavefunction. Eq. (10.9) (or its equivalent, Eq. (10.10)) can be reg_.-nrdud as a
replacement for Ohm's law, j = oF, as a description of the behaviour of the

superconducting electrons.

* Tao see that Eq. (10.9) explains the Meissner effect we apply it to a plane
i ductor (x = 0) from a vacuum (x < 0),
when there is 1 magnctic field B = B, & parallel to the boundary in the vacuum

boundary (x = 0) sep 18 4 SUp
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where the notation A, (0) indicates that this is the penetration depth as predicted
by the London equation at T = 0. The small size of 4 means that the magnetic
flux is effectively excluded from the interior of macroscopic samples of supercon-
ductors and the Meissner effect is explained. Note that in the geometry of Fi
109 the screening currents flow in the y direction and also decay exponential y
with characteristic depth 4 from the surface of the superconductor.

At higher temperatures we expect ng to decrease and 2 to increase. This is seen
to be the case in Fig. 10.10, which shows the 4 ure depend
of £ for tin. The temperature dependence is often well described by

- HO)

BT IE
where 4(0) is the value of 4 at T = 0: 2 thus diverges as T — T, and ng— 0.

The measured value of 4(0) is often greater than Ay (0). This does not signify a

Tundamental defect of the London theory; the discrepancy can be explained by
madifying Eqg, (10.10) slightly so that the current density j at a point r does not
depend only on the vector potential A at r but on the average of A taken over all
paints in the neighbourhood of r. This modification converts the local current
field relation of Eq. (10.10) into a non-local relation. A similar change has to be
made to Ohm's law in normal metals when the electric field varies rapidly on the
length scale of the electron mean free path I Such a situation occurs in pure
normal metals at high fi ies and low where the 2
netic skin depth (which gives the length scale for variation of E) is normally
shorter than £, and the current density at a point r then depends on the average
of the electric field over a region of size ~1 surrounding r: the necessary
generalization of Ohm's law is a non-local relation between j and E, Pippard
exploited the analogy with the normal state to propose that the penetration
depth of pure sup d could be explained if there was a non-local

aiky

1600|

1200

Fig 1010 Superconducting penctration
depeh 4 in tin, The value at T = 0 is

L 510 A, which has to be compared with
1 F; 3 & TR} the London prediction i, (0) = 340 A

:
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refation between j and At in which the vector potential was averaged over a
distance &, where

:z:”} (= 10*Afore, = 10° ms™"and T, = 10K). (10.15)
A le

We show later (section 10.4) that a characteristic distance of this form arises
naturally in the theory of tivity, In impure sup ducting metals
where [ is less than £, the mean free path takes over from £ in determining the
range of the non-locality and J then depends on I, Pippard's proposals were later
rmed in essence by the mi pic theory of Juctivi

It is interesting to investigate the extent to which the London equation can be
deduced from an assumption of infinite conductivity; to do so we allow the
clectron scattering time 7 in Eq. (3.23) to become infinite. The resulting
acceleration equation

¥ m, dv/dt = —¢E

together with j = —ngev and Faraday's law, curl E = — B, lead to the time
derivative of Eq. (10.9). To obtain the London equation by integration of this
equation involves making an ion about the i i which
is equivalent to ing the Mei effect. This again demonstrates that

superconductivity is more than just infinite conductivity.

104 THE THEORY OF SUPERCONDUCTIVITY

We will give only a brief qualitati iption of the very

i pic theory of sup luctivity that was proposed by Bardeen, Cooper

and Schriefler (BCS) in 1957; the quantitative details of the BCS theory involve
i that are too ad for this book %

ful

1041 The energy gap and electron pairing

We saw in the previous section that the temperature dependence of the
penetration depth suggests a density ny of superconducting clectrons that
increased from 2cro at T, to the full clectron density at T = 0. The behaviour is
consistent with the existence of an cnergy gap A scparating the states of the
superconducting clectrons from those of the "normal” electrons. There is a

i amount of cvid for such a gap; beth experiment and theory
indicate that A is dependent, vanishing at T, and ining its

s
* Note that high frequencies are not required o cause A to vary rapidly in space in a
supercondusior; cven for & de field, the Meissner effect ensures that A varics on 2 length scale 2
4 For an excellent scrics of review articles an ivity the reader is ded to
consult Supercomductivity, ed. B 1. Parks, Marccl Dekker, New York (1969),
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maximum value A{0) at T = 0. At low temperatures (1 < T,) one would expect
that the number of excited (normal) electrons would fall off as exp [ - A(OYk T
and that this temperature dependence would be reflected in the electronic
contribution to the heat capacity; this is indeed found to be the case {sec Fig.
10.6) and A{0) turns out to be of order ky T,

Direct evidence for an energy gap is provided by measurements of the
absorption of electromagnetic waves. At low temperature (T < T.) the absorp-
tion is vanishingly small at low frequencies but increases sharply when the
photon energy is sufficient to excite electrons across the energy gap. The
frequency for the onset of absorption is given by

hy = 24(0). (10.16)

The factor 2 arises because absorption of a photon creates two excited electrons.
A matural explanation for this is provided by the BCS theory of superconducti-
vity, according to which the superconducting electrons are bound together in
pairs, known as Cooper pairs. Thus 24 is the binding encrgy of a Cooper pair so
that Eq. {10.16) describes the breaking of a pair by absorption of a photon. The
attractive interaction that binds the pairs is due to the lattice vibrations
(section 10.4.3).

The wavefunction of all the pairs has to be identical to maximize the energy

r d due to the ion; the binding energy of a Cooper pair
is _Iargcst when all the pairs are in the same state, Superconductivity is therefore
said o be a coop h ferr ism is another ple of a

cooperative phenomenon since the better the alignment of the spins, the greater
the molecular field that is responsible for the alignment {see section 8.3.1), The

i ofa function for the Cooper pairs provides the rigidity
of the wavefunction that leads to the Meissner effect and it is also responsible for
the infinite conductivity (section 10.4.5).

At T = 0 all the electrons are paired but at T > 0 some pairs are broken by
ll_wrmal excitation. Because of the cooperative nature of ductivity, the
binding encrgy of the remaining pairs falls. The resulting decrease in the
measured energy gap can be seen in Fig. 10.11; A(T) falls to zero with infinite
slopeat T = T, The sharing of a common wavefunction by the pairs is present
al all temperatures below T, and the resulting order is responsible for the lower
catropy of the superconducting state.

