Section 8-4

‘u used to test the optlcal quality of another optical component, such as a
rlsm situated as shown in Figure 8-4b. Surface imperfections or internal
jations in refractive index show up as a distortion of the fringe pattern.
Lenses are tested for aberrations in the same way, once plane mirror M1 is re-
placed by a convex spherical surface that can reflect the refracted rays back
along themselves, as suggested in the inset of Figure 8-4b.

’.“ lach-Zehnder Interferometer - \
A more radical variation, sketched in Figure 8-5, is the Mach-Zehnder inter-
ometer. The incident beam of roughly collimated light is divided into two
ms at beam splitter BS. Each beam is again totally reflected by mirrors
M1 and M2, and the beams are made coincident again by the semitransparent
mirror M3. Path lengths of beams 1 and 2 around the rectangular system and
ough the glass of the beam splitters are identical. This interferometer has
n used, for example, in aerodynamic research, where the geometry of air
w around an object in a wind tunnel is revealed through local variations of
ssure and refractive index. A windowed test chamber, into which the model
a streamlined flow of air is introduced, is placed in path 1. An identical
mber is placed in path 2 to maintain equality of optical paths. The air-flow
pattern is revealed by the fringe pattern. For such applications the interfer-
ometer must be constructed on a rather large scale. An advantage of the
lach-Zehnder over the Michelson interferometer is that, by appropriate
all rotations of the mirrors, the fringes may be made to appear at the object
ng tested, so that both can be viewed or photographed together. In the
Michelson interferometer, fringes appear localized on the mirror and so cannot
seen in sharp focus at the same time as a test object placed in one of its arms.
The Michelson, Twyman-Green, and Mach-Zehnder interferometers
all two-beam interference instruments that operate by division of ampli-
e. We turn now to an important case of a multiple-beam instrument, the
ry-Perot interferometer.

THE FABRY-PEROT INTERFEROMETER

fhe Fabry-Perot interferometer makes use of an arrangement similar to the
ne parallel plate, discussed in Section 7-9, to produce an interference pat-
that results from the superposition of the multiple beams of the trans-
mitted light. This instrument, probably the most adaptable of all
interferometers, has been used, for example, in precision wavelength mea-
surements, analysis of hyperfine spectral line structure, determination of re-
fractive indices of gasses, and the calibration of the standard meter in terms
of wavelengths. Although simple in structure, it is a high-resolution instru-
ment that has proven to be a powerful tool in a wide variety of applications.
. A possible arrangement is shown in Figure 8-6. Two thick glass or
quartz plates are used to enclose a plane parallel “plate” of air between
t hem which forms the medium within which the beams are multiply reflect-
ed. The glass plates function as mirrors and the arrangement is often called
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M1 (1) M3

IBS  (2) 2

Figure 8-5 Mach-Zehnder interferometer.

Figure 8-6 Fabry-Perot interferometer.
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Figure 8-7 (a) Fabry-Perot interferome-
ter, used with an extended source and a
fixed plate spacing. A circular fringe pattern
like the one shown may be photographed at
the screen. (Photo from M. Cagnet, M. Fran-
con, and J. C. Thrierr, Atlas of Optical Phe-
nomenon, Plate 10, Berlin: Springer-Verlag,
1962.) (b) Fabry-Perot interferometer, used
with a point source and a variable plate
spacing. A detector at the focal point of the
second lens records intensity as a function of
plate spacing d. If a laser source is used, the
lenses may not be needed.

Chapter 8 Optical Interferometry

a cavity. The important surfaces of the glass plates are therefore the innf
ones. Their surfaces are generally polished to a flatness of better than A
and coated with a highly reflective layer of silver or aluminum. Silver fi
are most useful in the visible region of the spectrum, but their reflecti
drops off sharply around 400 nm, so that for applications below 400
aluminum is usually used. Of course, the films must be thin enough to b
partially transmitting. Optimum thicknesses for silver coatings are aro
50 nm. The outer surfaces of the glass plate are purposely formed at a smé
angle relative to the inner faces (several minutes of arc are sufficient (’
eliminate spurious fringe patterns that can arise from the glass itself ac
as a parallel plate. The spacing, or thickness, d of the air layer, is an im
tant performance parameter of the interferometer, as we shall see. W
the spacing is fixed, the instrument is often referred to as an etalon.
Consider a narrow, monochromatic beam from an extended source poil
S making an angle (in air) of 6, with respect to the optical axis of the system,'
in Figure 8-6. The single beam produces multiple coherent beams in the intef
ferometer, and the emerging set of parallel rays are brought together at a poinl
P in the focal plane of the converging lens L. The nature of the superposition d
P is determined by the path difference between successive parallel beam§
A = 2nd cos ,. Using n; = 1 for air, the condition for brightness is

