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22. Project the vector b = (1, 1) onto the lines through a; = (1,0) and a, = (1,2). '
Draw the projections p; and p; and add p; + p,. The projections do not add to b
because the a’s are not orthogonal.

23. In Problem 22, the projectidn of b onto the plane of a; and a, will equal b. Find
P=AUTA AT for A= [ @] =) 3]
24. Project b = (1, 0, 0) onto the lines through a; and a; in Problem 21 and also onto
a3 = (2, —1, 2). Add the three projections p; 4+ -ps> + ps.

25. Projecta; = (1, 0) onto a, = (1, 2). Then project the result back onto a;. Draw these
projections and multiply the projection matrices P; P,: Is this a projection?

26. Continuing Problems 21, 24 find the projection matrix P; onto a3 = (2, —1,2). |
Verify that P; + P, + P; = I. The basis a,, a,, as is orthogonal!

E - 3.3 PROJECTIONS AND LEAST SQUARES

Up to this point, Ax = b either has a solution or not. If b is not in the column space
“C(A), the system is inconsistent and Gaussian elimination fails. This failure is almost
certain when there are several equations and only one unknown:

More equations 2x = by
than unknowns— 3x =b,
no solution? 4x = bs.

This is solvable when by, b,, b3 are in the ratio 2:3:4. The solution x will exist only if b

is on the same line as the column a = (2, 3, 4). '
In spite of their unsolvability, inconsistent equations arise all the time in practice.

They have to be solved! One possibility is to determine x from part of the system, and

ignore the rest; this is hard to justify if all m equations come from the same source.

Rather than expecting no error in some equations and large errors in the others, it is

much better to choose the x that minimizes an average error E in the m equations.
The most convenient “average” comes from the sum of squares:

Squared error E’=(Q2x —-b)*+ (Bx — b))% + (4x — by)*.

If there is an exact solution, the minimum error is £ = 0. In the more likely case that b
is not proportional to a, the graph of E? will be a parabola. The minimum error is at the
lowest point, where the derivative is zero:

dE?

e 2[(2x — b1)2 + (Bx — by)3 + (4x — b3)4] = 0.

Solving for x, the least-squares solution of this model system ax = b is denoted by x:

P oluti . 2by+3b, +4bs a'b
east-squares solution X=—m— = —.
4 243244 a'a
You recognize a"b in the numerator and a*a in the denominator.
The general case is the same. We “solve” ax = b by minimizing

E? = |lax — b|> = (a1x —b1)? + -+ - + (@nx — by).
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The derivative of E? is zero at the point X, if
(0136\ - bl)al o (amk\ —bp)an = 0.

We are minimizing the distance from b to the line through a, and calculus gives the same
answer, X = (ajhy + - - - + auby) /(@ + - - + a2), that geometry did earlier:

T

; : ; .~ ab

3K The least-squares solution to a problem ax = b in one unknownis x = —.
ata

You see that we keep coming back to the geometrical interpretation of a least-squares
problem—to minimize a distance. By setting the derivative of E 2 to zero, calculus
confirms the geometry of the previous section. The error vector e connecting b to p must
be perpendicular to a:

Th
Orthogonality of a and e a"(b—%a)=a"b— afaTa =0.
: . aTa

As a side remark, notice the degenerate case a = 0. All multiples of a are zero, and
the line is only a point. Therefore p = 0 is the only candidate for the projection. But
the formula for X becomes a meaningless 0/0, and correctly reflects the fact that X is
completely undetermined. All values of x give the same error E = ||0x — b||, so E Zis
a horizontal line instead of a parabola. The “pseudoinverse” assigns the definite value
X = 0, which is a more “symmetric” choice than any other nuinber.

Least-Squares Problems with Several Variables

Now we are ready for the serious step, fo project b onto a subspace—rather than just
onto a line. This problem arises from Ax = b when A is an m by n matrix. Instead
of one column and one unknown x, the matrix now has n columns. The number m of
observations is still larger than the number n of unknowns, so it must be expected that
Ax = b will be inconsistent. Probably, there will not exist a choice of x that perfectly
fits the data b. In other words, the vector b probably will not be a combination of the
columns of A; it will be outside the column space.

Again the problem is to choose X so as to minimize the error, and again this mini-
mization will be done in the least-squares sense. The error is E = ||Ax — b||, and this
is exactly the distance from b to the point Ax in the column space. Searching for the
least-squares solution X, which minimizes E, is the same as locating the point p = AX
that is closer to b than any other point in the column space.