_ The average distance between the electrons for the Cooper pair wavefunction
n i pure metal at T = 0 is of order

Sa = heg/nAQ0); (1017)
So Is known as the BCS coberence length and it plays an important role in the
theory Ol'gl_(pemond uctivity. Since A0) = ky T (the BCS theory predicts A{0) =
L76ky T}, it is essentially &, that determincs the range of non-locality (Eq,
{10.15)) in the current-field relation of the supcreonducting electrons in a pure
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— BCS curve
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s o Tantglum
% 0 Lead
= B HieBdm Fig. 10.11 Temperatare
2 dependence of the
superconducting cnergy gap.
The full curve is the BCS
theory prediction.
{Reproduced with permission
. . from P. Townsend and J.
0;] ) as 10 Sutton, Phys Rev. 128, 591
e (1962))

a flow of Cooper pairs and each Cooper pair responds to

metal; the current i
i ged over its

the vector p I

1042 The Cooper problem

By solving a simple problem in 1956, Cooper provided the inspiration for the
BCS theory. Cooper solved the Schrodinger equation for two i ing
electrons in the presence of a Fermi sphere of non-interacting electrons, a:
shown in Fig. 10.12. This calculation cannot be applied directly to a real metal
since it is impossible to turn off the interaction between all but two of the
conducting electrons, but it serves to indicate the kind of effect that the
interaction might produce. The wavelunction of the two electrons can be

Fig. 10.12  The Cooper problem. Two
interacting electrons are restricted 1o

- states, k, and kg, oulside the Formi
:fr;::.r.:.'t‘;:;u,.y surface by the Fermi sphere of non-
electrons interacting electrons
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ded as a linear combination of plane waves (see Eq. (3.3))
WL ra) =1 Y Sk, k) ™t et (10.18)
., WE by

where the role of the non-interacting electrons is to restrict the summation to
plane wave states outside the Fermi sphere (Ik, |, [k} = kg). Cooper looked for
states of this form with an energy less than 2up, the energy of two ‘normal’
electrons at the Fermi surface. Such states would correspond 10 bound states of
the iwo electrons and their existence would indicate that the normal state, as
represented by the Fermi sphere, was unstable against the formation of bound
pairs of clectrons.

For the lowest encrgy, the centre of mass of the two clectrons is at rest and this
is achieved by including only states with equal and opposite momentum,
k, = —k; =k, in the expansion of Eq. {10.18), which then simplifies to

wiry. 1) = ¥ g(ky e e (10.19)
L3

where the summalion is again restricted to states k outside the Fermi surface.
Cooper found that bound states existed if the interaction between the two
electrons was atiractive, no matter how weak the attraction; this was surprising
in that bound states exist for two particles in 2 vacuum only if the atiractive
potential exceeds a threshold value. BCS made the bold extrapolation from
Cooper's result that bound Cooper pairs would still result when all the electrons
interacted with each other.

%1043  Origin of the atiractive interaction

An i ion between el seems an unlikely possibility in
view of the large repulsive force between two iselated electrons, We shall see in
Chapler 13 however that the effective Coulomb interaction between two
elecirons in a metal is much reduced by the presence of the other clectrons and
the positive ions, Each electron repels other el from its neighbourhood
and thereby creates a hole in the electron ‘fluid’ which is of order one atom in
size and on average contains a positive charge from the ions equal and opposite
to the electronic charge (Fig, 10.13(a)). The net charge in the neighbourhood of
the electron is therefore approximately z¢ro and the effective interaction of the
clectron with another electron outside the screening hole is weak.

The autractive force arises because an electron attracts the positive jons so
that, as it moves through the metal, it leaves a wake of enhanced positive charge
density behind it (Fig. 10.13{a)). Because ions move more slowly than electrons,
the wake persists after the electron moves away and can attract another clectron.
The attraction is of very short range since the wake is only of the order of an
atlomic spacing in width, but it is retarded because the electron causing the wake
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{a) Because of Coulomb repulsion
an electron is surrounded by a
screening hole in the clectron fuid,
which on average contains a
positive charge equal and opposite
0 the clectronic charge. The
+ fa) electron attracts the positively
charged ion cores in its
neighbourhood. The enhanced
positive charge densily persisis
after the clectron moves away and
can atiract another electron

(h) The attractive interaction
between two electrons can be
pictured as the exchange of a
virual phonen, The phonon is
virtual since an electron cannot
undergo a sufficient encrgy change
{ ~heag) at low temperatures (T <
fip) 1o create a real phonon of
short wavelength, A virual phonen
is emitted by ene electron and
(5} absarbed by another within such a
short time { < 1/ay,) that its
“gaistence’ is allowed by the
cocrgy-lime uncertainty relation.
Momentum is conserved i
individual emission and absorption
processes but encrgy is only
conserved overall

+ + o+

Electron 2

Fig 10.13

has already moved away. Since jonic motion communicates the interaction
between the two electrons, the attraction is said to result from the exchange of
\ﬂﬂunl phonons (Hg l(ll\{h}) Tlu: detailed nature of the interaction is

in of the sup d but
the qualitative behavi nf the d

below T, is o ined almost
entirely by the existence of the C oop:r pairs. Indeed, BCS caleulated successfully
most of the props by replacing the real short-rang
retarded interaction by a ﬁclllmus but simpler instanta noous interaction spread
QUL to 3 range ~ g /iy 1o allow for the distance moved by an electron during the
charaeteristic time (~ |/a;) for ionie motion.