2d cos 6, = mA (81 x

Other beams from different points of the source but in the same plane and maks
ing the same angle 6, with the axis satisfy the same path difference and also
arrive at P. With d fixed, Eq. (8-15) is satisfied for certain angles 6,, and the
fringe system is the familiar concentric rings due to the focusing of fringes
equal inclination. When a collimating lens is used between source and intefs
ferometer, as shown in Figure 8-7a, every set of parallel beams entering t
etalon must arise from the same source point. A one-to-one corresponden
then exists between source and screen points. The screen may be the retina
or a photographic plate. Figure 8-7b illustrates another arrangement, il
which the source is small. Collimated light in this instance reaches the plates
at a fixed angle 6, (6, = 0 is shown) and comes to a focus at a-light detector:
As the spacing d is varied, the detector records the interference pattern asa
function of time in an interferogram. If, for example, the source light consists
of two wavelength components, the output of the two systems is either a double:
set of circular fringes on a photographic plate or a plot of resultant irradiance

'\ A
v v
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1
A A
> > > d
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Iversus the plate spacing d, as suggested in Figure 8-7b. In many common ap-
plications the source is a laser, in which case the lenses shown in Figure 8-7b
may not be needed. It is this last arrangement that we will discuss in the fol-
lowing sections.

!

85 FABRY-PEROT TRANSMISSION:
_ THE AIRY FUNCTION

The irradiance transmitted through a Fabry-Perot interferometer can be cal-
culated with the help of the analysis used to treat the parallel plate arrange-
nent of Section 7-9. In this section we present an alternative method that can
also be used to determine the loss rate of a laser cavity. Consider the arrange-
ment of Figure 8-8. We will assume that the two mirrors that form the Fabry-
Perot cavity are identical, are separated by a distance d, and have real
“v‘n ternal surface) electric-field reflection and transmission coefficients r and ¢.
Further, we will assume that an electric field suffers no absorption upon en-
untermg the cavity mirrors, so that

b/ P+ =1 lossless mirrors (8-16)
A useful parameter associated with the Fabry-Perot interferometer is the
ty round-trip time 7. The cavity round-trip time is the time needed for
ight to circulate once around the cavity and so is given by

7 =2d/v = 2nd/c

ere,v = c/n s the speed of light in the medium filling the space between the
ors, n is the index of refraction of this medium, and c is the speed of light in
acuum.

We wish to express the electric field E transmitted through the Fabry-
erot interferometer in terms of the field £, incident on the interferometer, the
ectlon coefficient r of the cavity mirrors, and the length d of the cavity. In the
nalysis that follows, we will make use of the notion of a propagation factor
p(Az, Ar). As we define it, the propagation factor is the ratio of an electric
a E(z, 1) associated with a traveling monochromatic plane wave at position
=7)+ Az and time ¢t = 5 + At to the same electric field at position z = )
tlmet = to. That is,

E(ZO + AZ, [O + At) = PF(AZ, At)E(Zo,to)

)t example, for a plane monochromatic wave traveling in the +z direction
ncountering no changes in optical media,

E(zg + Az, tg + At)  Egellelotan—ka+az)]

‘; b A = _ . — ei(wAt—kAz)
F( > ) E(Zo, tO) EOez(wto—kZO)
b (8-17)
Mirror 1 i Mirror 2
E; | EY Er Tz
§5 >
Eg
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Figure 8-8 Schematic of a Fabry-Perot in-
terferometer consisting of two mirrors with
reflection and transmission coefficients r
and r. The electric field incident on the in-
terferometer from the left is E;, the reflect-
ed field is Eg, the transmitted field is Ey,
and EY is the right-going intracavity field at
Mirror 1.
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We choose not to include electric field changes caused by reflection from or -
transmission through mirrors in the definition of the propagation factor, but ‘
rather we will include these factors explicitly when we track changes to an elec~
tric field that encounters mirrors. :

To determine the field transmitted through the Fabry-Perot cavity, itis con-
venient to first determine the amplitude of the intracavity nght going electric -
field shown as E7 in Figure 8-8. Proceeding, we write the right-going (traveling in
the +z direction) electric field incident on the Fabry-Perot cavity from the left as -

- EOIei“" (8-18) 3

and the right-going electric field in the cavity, at the position of the first mirror '_
as, i

Et = Eh(t)e (8-19)

