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In this experiment we explore Michelson Interferometry by investigating few of its many applica-
tions in optics. The procedure was used to calculate the wavelength of a Helium-Neon laser using
the linear relationship between change in number of fringes and the distance moved by a mirror.
The resultant wavelength was calculated to be 640± 21 nm. Further, using notions of optical path
length and Snell’s law, a relation between refractive index, angle of the glass, and the change in
number of fringes emerged, which was then used to calculate the value of the refractive index as
1.65± 0.33 .

I. INTRODUCTION

Interferometry is a technique that uses the interfer-
ence of waves to extract information. It makes use of
the principle of superposition to combine waves in a
way such that the resulting wave has properties char-
acteristic of the original state of the waves [1]. The
principle of superposition arises from the linearity of
the wave equation, hence a sum of solutions still yields
a resultant wave.
Michelson interferometer in particular, came into ex-

istence to measure the Earth’s motion through ether,
and since then it has played important roles in the
modern day in Fourier spectroscopy, laser-beam inter-
ferometers, and much more [2]. The procedure uses
symmetry in its setup and exploits the wave nature of
light to produce interference fringes, which are studied
to understand a lot of physical phenomena and calcu-
late different properties of materials. In this experi-
ment, we explore a few of its applications- calculating
the refractive index of glass and measuring the wave-
length of a Helium-Neon laser.

II. THEORY

A. What are interferometers?

Interferometers work on the principle of optical in-
terference, which corresponds to the interference of two
or more light waves, yielding a resultant irradiance that
deviates from the sum of component irradiances. These
devices in general can be divided into two: i) Wavefront
splitting, where primary waves are used to emit sec-
ondary waves, which then interfere, and ii) Amplitude
splitting, where a primary wave itself is divided into
two segments and travel different paths to interfere[3].
An important condition for two waves to interfere

is that they must have nearly the same frequency,
which leads to the concept of coherence; when waves
are coherent, the phase relation between the waves is
constant. Two types of coherences relate to waves:
i)Spatial coherence, where the waves are traveling more
or less in the same direction, ii)Temporal coherence,
where the waves have more or less the same frequency
[3].
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FIG. 1. Schematic of Michelson Interferometer

Michelson interferometer is an amplitude-splitting
interferometer, that utilizes temporal coherence of
waves for interference patterns. Figure 1 shows its ba-
sic setup, which consists of two mirrors, a beam source,
a beam splitter, and a screen. The beam is divided into
two through the beam splitter and is then reflected
from the mirrors. The resultant beams then interfere
to create interference patterns on the screen.

B. Measuring wavelength using Michelson
interferometry

The technique uses very simple principles of path
length difference to measure the wavelength of a beam.
When the beams are initially split, due to a difference
in lengths traveled by the two beams, a phase difference
arises. Moving one of the mirrors would vary the path
difference, by whatever distance the mirror has moved
multiplied by two. If the mirror moves a distance of
λ
4 , then a resultant path difference of λ

2 arises, and
the maxima and minima in the interference pattern
switch places. Similarly, if the mirror is moved by a λ

4 ,
the original interference pattern is restored. This leads
to a simple, yet important formula for measuring the
wavelength of a beam:

λ =
2dm
m

, (1)

where dm is the total distance moved by the mirror,
and m is the number of times the fringe pattern is
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restored.

C. Measuring the refractive index of a glass slide

Measuring refractive index utilizes the concept of op-
tical path length, which is the length that light needs
to travel through the air to create the same phase dif-
ference as it would have when traveling through some
homogenous material [4]. Through simple geometrical
arguments, one can arrive at the following expression
(detailed derivation is done in the appendix):

ng =
(2t−Nλ)(1− cos θ)

2t(1− cos θ)−Nλ
, (2)

where ng is the refractive index, t is the thickness of
the glass slide, N is the number of times the fringe
pattern was restored, and θ is the angle through which
the glass slide was rotated.

III. EXPERIMENTAL PROCEDURE

The experimental setup consisted of a Helium-Neon
laser, HR020, from Thor Labs, a beam splitter, two
silver mirrors, a magnifying glass, a screen, and lastly
a breadboard to assemble the interferometer. The cru-
cial part of this experiment was alignment, so before
any measurements were carried out, it was important
to ensure that the beams were aligned and they inter-
fered to produce circular fringes. The result was the
following pattern:

FIG. 2. Fringe patterns

Once a stable interference pattern was produced, we
could move on to measure the wavelength. For this,
we made use of the DC Servo Motor Controller from
Thor Labs. One of the two mirrors (M2 in Fig 1.) was
attached to an actuator, which was connected to the
motor. The software used to control the motor was
Kinesis by Thor Labs. We set a constant velocity of
0.3×10−6 m/s for the actuator and varied the distance
moved by the mirror. The screen was marked to help
count the number of times the pattern was restored.
With several readings, we were able to plot m against
dm to get the wavelength, as can be seen in Fig. 3.