%1044 Natwre of the superconducting ground state

Aceording to the BCS theory ull tbc electrons are pamul at T=0. 'ium:g the
wavefunctions of all the pairs are i is often d
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as arising because of a Bose condensation of Cooper pairst (see Mandl,” p. 292,
It is instructive to see how it is possible to write down a wavefunction that
corresponds to such a ground state. The common wavefunction of all the pairs
can be expanded in plane waves as in Fq. (10.19) except that the restriction to
states with |k| = ky is removed as there is now no non- mleramng Fermi sphere.
In most (perhaps a].l] known sup | the ion is essen-
tially spherically symmetric, ¥(r,.ry) = i.[f{lt. = r.Il so that the Cooper pa]r
possess no orbital angular y is di
s!uguiy b;’ the anisotropy of the crystal snuctun but we will ignore this. The
i sjmlrwhy ponds to gik) d ling only on the itude of k
and the is theref ic under interchange of vy and r;. An
isy ic pair i da(l. 2) can be obtained by oombmmg this
space function with the anti: ic spin singlet function. Thus

1
(L, 2) = wilr; —raf)
J2
The electrons in the Cooper pair therefore have spins. A
for N electrons which has N2 pairs all in the same state can be written
Wil, 234, N = P{g(1, 2)6(3,4) ... (N — 1, N)} {10.21)

wlmc Pis an opsrator that makes the product wavefunction in the curly

ic under hange of any two electrons. We will not
discuss how this is done in general but will demonstrate how it works for two
pairs by writing down tne wavelunction explicitly for this case:

W(1,2.3.4) = P{g(1. 2}3. 4)}

Ly gl P B (10.20)

» % (601 243, 4) — $(1. D2 4) — d(1, S, 1],
Eq. (10.21) is essentially the ground state wavefunction of the BCS theory.

In all superconductors where it has been possible to elucidate unambiguously
the nature of the pairing, the Cooper pairs have been found to have zero orbital
angular momentum. However, the nature of the pairing in high-temperature
superconductors has not yet been established. Some heavy fermion supercon-
ductorst may also have finite angular momentum pairing. Li *He under-
Boes a superfluid transition due to Cooper pairing into a state with L = 1 and

t Although a tightly bound pair of fermions behaves like a bason, there are dangers in pushing
this simple idea too far in the case of Cooper pains; these are weakly bound and there is a strong
overlap of the wavefunctions of neighbouring pairs.

1 Heavy fermion muterials such as UPL, and Ule, , are 5o called because they have & very large
electronic heal capacily an low lnmpumma. equivaleal (o a large heat capacity cffctive mass for
the clectrons (section 3.2.Y). This seems 10 arise because of a contribution to the density of states at
he Fermi surface from the 5f ebectrons of the U atoms.
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the neutrons in neutron stars are also believed to be in a Cooper paired state of
finite angular momentum; these mewtral Fermi systems cannot however be
deseribed as superconductors!

of infinite ductivi

10,45 Expl
To give a g of infinite ity we must first
describe how it is possible lc obtain a current-carrying state by giving all the
pairs @ finite centre-of-mass momentum. A uniform current density corresponds
to a pair wavefunction of the formt
"

¢ =c"rg, (1022)

where r = (ry + r,)/2 is the centre-of-mass position of the two electrons and ¢y,
is a waveflunction for a pair at rest. Eq. (10.22) corresponds o a centre-of-mass
momentum kg and hence to a velocity v, where

! hq = 2mv. J
As the charge on a Cooper pair is — 2¢ the resulting current density is
L, Mg
= Zezm (10.23)

for ny superconducting electrons per unit volume (ng/2 pairsh

Consider a wire carrying a Cooper pair current of this kind. We must explain
why the ing of by ph and imp is ineffective in
producing electrical resistance. The process in which a Cooper pair absorbs a
phonon of energy of order 2A(T) and two normal electrons are created (Fig.
10.14) undoubtedly occurs, as does the inverse process in which two normal
clectrons combine with the emission of a phonon to form a Cooper pair. Indeed
these processes occur with equal rates in order to preserve a dynamic equilibri-
um between the concentrations of Cooper pairs and normal electrons.

Because the energy is lower when all the Cooper pairs are in the same state,
the pairs created by phonon emission always have the wavefunction of Eq.
(10.22); unless their centre-of-mass motion is the same as that of the existing pairs,
their binding energy vanishes. The current is thus unaffected by phonon
seattering. Since impurity scattering is elastic, impurities cannot scatter Cooper
pairs at all; a change of momentum for a single Cooper pair involves the loss of
its binding energy and is therefore an inelastic process. The pair current can only
I';cl;hangnd by an influence that affects all the pairs equally such a5 an electric

k.

* We assume a eniform current deesity for simplicity. Note that a spatially eniform cumrent
dersily can onky be ohtuined in practics in 3 conductor [mh as a thin film or fine wire) with one or
mote dimensions small compared 1o the penctration depth 3
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Fig 10.14 Phonon scattering processes in a wire carrying & supcuurrm! {@) absorp-

tion af a phonon by a Cooper pair of g creates two (B} two

normal clecirons combine with the emission of a phonon 1o form a Cooper pair of
momentum g

10.5 MACROSCOPIC QUANTUM PHENOMENA

10.5.1 The sup ducting order

Since lln- Cnoper pairs share a function, the behaviour of the

is letely ified by this function; that a

function of nnl)- two position variables &5 meoded to describe 1079

I m* is in pl ntrast to the si in a normal metal where the

heha\rmu.l is only determined by spemfyms all of lbe single-particle stales
ipied. The coh in the d with

pation of the same state by Cooper pairs causes supcmmduﬁors

to exhibit quantum mechanical effects on a macroscopic scale. A similar
situation occurs for photons; the ion of a single
state leads to a macroscopically obe:rvmb]e electric field.
For many purposes the relative motion of the two electrons in the pair can be
ignored and the pair lcplded asa pmm pirl:cle Only the dependence of the
ion on the cent needs to be considered and this
is given by the order parameter y(r);t thus, for example, we see from Eq. (10.22)

T Like the Weias iheory of ferromagnetism (section 2.) the BCS theory is a mean fickd theary; the
arder parameter wir) is 1he mean ficld of the theory and is thus analogous 1o the magnetiztion of
the ferromagnet. The mean fleld theary of superconductivity is more successful than that of

samples of occar 5o close

to T, that they are difficult 10 obaerve
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that the order parameter describing a state of uniform current density is
Wir) = g " (10.24)

where A is a constant. Many of the properties of superconductors follow if ()
is regarded as the wavefunction of a particle of charge —2e and mass 2m
(appropriate to a Cooper pair).

The current density d with such a tion is given by making
the substitutions ¢ — 2¢, m — 2m in Eq. (C8) of appendix C:

i =+ !zﬁ (*V — PV 2:‘; WAL {10.25}
The most general form of (r) is
Wlr) = ()| (10.26)
and inserting this in Eq. {10.25) we find
§r) = —(e/m) | $(r)*ChVO + 2eA). (10.27m)
This equation will be the starting point for our di jon of i
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where n is a positive (or zero) integer. The integral §- A . dl may be transformed
by Stokgs’ theorem as in Eq. (7.28) to show that it is equal to the magnetic flux &
_through the curve C. We thus obtain $: 5t
m=f2:" z;:— £y, (10.30)
which shows that the flux through any closed curve on which j = 0 within a
superconductor is quantized in vnits of the Aux quantum @, = iy2e = 207 x
10 15 T ll'J’.