Note that the amplitude of this field is, in general, time dependent to allow for '
the buildup or decay of the 1ntracav1ty field as the incident field is turned on
or off. At time ¢ + 7, the right-going 1ntracav1ty field E{(t + 7) can be |
formed as the sum of two parts. One part is the fraction of the incident field
tE(t + 7) that is transmitted through Mirror 1 at this time. The other partis -
the fraction ”Pp(Az = 2d, At = 7)E{(t) of the entire right-going intracavi- -
ty field that existed at Mirror 1 one cavity round-trip time 7 earli ’e_rﬂhls latter
part has propagated around the cavity a distance 2d in a time 7, reflecting once
from each mirror and returning back to Mirror 1 at time ¢ + 7. That is,

T(t + 1) =tE/(t + 7) + r*Pp(Az = 2d, At = T)E{(1)  (8-20) |
Using Egs. (8-17) through (8-19) in Eq. (8-20) gives
E01(t + T)euu(l+'r) s tE ezw(t+f) it r2E+ (t)etwt i(wT— 2kd) (8-21) ;

Some time after the incident field is first directed onto the cavity, the in-
tracavity electric field will settle down to a constant steady -state value.
Once such a steady state has been reached, E§y(t + 7) = Eg(t) = Eg. In
steady state, Eq. (8-21) can be solved for the intracavity right-going field
amplitude E0+1,

t
Ey = 1 a5 Eu (8-22)
Here,
8 = 2kd

is the round-trip phase shift.
The transmitted field £ can be found by propagating the right-going cav-
ity field E{ at Mirror 1 through the cavity and out of Mirror 2,

E eiw(t+1’/2) = tPF(AZ = dj At = T/Z)ET(t)

— IE+ ezwt i(w7/2-8/2)

ET(t + T/Z)

Il

Using Eq. (8-22) in the preceding expression and performing some simplifi-
cation leads to
e/

Eor = TWEOI (8-23)
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Irradlance is proportional to the square of the magnitude of the field ampli-
' tude, / 7 < EgrEgr, so the transmittance T of the Fabry-Perot cavity is

s

7o ﬁ B EOTE()T B ‘l‘ e—zS/Zezﬁ/Z
- I; E()[E?)I (L = rze—ia)(l'_ fzeﬂa)
4 el r?)?

1+ =2cos8 1+ r* — 2rt cos &

‘{vhere we have used the lossless mirror condition > = 1 — r* and one of the
Euler identities. Note that this relation is in agreement with Eq. (7-49), which
glves the transmittance of a parallel plate. Using Eq. (8-16), the trigonometric

f‘ance to be put into the form of the Airy function,

1

T [ - A)sin(8/2) H§20)

Coefficient of Finesse
abry called the square-bracketed factor in Eq. (8-24), which is a functlon
nly of the reflection coefficient r of the mirrors, the coefficient of finesse, F:

2
F= (1—4_%7)3 (8-25)

ation (8-24) can then be expressed more compactly as

1
1+ Fsin%(8/2)

(8-26)

coefficient of finesse is a sensitive function of the reflection coefficient r
e, as r varies from 0 to 1, F varies from 0 to infinity. We show that F also
esents a certain measure of fringe contrast, written as the ratio

(IT)max = (IT)min o Tmax = Tmin
(I T)min Tmin
rom the Airy formula, Eq. (8-26), T takes on its maximum value T, = 1,

n sin(6/2) = 0, and its minimum value T.;, = 1/(1 + F), when
8/2) = +1. Thus,

(8-27)

(IT)max Py (IT)min o 1 - 1/(1 + F) :

(I )min T (828)

¢ that this measure of fringe contrast, the coefficient of finesse, differs
m the related quantity, introduced in Chapter 7 as Eq. (7-17), called the
bility. The fringe profile may be plotted once a value of r is chosen.
h a plot, for several choices of r, is given in Figure 8-9. For each
weseethat T = Ty = 1at§ = m(2w),and T = Ty, = 1/(1 + F)

zero but approaches this value as r approaches 1. For real mirrors with
orption losses, the maximum transmittance is somewhat less than unity.
ansmittance peaks sharply at higher values of r as the phase difference
aches integral multiples of 27, remaining near zero for most of the re-
etween fringes. As r increases even more to an attainable value of 0.97,
ample, F increases to 1078 and the fringe widths are less than a third of

identity cos 8 = 1 — 25sin%*(8/2), and simplifying a bit allows the transmit-

(m + 1/2)2m. Notice that T,,,, = 1 regardless of r and that T, is

219
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Transmittance

2(m + V)7 2(m + 2)w 2(m + 3)w

Round-trip phase difference

Figure 8-9 Fabry-Perot fringe profile. A plot of transmittance 7 versus round-trip
phase difference 8 for selected values of reflection coefficient r. Dashed lines repre-
| sent comparable fringes from a Michelson interferometer.

their values at half-maximum for r = 0.9. The sharpness of these fringes is to
be compared with the broader fringes from a Michelson interferometer, which
have a simple cos?(8/2) dependence on the phase (Eq. (8-2)). These are also
shown in Figure 8-9 by the dashed lines, normalized to a maximum value of 1.