To measure the refractive index of the glass slide,
a precision rotation platform was used, and the slide
was placed on the platform through a stand. The
stand was placed between the beamsplitter and M1
(in Fig.1). It was rotated through particular angle in-
crements, and the number of times the fringe pattern
was restored, was noted. The procedure was repeated
three times, and consequently, the refractive index was
found through Eq. 2.

IV. RESULTS AND DISCUSSION

FIG. 3. Number of fringes restored against the distance
moved by the mirror.

The gradient of Fig. 3 is given by 2
λ , as can be seen

through Eq. 1. Through linear curve fitting, the value
of the gradient was found to be 3.12 × 106 , and then
accounting for the uncertainties through the covariance
matrix, the final wavelength was calculated to be 641±
21 nm. According to Thorlabs[5], the actual output of
the He-Ne laser is 632.8 nm, which lead to a percentage
error of only 1.14 %, hence, the measured value was in
good agreement with the actual value.

The main sources of error in this wavelength calcu-
lation came from the precision of the motor, and the
inherent error in curve fitting.

TABLE I. Measurement of the angle θ of the glass slide, the
number of fringes restored, and the corresponding refractive
index.

θ(◦) N1 N2 N3 N4 N5 n
4.0 ± 0.2 1 2 2 1 1 1.36 ± 0.28
8.0 ± 0.2 13 9 9 10 10 1.92 ± 0.06
12.0 ± 0.2 22 15 19 21 20 1.68 ± 0.04

Three values of the refractive index were calculated
using the results in Table 1, through Eq. 2. The fi-
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nal averaged refractive index was then calculated to be
1.65± 0.33 . The actual value for glass is 1.52 , and so
the percentage error in the measured value was 8.55
%. Given the sensitivity of the apparatus, the mea-
sured value fell within the accepted range of the actual
value.
An uncertainty that could not be accounted for

in both measurements was the human error involved
when the number of fringe patterns being restored was
counted by eye. They deviated too quickly at times
to be noted precisely. The experiment was repeated
several times to eliminate this error. Another major
hurdle in the experiment was the sensitivity of the ap-
paratus to minor external disturbances. This could
not be tackled with in this experiment, but it could
be improved by carrying the experiment out in a more
sensitive environment, for example conducting it in a
vacuum.

V. CONCLUSION

Michelson interferometry is a technique that has al-
lowed people to probe into a lot of rich physics over
the course of history. This simple experiment serves
a glimpse into its wide range of applications, and also
encourages one to explore them further.

Appendix

Deriving refractive index in terms of slide angle
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FIG. 4. Schematic displaying the geometry of a beam en-
tering an inverted glass slide.

The relation between refractive index and the angle
that the glass is rotated arises from the the concept of
optical path length [6]. In general optical path differ-
ence is defined as:

OPD = d1n1 − d2n2,

where d1 and d2 are the distances travelled by light in
the mediums with the respective refractive indexes n1

and n2.
In this case, the optical path difference is defined as:

OPD = 2tn− 2t(1)

= 2t(n− 1),

where t is the thickness of the glass slide, and the factor
of two arises because light traverses twice. Also note
that the refractive index of air is taken to be one.

For a monochromatic light of wavelength λ, the dif-
ference of paths introduced is Nλ, where N is the num-
ber of times the fringes are restored when the glass slide
is inserted. Hence, when the glass slide is rotated, there
is a difference in path length, and consequently N can
be measured, and the following relation can be estab-
lished:

2t(n− 1) = Nλ.

The difference in path lengths can now be calculated
using the geometry shown in figure 3.

Optical distance travelled by light when glass is par-
allel: nt+ bc.

Optical distance travelled when glass is at an angle:
adn+ de.

So the total increase in optical path length can be
rewritten as:

2(adn+ de− nt− bc) = Nλ. (A.1)

Further relations can be developed from the geome-
try of the figure:

ad cos r = t

=⇒ ad =
t

cos r
de = dc sin i

dc = fc− fd

=⇒ de = (fc− fd) sin i.

From the triangles in the setup, the following rela-
tions can also be derived, which can then be substi-
tuted in the last equation:

tan i =
fc

t

tan r =
fd

t
=⇒ de = t tan i sin i− t tan r sin i.

Another relation can be seen in the figure:

bc+ t =
t

cos i

=⇒ bc =
t

cos i
− t.
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Substituting the above relations into Eq. A.1 we get:

nt

cos r
+ t tan i sin i− t tan r sin i− nt− t

cos i
+ t =

Nλ

2
.

From here one can use Snell’s law to arrive at the
required equation:

ng =
(2t−Nλ)(1− cos θ)

2t(1− cos θ)−Nλ
, (A.2)
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