Applying this result to the flux associated with the persistent current flowing
around a superconducting ring (Fig. 10.15) we see that the current is also
quantized and this sheds new light on its stability. A change in current
corresponding to a change in flux through the ring of one quantum involves a
change in A# of 2z. Such a change can only be achieved if the coherence of the

P ducti function is temp ly destroyed in some way, with the

Mu_:ﬂ_loss of condensation energy of the Cooper pairs. There is thus a
large energy Barrier against such a change. Because of the energy associated with

quantum phenomena, but first we will use it to rederive two of our previous
results:

(1) Inserting #(r) = q.r (Eq. (10.24}) and A = 0 (see problem 10.8) into Eq.
{10.27) gives Eq. (10.23) if the order parameter is normalized so that

|#(r)|* = n,/2 = Cooper pair density.

(2) Taking the curl of Eq. (10.27) and assuming that the Cooper pair density
[§(r)|” is independent of position (i.e. that the wavefunction is rigid) gives the
London equation (10.9).1

1052 Flux quantization

Far from the surface of a superconductor in its Meissner state we have j = 0.
Eq. (10.27) then becomes
hVE = —2eA. (10.28)

We integrate this equation around a closed curve C inside the superconductor,
i

Fx§ Vi.dl=h0 = ~2ef Al (10.29)
L c

Since the order parameter yir) behaves fike a wavelunction, it must be
single-valued and the phase change A around a closed loop must be + 2rn

! The price we pay for ignoding the internal structure of the Cooper pair wavefunction is to obtain
1he local Londos current - fiekd relation rather than ion. For p ion of
the difference between Eqs. (10.10) and (10.27) see problem 109,

th t and the trapped flux, a state with a finite persistent current is strictly
only ble, but with an ively infinite lifetime.
Fig. 10.16 illustrates sch ically an experi that used a superconducting

ring to the flux The sp was in the form of a thin film of
tin electroplated onto a fine copper wire a few millimetres long and about 10 pm
diameter (remember that copper is an insulator in comparison with supercon-
ductors!); the small diameter was used so that one flux quantum corresponded
te a reasonable field (~ 10 4T) within the ring. The sample was placed in a
magnetic field of this order and cooled through the transition temperature; the
ficld was then removed and the trapped flux measured by vibrating the sample
between two search coils in series opposition. The i Wis

fepeated a number of times and the trapped flux as a function of the initial

Superconducting
ring

Fig 10,15 Integration of Eq. {10.28)
round the curve C proves that the
magnetic flux through the
superconducting ring is quantzed, The
persistent current f that gives rise to the
Aux flows on the inner surface of the ring
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vibeation | [}
of somale

—
-} Fine Cuvae tm

nloted an centre
sechon

{a) Experimental arrangement for
measuring the flux quantum

o

&z

~ (b} Flux trapped in the ring after of had
g been cooled through the superconducting
sl ot transition in a magnetic field, which was
TR R then removed. (Reproduced with

permission from B. §. Deaver and W, M.
Fairbank, Phys. Rev. Lett. 7, 43 (1961))

Fig 1016

initial field (T}

applied field is shown in Fig. 10.16{k). Quantization in units of h/2e is apparent;
the number of quanta is such as to make the trapped field as close as possible to
the initial applied field. The higher quanta in Fig. 10.16(h) become less well
defined probably because of a flaw in the tin film part way along its length
through which one or more flux quanta could pass.

The magnitude of the flux quantum provides very strong evidence of the
presence of Cooper pairing in superconductors. The factor 2 in the denominator
rs!‘h.-'Eeonmcs from the 2 in the second term in brackets in Eq. (10.27), and thus
directly from the charge on a Cooper pair. We should reassure the reader
worried about the lack of rigour in our derivation of flux quantization (for
example in our neglect of the internal structure of the Cooper pair wavefunc-
tion) that a rigorous derivation can be given, based only on the symmetry
properties of the order parameter.

1053  Quantized flux lines and type 11 superconductivity

We next consider the implicati of flux
ding a region completely filled by

through a curve C
. We suppose that one

10,5 Macroscopic quantum phenomena 0

= 50"
/ e
, \
i .
#=180" [ P T 020360
\ /
\x.x >
i i Fig 1017 Contours of constant phase
of the order purameter for a curve C
8= 270¢ containing one quantum of magnetic Aux

flux quantum passes through C so that the phase  of the superconducting order
parameter changes by 2r in one complete circuit of C. Contours of constant
phase could then appear as in Fig. 10.17 and this creates a problem at a point P
within C where § must take on all values between 0 and 27 simultaneously, As
this is i i with the i of a single-valued order parameéter it
would appear to rule out the passage of quantized magnetic flux through the
interior of a sup duetor, thereby implying that the superconductor is in the
Meissner state.

There is an alternative possibility. If we allow || to go to zero at point P, then
the order parameter is again single-valued there (the single value is zero); the
phase of the order parameter is undefined at a point where |y| = 0. If we repeat
this argument for other sections through the superconductor then we find that
I#1 must vanish along a continuous line and we are thus led to the concept of a

tized fux line, The st of such a line is shown in Fig. 10L18. The
density of Cooper pairs [1* falls to zero on the line (Fig. 10.18(a)), which can
ll:lcl’\‘.'l'alc be pictured as a filament of non-superconducting material. There is a
Circulating current around the line (Fig. 10.18(k)), which generates the magnetic
field (Fig. 10.18(c)) associated with the quantized Mux.