Finesse
The coefficient of finesse F is not to be confused with a second commonly
used figure of merit F, called simply the finesse:

77\/;_ T

L i 2 1—r?

(8-29)

We now show that the finesse F is the ratio of the separation between trans-
mittance peaks to the full-width at half-maximum (FWHM) of the peaks.
Equations (8-26) and (8-29) can be combined to write the transmittance as

B 1
oy (4F2/m?)sin(8/2) (6:30)

The phase separation between adjacent transmittance peaks is sometimes
called the free spectral range (FSR) of the cavity, &,. Thus,

8 = Omi1 — 6, = (m + 1)2m — m2m = 2m

The half-width at half-maximum (HWHM) 8, , of the transmittance peaks (see
Figure (8-10)) can be found from Eq. (8-30) by showing that when T’ = 1/2,

2
in*(8/2) = — ‘(831
sin“(8/2) = w( )
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~ where
8 = 2m7r + 51/2

- Trigonometric identities and a small angle approximation can be used to ver-
ify that, at the half-maxima,

8 81 \2
sin(8/2) = sin’(mm + 8,,/2) = sin2<17/2> ~ (»12—/2) (8-32)

: Combining Equations (8-31) and (8-32), we find that

Sip =7/ F (8-33)
‘ Cavities with more highly reflecting mirrors have higher values for the fi-
- nesse and so narrower transmittance peaks than do cavities with less highly
- reflecting mirrors. As suggested, the finesse of a cavity is the ratio of the free
. spectral range of the cavity to the FWHM of the cavity transmittance peaks:

8fsr _ 2 _
FWHM 26,

F (8-34)
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ﬁ'he transmittance may be regarded as a function of the round-trip phase shift & or
any of the factors upon which & depends, such as the mirror spacing (cavity length)
- d, the frequency » (and so wavelength A) of the input field, or the index of refrac-
tion 7 of the medium in the space between the mirrors. In different modes of oper-
- ation, one of these quantities is typically varied while the others are held constant.
Although the values of the free spectral range and the FWHM of the transmittance
peaks depend, of course, on the chosen independent variable, the ratio of these
 quantities (i.e., the finesse) depends only on the reflectivities of the mirrors and
' sois a useful figure of merit for the Fabry-Perot cavity. We shall use the term free
spectral range to refer to the separation between adjacent transmittance peaks
regardless of the choice of independent variable but take care to symbolically dif-
ferentiate between the free spectral ranges in the different modes of operation. For
example, we shall give the free spectral range of a variable-length Fabry-Perot in-
?{i’érferometer the symbol dy,, and that of a variable-input-frequency Fabry-Perot
jénterferometer the symbol vy, .

3 ample 8-2

Estimate the coefficient of finesse F, the finesse , and the mirror reflectivity r
for a Fabry-Perot cavity with the transmittance curve shown in Figure 8-10.

Fabry-Perot Transmission: The Airy Function

Figure 8-10 Transmittance T as a function
of round-trip phase shift 5. The paramgters

_used to produce this plot are discussed in

Example 8-2.
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Solution ‘

L
Using Eq. (8-27) and. noting from Figure 8-10 that T, = 0.05, the coeffi-
cient of finesse is found to be ‘ '

o
i

’ Tmax B Tmin - 1—-0.05 -

F= ~ 19
T in 0.05

The finesse can be found either by extracting the FWHM from Figure 8-1,
and using Eq. (8-34),

Fi

5fsr - 2ar

F=Fwam " 205 — 111 08 |
~or. by using Eq. (8-29),
“W\/FNW\/E‘68

. | | o 1o 2
The mirror reflection coefficient can be obtained from Eq. (8-29),

wr
FiE (—1:7) = 6.8

~ Rearranging gives
682 + 7r -68=0
Taking the positive root of this quadratic reveals

r ~ 0.80

8-6 SCANNING FABRY-PEROT
INTERFEROMETER 3

A
b

As noted earlier, a Fabry-Perot cavity is commonly used as a scanning interfer-
ometer. That is, the irradiance transmitted through a Fabry-Perot is measured
as a function of the length of the cavity. An example of such a record that r 4
sults from the use of a monochromatic incident field is shown in Figure 8-11a.
There are many different methods used to change the length of the cavity in
~ a controlled fashion. For example, if the Fabry-Perot interferometer consist
- of two mirrors separated by an air gap, the mirror separation can be co
trolled by means of a piezoelectric spacer, as shown in the Figure 8-11b. The