We may use geometry or calculus to determine Xx. In n dimensions, we prefer
the appeal of geometry; p must be the “projection of b onto the column space.”
The error vector e = b — AX must be perpendicular to that space (Figure 3.8). Find-
ing X and the projection p = AX is so fundamental that we do it in two ways:

1.  All vectors perpendicular to the column space lie in the left nullspace. Thus the error
vector e = b — AX must be in the nullspace of AT:

AT - AX) =0 or ATAx = A"b.
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column a; afe =0
ale=0
combine into
Ate= AT(b-U7) =0

column as

Figure 3.8 Projection onto the column space of a 3 by 2 matrix.

2. The error vector must be perpendicular to each column ay, .. ., a, of A:
“al(b—-A%) =0 a _
' : or : b— Az | =0.
al(b—Ax) =0 al

This is again AT(b — AX) = 0 and ATAX = ATb. The calculus way is to take partial
derivatives of E2 = (Ax — b)T(Ax — b). That gives the same 2ATAx — 2ATh = 0.
The fastest way is just fo multiply the unsolvable equation Ax = b by AT. All
these equivalent methods produce a square coefficient matrix ATA. It is symmetric
(its transpose is not AAT!) and it is the fundamental matrix of this chapter.

The equations ATAX = ATb are known in statistics as the normal equations.

3L When Ax = bisinconsistent, its least-squares solution minimizes || Ax —b||*:
Normal equations ATAX = A"b. 6
. AT A is invertible exactly when the columns of A are linearly independent! Then,
4 Best estimate X %= (ATA)1ATb. )

The projection of b onto the column space is the nearest point AX:

Projection p = Ax = A(ATA)"1ATb. 3)

We choose an example in which our intuition is as good as the formulas:

12 4 Ax = b .has no solution
A=1|1 3}, b= |51, s i ,
0 0 6 A"Ax = A'b gives the best x.

Both columns end with a zero, so C(A) is the x-y plane within three-dimensional space.
The projection of b = (4, 5, 6) is p = (4, 5, 0)—the x and y components stay the same
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but z = 6 will disappear. That is confirmed by solving the normal equations:

: I 2
110 2 5
ATA = } 1 3 :{ }
2,300 | g 5 13
13 =511 o] |4 2
o T —1 ATy, = —,
rewwo= 5 Tl 3 of ) =l
1 2}y 4
Projection p=Ax= |1 3 [J = |5].
00 0

In this special case, the best we can do is to solve the first two equations of Ax = b.
Then X; = 2 and X, = 1. The error in the equation Ox; + Ox, = 6 is sure to be 6.

Remark 1 Suppose b is actually in the column space of A—itis a combinationb = Ax
of the columns. Then the projection of b is still b:
bincolumnspace p=A(ATA)'ATAx = Ax =b.
The closest point p is just b itself—which is obvious.
Remark 2 At the other extreme, suppose b is perpendicular to every column, so
ATb = 0. In this case b projects to the zero vector:
binleft nullspace  p = A(ATA)"'ATh = A(ATA)"'0 = 0.
Remark 3 When A is square and invertible, the column space is the whole space.
Every vector projects to itself, p equals b, and X = x:
If A isinvertible  p = A(ATA)'ATh = AAT' (AT 1ATHh = b.
This is the only case when we can take apart (ATA)™!, and write it as A~'(AT)~!. When

A is rectangular that is not possible.

Remark 4 Suppose A has only one column, containing a. Then the matrix ATA is the
number aTa and X is aTh/a"a. We return to the earlier formula.

The Cross-Product Matrix A" A

The matrix AT A is certainly symmetric. Its transpose is (ATA)T = ATA™T, whichis ATA
again. Its i,.j entry (and j, i entry) is the inner product of column i of A with column j
of A. The key question is the invertibility of ATA, and fortunately

AT A has the same nullspace as A.

Certainly if Ax = 0 then ATAx = 0. Vectors x in the nullspace of A are also in the
nullspace of ATA. To go in the other direction, start by supposing that ATAx = 0, and
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“take the inner product with x to show that Ax = 0:

xTATAx =0, or |Ax||*=0, or Ax=0.

The two nullspaces are identical. In particular, if A has independent columns (and only
x = 0 s in its nullspace), then the same is true for ATA:

3M If A hasindependent columns, then AT A is square, symmetric, and invertible.

We show later that AT A is also positive definite (all pivots and eigenvalues are positive). -
This case is by far the most common and most important. Independence is not so
hard in m-dimensional space if m > n. We assume it in what follows.

Projection Matrices

We have shown that the closest point to b is p = A(ATA)~! ATb. This formula expresses
in matrix terms the construction of a perpendicular line from b to the column space of
A. The matrix that gives p is a projection matrix, denoted by P

Projection matrix P = A(ATA)'AT, @

This matrix projects any vector b onto the column space of A.* In other words, p = Pb
is the component of b in the column space, and the error e = b — Pb is the component
in the orthogonal complement. (I — P is also a projection matrix! It projects b onto the
orthogonal complement, and the projection is b — Pb.)