An arruy of quantized flux lines provides the mechanism for the flux
benetration in the mixed state of type II superconductors (scction 10.2.3);

“ctron microscopy studiest indicate that the flux lines tend to form a regular
triangular lattice. In principle it is possible to have lines containing more than
one quantum of flux but they would have a higher energy and only singly
quantized lines are found in practice. We sec from Fig. 10,18 that there arc two
length scales associated with a flux line. From section 10.3 we expect the length
scale for the current and fickd variation (Figs. 10.18{b) and (c}) to be the

. Penetration depth A We might expect the length scale £ for the variation of |y|*
—_—

1 Sex, for cxample, U. Essman and H. Tradble, Scnrific American, T24 (March), 74 (1971},
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Fig. 1018 Variation of [¢F, j and B through a quantized flux line

(Fig. 10.18{a)) to be associated with the size of the Cooper pair wavelunction;
this indeed turns out to be the case and in a pure superconductor

o

TP T (10.31)

where {g is the BCS coherence I.cnglh of Eq. (10,17}
We can now answer guali ly the ion of why some super
are type 1 and others type 11 by estimating the energy cost of forming a plane
Jary between a sup ducting and normal region in a type [ supercon-
ductor as shcnn in Fig. 10.19; since the superconducting and normal phases are
in equilibrium at the applied field B, the free energies per unit volume of the bulk
uniform regions on either side of the boundary are equal In the boundary
region itsell however there is a loss of condensation energy over a distance § at

the boundary, resulting in an increase in rec energy

AGe = (Gy — Gg)e (10.32)

per unit area of boundary, where Gy, — Gy is the condensation energy per unit
volume. The presence of the boundary allows the field B, to penetrate the
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are ch d by highly i ible magnetization curves. High-
temperature superconductors have even larger values of B, than the materials
shown in Fig. 10.8 but the problem of flux pinning at liquid nitrogen tempera-
tures has yet to be solved in these matenals.

Another imp problem in sup dueting solenoids is the possibili
that a small region may revert to the normal state, which has a high resistivity,
The consequent heating rapidly causes the whole magnet to become normal; the
energy stored in the magnetic ficld is dumped in the liquid helivm bath with
disastrous conseguences. In practice the ing wire is a P of
superconductor and copper, such that, if a small region does become normal, the
copper carties the current with little dissipation, thus preventing rapid growth of
the normal region.

10.54  Josephson effects

Josephson effects are probably the most striking manifestation of magro-
scopic quanium phenomena. They occur when two macroscopic superconduct-
ing regions are weakly coupled. To explain what this means we consider first two
isolated samples of a superconductor with spatially constant order parameters
Igry | exp (i) and || exp (i} as shown in Fig. 10.20a). If the temperature of
‘both samples is the same then

)" = 1wl = ng/2.

In the absence of interaction between the two samples however the phases 8,
and f; will in general be different; all that is required is that the phase should be

i -within each region corresponding o the Cooper pairs being
atgst, Strongly coupling the two samples by bringing them into contact over a
large area causes the phase to equalize, 0, = @, so that all the Cooper pairs can
be in the same state; this equality is then very difficult to disturb. 11 there is weak
coupling, the lowest energy state is still one with 6, = 8., but it is possible to
generate a phase difference between the two regions by passing a small current
though the coupling or applying a small voltage across it. Two superconductors,
weakly coupled in this sense, are said to form a Jesephson junction; the coupling
between them is decribed as a weak link.

There is more than one way ul‘uchlcvmg weak coupling but we will restrict
our di ion 1o wo sup 1 by an oxide barrier of a few
atoms thickness as shown in Fig. 10.20¢h); the coupling arises because electrons
can cross the barrier by a quantum mechanical winnelling process. When the
metal is in its normal state the tunnclling current through the barrier is
proportional to the voltage across it; such behaviour is described as ohmic and a
typical junction resistance is | {1

Below T, it is possible for Cooper pairs to tunnel theough the oxide barrier; a
net flow can take place in the absence of an applied potential difference and this
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Fig 10.19 Boundary between a normal and superconducting region in a type 1

supereonductor. The boundary can only be in squmhrmm at an applied field B_ The

order parameter decays in a distance of order [ and the field penetrates a distance of
order 4 into the superconducting region

p ducting region a di of order 4, lting in a decrease in free
energy
1
AGy = B4 (10.33)
<8 2uq

per unit arca of boundary. We expect type 1 behaviour anly if the energy
associated with the formation of the boundary, AGe + AGy, is positive. From
Eg. (10,6}, (Gy — Gy) and B} /2p, are equal, so that the condition for type |
behaviour is approximately £ > A, When ¢ < 1 it is energetically favourable for
the superconductor in an applicd ficld of order B, to break up into a mixture of
normal and superconducting regions; the energy decrease associated with the
penetration of the field into the superconducting regions more than compen-
sates for the loss of 1 ion energy. The ar of normal and
superconducting regions with the lowest energy is the lattice of quantized flux
limes; if £ < 4 type 1 i heluwour is therefore expected. When the mean free path
of the ¢l is d and & decreases, and this cxplains the
change in behaviour from type 1 to type IT that is produced by alloying in many
metals.

The existence of superconductivity up to fields of order 40 T in some type 11
alloys and compounds (Fig. 10.8) explains the use of these materials in the
construction of solenoids for the generation of large magnetic fields. The major
problem is 1o find materials that will carry a large dissipationless current in high
fields. To explain the problem we consider a solenoid with its ends connected
together to form a continuous superconducting circuit; the ficld is generated by
a persistent current flowing in this cirevit. In type 11 superconductors such a field
can unfortunately decay by the passage of quantized fux lines across the
windings and out of the coil and this is equivalent to the coil having a finite
electrical resi . Some h is ired 1o prevent the free migration
of flux lmﬂ- This is usually donc by making the material inhomogeneous, either

¥ ion or work g; regions where the flux line energy is low are
thereby produced and these act as pinning centres for the fux lines. Such
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Fig. 1020 {a) Two isolated sampl.ﬁ of a (h) The ibutions (o the
order p within the oxide barrier associated with the tunnelling

nl(.oo;)er pairs through the barrier

corresponds to a dissipationless supercurrent, which we now calculale. Because
of the tunnelling of the pairs, the supcrconducting order parameler extends
throughout the barrier;
contributions shown in Fig. 10.20(h): one contribution originates in region 1
and decays exponentially within the barrier, and the other originates in region 2
and decays within the barrier. We assume that the contribution from region | is
very small by the time it reaches region 2 and vice versa so that we can regard

ide the barrier we regard it as being the sum of the

the order within the Jucting region as retaining its “bulk’
value up 1o the edge of the barrier. We therefore write the order parameter
within the barrier as e

‘, ‘Ng '-‘J”:(E"' Kiz+di2y + :l': + Kix A:ll) { |U_14|

where the barrier extends from x = —d/2 to x = d/2 and K ~* is the characteris-
tic bength for decay of the order parameter within the barrier. #, and 8, are the
Phases of the order parameter on the two sides of the junction. To calculate the
Pair current density through the barrier we use Eq. (10.25) with A = 0 and the
order parameter of Eq. (10.34) to find

iefng
= K
i o

j== K4 o0t g0y o i 6, (10.35)
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where § = 8; — 0 is the phase difference between the two sides of the junction
and jg = ehngK exp ( — Kd)/m.