' transmittance is a maximum whenever

2
8 =2kd = 27”61 —omm  om=0,%1,£2...
‘Rearrangement gives the condition for a maximum as
d, = mr/2
Accord‘in gly, the free spectral range in this mode of operation is

dpe= Ay == M2

! The cavity length change required to move from one transmittance peak to an-
’ other is thus a measure of the wavelength of the source. In practice, however, this
relation, by itself, is not used to experimentally determine the wavelength of the
source because the length change cannot be measured with the desired accura-
cy. Instead, Eq. (8-36) can be used to calibrate the length change of the cavity in-
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i I

02 0.25 0.3 035 04

Change in cavity length (um)
(a)

NN

Spherical mirrors

5 Piezoelectric . Figure 8-11 (a) Transmittance T as a func-
Focusinglens  Aperture 5 - spacer Fhotodetertdin s ¢ tion of the change in cavity length Ad, for a
Driving voltage monochromatic input field. (b) Piezoelec-
i e tric spacer used to control the mirror sepa-
(b) ration d.
ider to, for example, determine the difference in wavelength of two closely
ced wavelength components in the input to the Fabry-Perot cavity.
An example of a record that would result when light of two different but
ly spaced wavelengths A; and A, are simultaneously input into a Fabry-
t cavity of nominal length d = 5 cm is shown in Figure 8-12.; :+; . -
If A and A, are known to be, for example, very near a nominal wavelength,
00 nm, this record can be used to accurately determine the difference in
two wavelengths. If it is known that the adjacent peaks in Figure 8-12 have
e mode number m, then the wavelengths must satisfy the relations
Al = 2d 1 / m
)\2 = 2d2/ m
At.i‘, L B e M B sy
dfsr = )\1/2
A N A i1
‘ . - Figure 8-12 Fabry-Perot scan used to de-
termine the difference in wavelength of two
| I ; | | \ closely spaced wavelength components of
0.03 01 015 0.2 0.5 03 035 0.4 the input field. The scan is for a nominal

wavelength of 500 nm and a nominal mirror

Change in cavity length (um) spacing of 5 cm.
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The wavelength dif” rence is, then,

' 2 2
)\2 )\1 i (d2 dl) (Zdl//\l)Ad
Thus, N '
AN Ad \
= N (8-37
A d \\( )

\
\

While it is true that the absolute length of the cavity is unlikely to be known toa
high degree of accuracy, one can use the nominal length,d ~ d,, of the cavity in
this expression. Similarly, one typically replaces the wavelength A; appearing in
Eq. (8-37) by its nominal value A. For the situation shown in Figure 8-12,

A 500X 107 m
~ == = 3, X -8
Ad ~ dy/8 = = 3125 X 10 m

so that ford = 5 cm,

Ax _ Ad (3.125 X 10 m

- 1077
A d 0.05 m ) 62510

That is, this Fabry-Perot interferometer easily resolves a fractional difference
in wavelength of less than one part in a million.

Resolving Power

The minimum wavelength difference, Ay, that can be determined in this
manner is limited in part by the width of the transmittance peaks associated
with the two wavelength components. A commonly used resolution criterion is
that the minimum resolvable difference, Ad;, , between the cavity lengths asso- -
ciated with the centers of the peaks of the transmittance functions of the two
wavelength components is equal to the FWHM of these peaks. In this way, the
crossover point of the two peaks will be not more than one-half of the maximum
irradiance of either peak. This resolution criterion, Ad = 2 Ad;j, = Adpyp, isil- '
lustrated in Figure 8-13.

We now show that the minimum resolvable wavelength difference,
A)pin, can be compactly expressed in terms of the cavity finesse F. As indi- -
cated by Eq. (8-29), the finesse of a Fabry-Perot cavity depends only on the

. reflection coefficient r of the cavity mirrors. As we mentioned, the finesse is a
useful figure of merit because it is the ratio of the separation between adjacent
transmittance peaks (that is, the cavity free spectral range) to the FWHM of a
transmittance peak. Previously, as Eq. (8-34), we formed this ratio using the
round-trip phase shift § as the independent variable. Noting that § = 2kd, we
now express the finesse using the cavity length d as the independent variable:

F str kdfsr dfsr
28, 2kAdy,  2Adip
Therefore,
dfsr A
20dypp = —— = —=
2T F T oF

Using the relation in Eq. (8-37) and imposing the resolution criterion illus-
trated in Figure 8-13, Adyy,, = 2Ad;),, leads to

A)tmin » Admin .4 2Adl/2 . A

A d d 2d.F

(8-38)
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esolving power, R, of a Fabry-Perot interferometer is the inverse of this

R msm———
A Amin A

1]

N 207 duis (8-39)

,m = 2d/\ is the mode number associated with the nominal wavelength

nominal cavity length d.
rge resolving powers are, of course, desirable. For the scanning Fabry-

interferometer, we see that large values occur when the mode number is
e and for large values of the finesse, which occurs for reflection coefficients
to unity. Notice that to maximize the mode number m, Eq. (8-35) requires
e plate separation d be as large as possible.