In short, we have a matrix formula for splitting any b into two perpendicular com-
ponents.- Pb is in the column space C(A), and the other component (I — P)b is in the
left nullspace N (AT)—which is orthogonal to the column space.

These projection matrices can be understood geometrically and algebraically.

3N The projection matrix P = A(ATA)~! AT has two basic properties:
(i) It equals its square: P> = P.
(i) It equals its transpose: PT = P.

Conversely, any symmetric matrix with P? = P represents a projection.

Proof ltiseasy to see why P? = P.If we start with any b, then Pb lies in the subspace
we are projecting onto. When we project again nothing is changed. The vector Pb is
already in the subspace, and P (Pb) is still Pb. In other words P? = P. Two or three or
fifty projections give the same point p as the first projection:

P2 = AATA)TATA(ATA)'AT = A(ATA) AT = P.

* There may be a risk of confusion with permutation matrices, also denoted by P, but the risk
should be small, and we try never to let both appear on the same page.
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To prove that P is also symmetric, take its transpose. Multiply the transposes in
reverse order, and use symmetry of (ATA)~!, to come back to P:

PT = (ADT(ATA)HTAT = A((ATA)T) AT = A(ATA)1AT = P.

For the converse, we have to deduce from P? = P and PT = P that Pb is the
projection of b onto the column space of P. The error vector b — Pb is orthogonal to
the space. For any vector Pc in the space, the inner product is zero:

(b— Pb)"Pc=b"(I — P)"Pc =b"(P — P?)c=0.

Thus b — Pb is orthogonal to the space, and Pb is the projection onto the column
space. ]

Suppose A is actually invertible. If it is 4 by 4, then its four columns are independent
and its column space is all of R*. What is the projection onto the whole space? 1t is the
identity matrix.

P=AATA) AT = AATT AN 1AT = I 5)

The identity matrix is symmetric, / 2 = ], and the error b — Ib is zero.

The point of all other examples is that what happened in equation (5) is not
allowed. To repeat: We cannot invert the separate parts AT and A when those matrices
are rectangular. It is the square matrix AT A that is invertible.

Least-Squares Fitting of Data

Suppose we do a series of experiments, and expect the output b to be a linear function
of the input 7. We look for a straight line b = C + Dt. For example: z

1. At different times we measure the distance to a satellite on its way to Mars. In this
case ¢ is the time and b is the distance. Unless the motor was left on or gravity is
strong, the satellite should move with nearly constant velocity v: b = by 4+ vt.

2. We vary the load on a structure, and measure the movement it produces. In this
experiment # is the load and b is the reading from the strain gauge. Unless the load
is so great that the material becomes plastic, a linear relation b = C + Dt is normal
in the theory of elasticity.

3. The cost of producing ¢ books like this one is nearly linear, b = C + Dt, with editing
and typesetting in C and then printing and binding in D. C is the set-up cost and D
is the cost for each additional book. :

How to compute C and D? If there is no experimental error, then two measurements
of b will determine the line » = C + Dt. But if there is error, we must be prepared to
“average” the experiments and find an optimal line. That line is not to be confused with
the line through a on which b was projected in the previous section! In fact, since there
are two unknowns C and D to be determined, we now project onto a two-dimensional
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Example 2

subspace. A perfect experiment would give a perfect'C and D:

C + Dt = b;
C+ Dty =b,

(6)
C + Dt, = b,.

This is an overdetermined system, with m equations and only two unknowns. If errors
are present, it will have no solution. A has two columns, and x = (C, D):

1 1 by

1 5 C b, .

Lo [D} = 2k or Ax =b. (OF
1t b

The best solution (6 , 5) is the X that minimizes the squared error E2:

Minimize E*=|b— Ax|* = (b = C — Dt)* + - -+ + (by, — C — Dt,,)".

The vector p = AX is as close as possible to b. Of all straight lines b = C + Dr, we
are choosing the one that best fits the data (Figure 3.9). On the graph, the errors are the
vertical distances b — C — D to the straight line (not perpendicular distances!). It is the
‘vertical distances that are squared, summed, and minimized.

Figure 3.9 Straight-line approximation matches the projection p of b.

Three measurements by, b,, b; are marked on Figure 3.9a:
b=1 at t=-1, b=1 a t=1, b=3 at t=2.