Ifa current is caused to flow through the junction the phase difference adjusts
itsell so that the Josephson equation {10.35) is satisfied. The existence of
dissipationless flow of Cooper pairs through a weak link is called the de

L effect and i fi ion of this effect is seen in Fig. 10.21.
The maximum current density in the oxide barrier is j,, corresponding to a
phase difference & of x/2. What happens when this current is exceeded depends
on the load line of the circuit used to provide the current: the behaviour for the
circuit used to obtain the results of Fig. 10.21 is indicated in the figure.

The current observed at finite voltages in Fig. 10.21 coresponds to tunnelling
of normal electrons through the oxide barrier. At low temperatures where all the
electrons on both sides of the barrier are paired, the tunnelling of a normal
electron requires the breaking of a pair. This can only occur if the electron
tunnelling through the barrier gains an energy 2A from the voltage difference
across the barrier. The current is therefore small until the voltage reaches a value
2A(T)/e. The increase in current when this condition is satisfied is apparent on
Fig. 10.21 and normal electron tunnelling provides an accurate and direct
methed for measuring A(T): the measurements of Fig. 10.11 were obtained by
this method. At voltages above 2A(T)/e the current-voltage relation reverts to
the ohmic behaviour characteristic of the normal state.

¥ What happens to the Cooper pair tunnelling at finite voltages? To answer this

question we must consider the time d d of the sup ducting order
parameter. Since the order parameter acts as the wavefunction of the Cooper

Fo-Ph
T=12H

de Josephson
L eurrent

Current [mA)

Fig. 1021 Current vollage characteristic of a Pb-PbO-Pb tunnel junction at 1.2 K.
The current spike at b= 0 is the de fleet. ( wi som from
D. N. Langenburg o al. CEE

Proc. JEEE S
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Fig. H.22  Steps induced on the
curreni-voltage relaton of a point-
contact Josephson junction by
microwave radiation of frequency

72 Gitlz. The junction is formsed hy
contact between a sharply pointed
piece of niobium and a flat niebium
surface. (Reproduced with
permission from C. C. Grimes and §.
Shapiro, Phys. Reo. 169, 397 (1968))
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The resulting pair current through the junction, from Eq. (10.35), is
’ sin {wx]) } aoJ
which is a current ini at fi

(2e/M)V, + nex, where n is any integer. Thus there is a de current (zero frequency)
ir

i

. (10.40)
e

K=
Fig. 10.22 shows the current-voltage characteristic of a microwave-irradiated
Josephson junction, which shows well defined steps at the voltages predicted by
Eq. (10.400. 1t is the steepness of the steps that enables k/2e to be determined
with precisiont (see W. H. Parker, ef al., Phys. Rev. 177, 639 (1969)).

#1055 Quantum interference

Consider a superconductor ring containing two identical Josephson junc-
tions, labelled a and b, as shown in Fig. 10.23(a). From Eq. (10.35) the current [
flowing through the junctions in parallel is

B, = & 8, + 6,
!.—)Ij,,sind_-o-Aj,,siné,=!Ajocos(---‘,} ")sm( = "-) (1041}

‘. s aly
where §, and &, are the phase di ACTOSS aand b pe ).
and A is the area of ench junction. We now show that &, — 4, is determined by

+ The puaition of the steps can be determined with such great procision tsal the accuracy of the
e measircoment is limived by the accuracy with which standard voltage sources can be calibeated-
This has led €0 the uss of the Josephvon junction as 4 means of establishing a vottage standurd by
defining a value of hi2e; the defined valuc is of coursc consistent with the best known value of (hi*
ratia.
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pairs we might expect a dependence of the form
Wocemm
where ji is the energy of a pair; the relevant energy turns out to be the chemical
potential of the pair, More generally if @ depends on time we have
W oc gt

where

fédfir = — (10.36)
Ordinarily, because a superconductor cannot sustain a potential difference, j is
ugiform and Eq, (10.36) has no observable consequences. It is however possible

to maintain a potential difference ¥ between two weakly coupled superconduc-
tors, in which case we deduce from Eq. (10.36) that

& i
Jll h a:: — gyt oy =2V
or
b
ho-=2aV
i {10.37)
where 4 is the phase difference across the junction as in Eg. (10.35).
If ¥ is a constant we can integrate Eq, (10.37) to obtain
2eV
"=PT'+5° (10.38)

W!lm-‘_éo is the value of & at ¢ = 0, The phase difference thus increases linearly
with time and inserting this in Eq. (10.35) for the current gives

v
j—j‘.,n'n(i: I+ 6‘,).
At finite poteatial difference therefore there is an ac supercurrent of Cooper
Pairs at a frequency v = w/2r = 2eV/h and this is known as the ac Josephson
effect; hecauas: the current is alternating it is not seen in the de current-voltage
fistic of Fig. 10.21. The ratio of the voltage to the frequency is
= the flux quantum = 2.07 x 10'* V Hz"", and the ac Josephson effect
N\"ldes‘la very accurate method of measuring this ratio of fundamental

(10.39)

One way of observing the ac Josephson effect is to irradiate the junction with
waves of freq y @ in addition to applying a d¢ potential ¥,. The total
tial difference is then ¥, + v cos (o) and integrating Eq. (10.37) gives
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G I

(a) Current flow through two
| Josephson junctions, a and b, in
1 parallel

(b) Maximum current passed by the
| junctions as a function of applicd
magnetic field. The amplitede of the
| variation falls off at higher fclds
I because the field causes the phase
| difference within each junction to
. vary with posi . {Reproduced
with permission from R. C. Jaklevie
et al., Phys. Ree. 140, A1629 (1965))

-5 o 50
Field (1)