,ple 8-3

;A Fabry-Perot interferometer has a 1-cm spacing between mirrors and a re-
"('ﬂection coefficient of r = 0.95. For a wavelength around 500 nm, determine
" its mode number, its finesse, its minimum resolvable wavelength interval,

 and its resolving power.
 Solution
. Using Egs. (8-35), (8-29), (8-38) and (8-39), we find

1 : 24 2(1 X 107%)

m="—= 2 = 40,000
X500 X 107
r 7(0.95
1 =440 1095
A 500 nm :
AN = g =4 X 1074
(AMmin = 77 = (40,000)(31) ¥
Ri= 4 08 12,50 1°

" (AN A% 107

1 Good Fabry-Perot interferometers may be expected to have resolving
owers of a million or more. This represents one to two orders of improvement

Figure 8-13 Scan of the (scaled) Fabry-
Perot transmittance of two wavelength
components of comparable strength. The
dotted curves indicate the transmittance
of the two wavelength components con-
sidered separately, and the solid curve is
the scaled transmittance when both com-
ponents are present in the input field.
Note that these wavelength components
are just barely resolved since the peaks
are separated by a FWHM of either dot-

ted curve.
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igure 8-14 Fabry-Perot rings obtained with
ipe mercury green line, revealing fine struc-
ire. (Reproduced by permission from “Atlas of
?’pﬁcal Phenomena”, 1962, Michael Cagnet,

urice Franco and Jean Claude Thrierr; Plate
)(top). Copyright© Springer-Verlag GmbH &
0 KG. With Kind Permission of Springer Sci-
nce and Business Media.)
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over the performance of comparable prism and grating instruments. The
photograph of the ring pattern of the mercury green line, revealing its fine
structure, shown in Figure 8-14 illustrates the high-resolution perfor-
mance of a Fabry-Perot instrument operated in the mode illustrated
Figure 8-7a. : 1
We have determined the minimum wavelength separation that can be |
resolved with a Fabry-Perot interferometer. It is important to note that there
is also a maximum wavelength separation, A\, that can be resolved in an |
unambiguous manner. If the wavelength separation is too large, the transmit-
tance peak associated with the mode number m + 1 of A; will overlap the |
transmittance peak with mode number m associated with A,. The difference -
in cavity lengths associated with the transmittance peaks of the two wave- ;
length components for the same mode number m is ;

Ad = mAy/2 — mAy/2 = mAA/2

The difference in cavity lengths associated with adjacent transmittance peaks -
for wavelength component A, is the free spectral range of the variable-length ‘
Fabry-Perot interferometer,

diyy = (m + 1)Ny/2 = mhf2 = X/2

The transmittance peak associaﬁed with the mode number m + 1 of A; will
overlap the transmittance peak with mode number m associated with A if
Ad = dg,. Thatis, the overlap occurs if

mAN2 = A/2

Thus, the maximum wavelength separation that can be unambiguously resolved
is

A')‘max T )\l/m & A/m

Here, A is the nominal wavelength of the incident light composed of the two
closely spaced wavelength components A; and A,. We note that wavelength
separations larger than \/m can be measured with a Fabry-Perot cavity provid-
ed that one has additional knowledge of the wavelength separation so that
the difference in mode number associated with adjacent transmission peaks
can be unambiguously determined.




Section 8-7 Variable-Input-Frequency Fabry-Perot Interferometers 227

[tis interesting to note that the ratio of this maximum wavelength dif-
ence to the minimum resolvable wavelength difference is given by the
S,

Az 9 TR
A/\min 5 A/(m]:) N

fact that this ratio is the finesse is not surprising. The transmittance of
fixed-length Fabry-Perot interferometer considered as a function of a
variable-wavelength-input field has transmittance peaks of FWHM equal to
Ao = A/mF and a peak separation (that is, a free spectral range) equal to
max = A/m.Thus, AA,,, may be called the (wavelength) free spectral range
, of a Fabry-Perot interferometer. (See problem 8-23.)

Spherical, rather than flat, mirrors are often used in scanning Fabry-
rot interferometers. Spherical-mirror Fabry-Perot cavities are easier to
align and fabricate and have greater light-gathering power than do flat-mirror
cavities. However, spherical-mirror cavities also have a more complex trans-
ttance spectrum than do the flat-mirror cavities just considered. Like cavi-
s made from flat mirrors, spherical-mirror cavities have (so-called
gitudinal) modes separated by the cavity free spectral range, but in addi-
ion they have (so-called transverse) modes associated with the relationship
of the curvatures of the mirrors to the cavity length. The nature of the trans-
erse modes of a cavity is discussed in more detail in Chapter 27. The more
mplicated mode structure associated with spherical-mirror Fabry-Perot
vities provides the possibility of additional markers that may be useful in
calibration of the Fabry-Perot interferometer.