Note that the values t = —1, 1, 2 are not required to be equally spaced. The first step
is to write the equations that would hold if a line could go through all three points.
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Then every C + Dt would agree exactly with b:

C—- D=1 1 -1 C 1
Ax=b is C+ D=1 or 1 1 {D}= 1].
C+2D=3 1 2 13

If those equations Ax = b could be solved, there would be no errors. They can’t be
solved because the points are not on a line. Therefore they are solved by least squares:

3 2] [C 5
Tas _ ATy Cl =
A"Ax=Ab is [2 6} [D] [6}
The best solution is C= %, D= % and the best line is % + %t.

Note the beautiful connections between the two figures. The problem is the same
but the art shows it differently. In Figure 3.9b, b is not a combination of the columns
(1,1, 1) and (-1, 1, 2). In Figure 3.9, the three points are not on a line. Least squares
replaces points b that are not on a line by points p that are! Unable to solve Ax = b, we
solve Ax = p. 5, o :

The line % -+ %t has heights %, 173, % at the measurement times —1, 1, 2. Those
points do lie on a line. Therefore the vector p = (3,2, 4) is in the column space.
This vector is the projection. Figure 3.9b is in three dimensions (or m dimensions if
there are m points) and Figure 3.9a is in two dimensions (or n dimensions if there are n
pararmeters). ; b s ;

Subtracting p from b, the errors are e = (2, —$£, 4). Those are the vertical errors in
Figure 3.9a, and they are the components of the dashed vector in Figure 3.9b. This error
vector is orthogonal to the first column (1, 1, 1), since % - % + % = 0. Itis orthogonal to
the second column (—1, 1, 2), because -—% — % + %— = 0. It is orthogonal to the column
space, and it is in the left nullspace.

Question: If the measurements b = (3, ——-67-, 1) were those errors, what would be
the best line and the best X? Answer: The zero line—which is the horizontal axis—and
% = 0. Projection to zero.

We can quickly summarize the equations for fitting by a straight line. The first
column of A contains 1s, and the second column contains the times ;. Therefore ATA
contains the sum of the 1s and the #; and the £:

30 The measurements by, . . ., by, are given at distinct points #y, . . . , tm- Then the
straight line C + Dt which minimizes E 2 comes from least squares:

T 6 i m Zti 6 i Zb,
“[ﬁ]‘“ i [2 er} [ﬁ}‘[znbi]‘

Remark The mathematics of least squares is not limited to fitting the data by straight
lines. In many experiments there is no reason to expect a linear relationship, and it would
be crazy to look for one. Suppose we are handed some radioactive material. The output
b will be the reading on a Geiger counter at various times ¢. We may know that we
are holding a mixture of two chemicals, and we may know their half-lives (or rates of
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decay), but we do not know how much of each is in our hands. If these two unknewn
amounts are C and D, then the Geiger counter readings would behave like the sum of
two exponentials (and not like a straight line):

b=Ce™ + De™™, )
In practice, the Geiger counter is not exact. Instead, we make readings by, ..., by,
at times t, ..., t,,, and equation (8) is approximately satisfied:

Ce ™™ + De i =~ b
Ax=b is
Ce™m 4 De Fim x b,,.

If there are more than two readings, m > 2, then in all likelihood we cannot sclve
for C and D. But the least-squares principle will give optimal values C and D.

The situation would be completely different if we knew the amounts C and D,-and
were trying to discover the decay rates A and . This is a problem in nonlinear least -
squares, and it is harder. We would still form E?, the sum of the squares of the errors,
and minimize it. But setting its derivatives to zero will not give linear equations for the
optimal A and . In the exercises, we stay with linear least squares.

Weighted Least Squares

A simple least-squares problem is the estimate x of a patient’s weight from two obser-
vations x = by and x = b,. Unless'b; = b,, we are faced with an inconsistent system of
two equations in one unknown: :

2

Up to now, we accepted b, and b, as equally reliable. We looked for the value X that
minimized E? = (x — b))% + (x — by)%:

dE? . _bi+bh

T = at X = >
The optimal X is the average. The same conclusion comes from ATAX = ATb. In fact
ATAis a 1 by 1 matrix, and the normal equation is 2X = b; + b,.

Now suppose the two observations are not trusted to the same degree. The value

x = b; may be obtained from a more accurate scale—or, in a statistical problem, from a
larger sample—than x = b,. Nevertheless, if b, contains some information, we are not
willing to rely totally on b;. The simplest compromise is to attach different weights w?
and w3, and choose the Xy that minimizes the weighted sum of squares:

Weighted error ~ E? = w}(x — b))? + w?(x — by)>.

If w; > w,, more importance is attached to b,. The minimizing process (derivative = 0)
tries harder to make (x — b;)? small:

dE? : w?b; + wib,
= 2wPtx—b 2x=b)] =0 at Ty = —————l 9
= [wi(x — b)) + w3 (x — by)] a Tw 7 )