Fig. 10.23

the magnetic ﬂ“. through the ring, We use an approach similar to that used to
T flux quantization in section 10.5.2, Because the current density vanishes
BE the curves C, and C, in the bulk superconducting regions, Eq. (10.28) is
alid and integrating this along these curves we find
2
(- . - 2e
i =y = L’A.di and B0 -WLA.dl.
Where g, Oy 0,5 and Oy are the phases are at the ends of curves C, and C
to the junctions indicated by the subscripts. Adding these equations gives
2 2ed
§, =8, == =

= by h,dr’c"'dl = (10.42)
Dis the flux through the ring and &, = 6,, — 6, and &, = 6, — 6y, arc
differences across the two Jjunctions, In order to obtain the integral of
d a closed curve we have had to include the small contributions from the
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junctions themselves; this introduces negligible error since A varies smoaothly
through the very narrow junction region.
Inserting Eq. (10.42) into Eq. (10.41) gives

’ . 8, + 6,
I = 24j, cos (; 0) sin (L;—‘)
This resembles the supercurrent (Eq. (10.35)) through a single junction; for the

d_unhlc junction it is (8, + 8,)/2 that varics to match the current [ fed into the
ring. The maximum supercurrent that the junction can carTy is now

Faws = 24| con (; o)l

and thus varies periodically with ©; the period is just the flux quantum hy2e, The
measured variation of maximum supercurrent for a double junction can be scen
in Fig. 10.23(b). if the two junctions are not identical then the maximum current
varies periodically with ® but does not fall to zero as predicted by Eq. (10.44),

We designate this effect quantum interference because of the analogy with the
Young's slits interference experiment in optics (Smith and Thomson,* P 127).
The diffe 8, — &y is to the phase diff between the rays of
light from the slits to the screen on which the interference pattern is observed:

(10.43)

(10.44)

Eq. (10.44) thus sponds 1o the cosine d d of the light litud:
with position on the screen. Experi with ducting interf:
have been perfe d with juncti p by di of order 1em,
pressi idh that the ing order is ph: hy
over truly macroscopic distances,
Because of the il of the flux a pair of j as in Fig.

10.23a) embracing an area of 1 em?® would change from maximum to minimum
critical current for a change of field of only 107 T. The de SQUID (supercon-
ducting quantum interference device) is an instrument that exploits this geo-
metry to measure very small magnetic fields with great precision.

106 HIGH-TEMPERATURE SUPERCONDUCTORS

High-T, superconductors are all oxides and have many other features in
common. We use the widely studied YBa,Cu,0, _, 1o illustrate their behaviour;
this material has T, = 92 K and is referred to as a 1-2 -3 superconductor because
of the relative numbers of metal atoms in its chemical formula. The yitrium can
be replaced by various other trivalent atoms (eg. holmium and neodymium)
without any signifi effect on the sup fucting properties. The crystal
structure of YBa,CuyO, _, is shown in Fig. 10.24(a). It contains planes of Cu
and O atoms with the chemical formula Cu0), as indicated; all superconductors
with a T, greater than S0 K discovered up to 1990 possess CuOy; (or NiD,)

106 High-temp P d an
r
t/cuo chains._
F
€
¥ S {a) Crystal structure of YBa,Cuy0, .
[ The unit cell is as fndicated. Five
®c different oxygen sites are identified; for
= & = 0.1 the O{4) sites are almost full and
(o] the Of5) sates emply

-0 O e
@ © @
- O e-C-e
@ @ @
Q-0 @ e

Fig. 10.24

(¥) Plan of CuQ, plane showing
antiferromagnetic arrangement of Cu
spins that ocours for & greater than about
0
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planes similar to these and it is believed that they play a crucial role in the
ductivity and superconductivity of high-T, sup d YBa,Cu,0,
also has chains of alternate Cu and O atoms as identified in Fig. 10.24(g).
The electrical resistivity of YBa,Cu,O,_, in its normal state is very aniso-
tropic, being much higher for current flow along the = axis than for current flow
in the xy plane. This is normally regarded as evidence that conduction is
predominantly due to motion of carriers in the CuQ), planes. Discussion of the
behaviour of YBa,Cu,0, _, is often simplified by regarding each Cu0), plane as
an isolated two-dimensional system. When we do this the reader should
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and leading to the formation of the Cu() chains in Fig. 10.24(a). The onset of
conduction is due to delocalization of the holes; it is not ¢lear if it is better 10
yiew the conduction as arising because of the hopping of a hole [rom one oxygen
atom to another or as being linked with the formation of a two-dimensional
energy band d with the hybridi (section 4.3.4) of 3d states on the
Cu atoms with 2p states on the oxygen atoms.

For 4 just less than 0.6 the metallic Y Ba,Cu, 0, _, undergoes a superconduct-
ing transition at about 40 K. but as & decreases further T, increases and reaches
92K at & ~ 0.1, It has proved impossible to prepare YBa,Cu,0,_, with the

shown in Fig. 10.24{a) with values of & any smaller than about 0.1. The

remember that this is a gross oversimplification; a complete und ding of
the properties of YBa,Cu,0, _, can only be oblained by taking into account its
Ii three-di ional

It is instructive to consider what happens as the amount of oxygen in
YBa,CuyO, 05 varied. We start with YBa,Cu, Oy, corresponding o d = 1. In
this material the oxygen atoms in the Cu( chains in Fig. 10.24(a) are completely
absent. Since there is then nothing to distinguish the x direction from the y
direction the structure is tetragonal {(a = b # ¢, & = f§ = 7 = 90°). YBa,Cu,0,
is an ¢lectrical insulator; in this material the CuQ, planc can be considered
approximately as being made of Cu®* and 07~ ions. The Cu®* ions have nine
3d electrons in their outer shell with a total spin § = L.t The Cu spins order

superconductivity is interpreted as arising because of Cooper pairing of the
hales; flux guantum measurements indicate that pairing of particles with a
charge of magnitude ¢ is involved. The i tion responsibl i
formation has not yet been identified; the binding energy of the pairs &
o0 Tiigh to be explained only by the mechanism involving the lattice vibrations
mi;;si le for Cooper pairing in *conventional’ superconductors. The
Emiferfomagnetic order of the CU atoms disappears af the insulator-metal
transition but it is possible that the antiferromagnetic interactions between the
Cu spins may play a role in the superconducting transition.
Our discussion would suggest that the superconductivity of YBa,Cu, 0., is
i twordi ional. In practice this means that the properties of

antiferromagnetically, as shown in Fig. 10.24(b), with a Néel ure just
above 400 K. The ©° ijons have a filled 2p outer shell and therefore no
magnelic propertics,