7 VARIABLE-INPUT-FREQUENCY
~ FABRY-PEROT INTERFEROMETERS

For the scanning Fabry-Perot cavity discussed in the previous section, the
ransmlttance through the Fabry-Perot cavity is a function of the changing
gth of the cavity. A second variant of the Fabry-Perot interferometer
ses a cavity of fixed length and a variable-frequency input field. In this
mode of operation, the frequencies associated with the transmittance peaks
ovide frequency markers that can be used to monitor and calibrate the
anging frequency of the input laser field. The free spectral range and
FWHM of the transmittance 7 through a variable-input-frequency Fabry-
Perot interferometer can be derived in a manner similar to that used in the
discussion of the scanning Fabry-Perot interferometer of the last section. To
do so, we should first relate the round-trip phase shift 8 to the frequency of
he input field v. Making use of the fundamental relation k = 2m/A = 7771//(
the round-trip phase shift 8 associated with an input field of Trequency v can
be written as

& =2kd= 4n(v/c)d

" Thus, a record of the transmittance as a function of the variable input fre-
quency will have maxima when the frequency of the input field has values
hat follow from the resonance condition,

5, = dn(v,jc)d = 2mm  m =0, %1, +2..,
That is, the resonant frequencies of the Fabry-Perot cavity are

‘ v,y = mc/2d (8-40)
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Figure 8-15 Transmittance T through a
Fabry-Perot interferometer of fixed length
d as a function of the variable frequency v
of the input field.

Note that we are assuming, here, that the index of refraction of the material 1
the space between the cavity mirrors is n = 1. In this mode of operation, the
free spectral range of the interferometer is '

Vesr = Vm+1 = Vi = C/Zd (8'41)

In fact, the term free spectral range is most commonly applied for this case,‘
that is, when the transmittance is considered as a function of input frequency.
The FWHM 2Av, ), of the transmittance curves can be found from the basic!
expression for F and the relation between round-trip phase shift 8 and fre-
quency v. That is,

e 6fsr o 47T(st,/C)d o Vesr
261/2 2[47T(AV1/2/C)d] 2AV1/2
so that
Vssr
DA% T
Vi F

Usmg Eq. (8-41) and the expression for the finesse F given in Eq. (8- 29}
gives |

c1l-1r
2AV1/2 = ﬁ ot

(8-42)

The transmittance through a Fabry—Perot interferometer as a function of th*
frequency of the input field is shown in Figure 8-15. A Fabry-Perot cavity used
in this manner is often characterized by a quality factor, Q, defined as the ratio
of a nominal resonant frequency to the FWHM of the transmittance peaks,

v v

- E—AVI/Z Vfsr

As noted, the transmittance of a Fabry-Perot interferometer, with an
input laser field whose frequency is intentionally changed, can be used to cal-
ibrate the frequency change of the laser. The laser frequency could be
changed, for example by changing the effective length of the laser cavity. Such}
a calibration procedure is useful, for example, in absorption spectroscopy.

09} y: . T
Yr = 57
08| 2
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0.6 — ‘p
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»is application of a variable-input-frequency Fabry-Perot interferometer is
xplored in problem 8-22. Alternatively, as discussed at the end of the next
on, the change in the transmittance through a fixed-length Fabry-Perot
vity induced by a change in the frequency of the laser input field can be
ed as a feedback signal to stabilize the frequency of the laser source.

. In Example 8-4 we explore the relationships between various figures of
‘v erit for a variable-input-frequency Fabry-Perot interferometer.

‘xample 8-4

Consider the transmittance through a variable-input-frequency Fabry-Perot
interferometer. Let the Fabry-Perot cavity have length d = 5 cm and finesse
F = 30. Take the nominal frequency of the laser tobe v = 5 X 101 Hz.