When oxygen is added to Y Ba,Cu, 0y, the additional atoms initially occupy
the sites marked O(4}and O{5) on Fig. 10.24(a) randomly; the structure therefore

YBa,Cuy0, _, are very anisotropic. The critical current, for example, is much
larger for flow of current in the xy plane than for flow along z. The high 7, and
small Fermi velocity of YBa,Cuy0,_, mean that the coherence Jength (Eq.
(10.17)), which measures the size of the Cooper pair wavelunction, is small,

remains tetragonal. The added oxygen atoms act like P puritics in 4
semiconductor (section 5.3) and thus add holes 1o the erystal. Some of these
holes are located on the Cu0); planes but for small concentrations there is no
conduction; YBa;CuyO,_, remains an antiferromagnetic insulator until &
decreases 10 about 0.6, This can be understood by assuming that the holes are
localized on oxygen atoms in the CuO, planes. An oxvgen atom with 2 hole has
an outer shell with five 2p electrons and thus spin § = L. The localization of the
holes is an indication that electron electron interactions are important in the
Culdy layers (see scctions 4.3.2 and 13,5.6).

When the additional oxygen ¢ [ to a reduction in & to aboul 06 two
important changes occur: the symmetey of the crystal structure changes from
tetragonal to orthorthombic (¥ b# o, 2 = ff = y = W) and an insulator-
metal transition occurs (section 13.56). The extent to which these changes are
related is not yet known. The change in crystal structure is due to preferential
occupation of the O{4) sites over the O(5) sites, thus breaking the x-y symmetry

+ This fidlows form Hund's rules (section 7.2.1). Presamably the orbital angular momentum of the
inm s quenched by the crystal field.

F to the size of the unit cell. In contrast the low carrier density implies

through Eq. (10.14) that the penetration depih is large. The high-T, supercon-
ductors are therefore extreme type 11 with very large values of B,.

Because of this and the fact that they are sup ducting at the

of liquid nitrogen (77K) there arc many potential applications for these

materials.t Difficult problems must however be avercome before the materials

come into widespread use. P among the prablems for YBa,Cu,0,_,i%

that it is most easily prepared as a ceramic, that is as many small erystallites

together. Although the critical current parallel to the xy plane within

cach crystallite is high, the performance of the ceramic is degraded by poor

between crystallites; it is possible to improve this by aligning the

iTes 56 Thal the xy planes in neighbouring crystallites are parallel. If the

% are to carry large currents in high magnetic fields some means of

the quantized flux lines must be devised, This problem is more acute in

T. superconductors operating at liquid nitrogen temperature because more

spects for “by A M. Wakiky, R. F. Geise and E.

. prosy
it Scienzific Amevican, Febraary 1989,
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thermal energy is available to allow the flux line to escape from its pinning
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centre.

FPROBLEMS 10
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A current is induced 1o flow around the walls of the thin lead wbe shown at 42 K

{not to scale, all dimensions in cm):

29%107°

The current decays by less than 2% (the experimental sensitivity) in a time of 7h.
Deduce an upper limit for the electrical resistivity of superconducting lead. Assume
a value 5 = 107% m for the penetration depth of lead. (This problem is based on
the experiment of Quinn aod ltner, J, Appl. Phys. 33, 748 (1962))

The superconductor tin has T, = 37 K and B, = 306 mT at T = 0. Calculate the
critical current for a tin wire of diameter 1 mm at T = 2 K. What diameter of wirc
would be required 1o carry & corrent of 100 A?

Use the approximate form of Eq. (10.1) for B, to deduce approximate temperature
dependences for the differences of the free energy, entropy and heatl capacily
between the normal and superconducting states. What is the discontinuity in the
heat capacity at the superconducting transition in zero applied field?

Show that the Clogston limiting value of B, ; for a type IT superconductor is given
by pg B, = kg T, .

Use the London equation to show that the penetration of a parallel magnetic field
into a superconducting film of thickness d in the xy plane is described by

B = B, cosh (z/4)/cosh (d/24)

where B, is the applied field and the centre of the film is at 2 = 0. Caleulate the fick!
al which the Gibbs free energies of the normal and superconducting states ars
equal for the film.

The effect of the locality of the 1-field relation on the e
penetration depth of a pure type 1 superconductor in the limit i <  may b=
estimated by saying that, as the field decays on a length scale A bui the cqrm‘
depends on the average of A over a kength seale £, the effective value of A to inser!
in Eq. (1010} is AASS. Show that this approach predicts

A= A
(The exact result from the BCS theory is 4* = 06243(005,.)

07

108

Problems 10 315

Suggest reasons for the following:

(a) At T=1K tin strongly absorbs gnetic radiation of g
0.9 mm but only weakly absorbs radiation of wavelength 1.1 mm.

(b} Sup are poor cond of heat for T <€ T,.

(c) The critical field wt T =0 of different superconductors is approximately
proportional to T, ; _

(d) For different isotopes of the same element T, depends on the isotopic mass.
A supercurrent, corresponding to the order parameter (ng/2)"® exp (igx), lows in
a thin film in the xy plane of thickness d < i. Calculate the vector potential within
the film in a gauge for which A = 0 in the centre of the film and div A = 0. Show
that n this gauge the second term in Eq. (10.27) is smaller by a factor ~d*/4{(T}
than the first term.

Eq, (10.10) cannot be generally valid since the lefi-hand side must be invariant
under a gauge change A —» A + Vy of the vector potential whereas the right-hand
side obviously is not (both A%s give the same field B). The correct gauge-invariant
equation is Eq. (10.27). Explain why the gauge in which Eq. (10.10) is valid satisfies
div A = 0. Use Eq. (10.27) to deduce the change in the order parameter due to the
gauge transformation A — A + V.

10010 Deduce:

(a) the condensation energy, Gy — Gy, of lead from Fig, 10.4;

(b} dB, /AT at 7 for aluminium (molar volume 107 * m*) from Fig. 10.6;
() the cross-sectional area of the tin cylinder from Fig. 10016(k);

(d) the encrgy gap of bead from Fig. 10.21;

(€} the flux quantum from Fig. 10.22;

{f} the area of the loop containing the double junction from Fig. 10.23b).