Find the free spectral range, vy, of this Fabry-Perot cavity.
- Find the FWHM 2Av, ; of the transmittance peaks.
Find the quality factor Q of this Fabry-Perot cavity.
Estimate the smallest frequency change that could be easily monitored
with this Fabry-Perot cavity.

o op

Solution
¢ 3xX10°m/s

24" 2005m) o oHE

a. Using Eq. (8-41),vs,, =

Vsr
2AV1/2
2Av1) = v, /F =(3 GHz)/30 = 100 MHz.

v 5x10"Hz
2AV1 /2 108 Hz
d. If the frequency is originally adjusted to give maximum transmittance,

a frequency change of Av = Avy;, = 50 MHz would cause the trans-

mittance to fall by a factor of 2. Thus, it would be easy to monitor a fre-
quency change of 50 MHz with this Fabry-Perot.

b. Using the expression for the finesse, 7 = , we find

=5 % 10°

c. Using Eq. (8-43),0 =

' 8.8 LASERS AND THE
FABRY-PEROT CAVITY

Laser cavities typically consist of two highly reflecting spherical mirrors and so
~ have the same basic structure as spherical-mirror Fabry-Perot cavities. The fre-
~ quencies for which a fixed-length Fabry-Perot cavity has maximum transmit-
'~ tance are also the frequencies for which the light generated in a laser medium,
~ within the same cavity, would experience low loss. In addition, as we show later,
' the rate at which light energy stored in an optical cavity decreases over time due
'~ to transmission through and absorption by the cavity mirrors is directly related
to the FWHM, 2Av, », of the transmittance peaks of the same cavity used as
a Fabry-Perot interferometer. This cavity loss rate, often called the cavity
decay rate and given the symbol I', must be compensated for by the gain
medium in order to maintain steady-state laser operation. The formalism intro-
duced in Section 8-5 can be used to determine the rate at which the light ener-
gy stored in an optical cavity decreases over time. In particular, Eq. (8-21) can
be adapted and used to develop an expression for the cavity loss rate. Let the
field incident on a Fabry-Perot cavity be removed at time ¢. Further take the
field in the cavity to be resonant with the cavity so that 8 = 2mr. Then for
times ¢t > ¢y, Eq. (8-21) simplifies to




! 230 Chapters

Optical Interferometry

of the operating resonant cavity frequency w = 27v to the cavity decay rate;

Ea-l(t #+ _T) = rzE&(t)
If, during one round-trip time 7 the change in the complex field amplitu
Eg; is small compared to the amplitude itself, a Taylor series approximatios
can be used, i

d
Efi(r + 1) = Ej(t) + T E§i(1)

Using this in Eq. (8-44) and rearranging terms gives

d
= Edilt) =

< L1 - P)E()

T
One can verify by direct substitution that the solution to this differential equf
tion is :

Eq(1) = E&(tg)e” W=t =)

The right-going irradiance /™ in the cavity is proportional to the square of the
magnitude of the complex field amplitude of the right-going wave, so

I+(t) = [+(t0)e—(2/7)(1—f2)(t“to) = [+(t0)e—l‘(t—t(,)

That is, the cavity irradiance decays at the rate
2 : 1
r= ;(1 i) (8-45)°

This sensible result indicates that, for lossless mirrors, the fractional irradi-"
ance loss I'r during each round-trip time 7 is approximately 2(1 — r?) = 2/%
The inverse of the cavity decay rate I'is sometimes called the photon lifetime,’
7p, of the cavity. That is, the photon lifetime of a cavity is the time interval’
(t — t) over which the energy stored in a cavity without gain or input decays ¢
to 1/e of its initial value. If the light in the cavity is sustained by an input as in
a Fabry-Perot cavity, or by a pumped gain medium as in the case of a laser, T
is the approximate time that a given portion of the light field remains in the
cavity. Note that the approximate number of round-trips, N, that a portion of
the light field makes before exiting the cavity is, then,

T g 4
NymLt=——" 8-46)
Seun Tl (- #2) & «

It is useful to note (see Eqs. (8-42) and (8-45)) that, for highly reflective mir-
rors (7 close to 1), the cavity decay rate and the FWHM of the transmittance
peaks 2Av, , are simply related: ‘

2 o c1-1r
F—T(l r)—27rr<2d

> i 27rr(2Av1/2) = 27T(2AV1/2)
This leads us to § second definition of the cavity quality factor Q as the ratio

2mv @

534 Sy



In addition to the formal similarity between Fabry-Perot and laser cavities,
ry-Perot interferometers can serve a variety of roles as diagnostic or control
ments in optical systems. For example, an external scanning Fabry-Perot in-
ferometer provides a means of investigating the mode structure of the output
multimode laser. Two common uses of the Fabry-Perot as a control element
s a means of limiting a laser to single-mode operation and as a component
aser frequency stabilization system. These are discussed next.

e Suppression with an Etalon

oted, many laser systems permit so-called multimode operation. That is,
ady-state output of the laser includes electric fields with frequencies
sponding to many different cavity resonances. In some applications, it is
rable for the laser to have an output at only a single cavity resonant fre-
ency Such a single-mode laser has a longer coherence length than a mul-
node laser. A Fabry-Perot etalon of length d can be inserted into a laser
yoflength / > d in order to suppress all but a single laser mode.

e N e AN

/ >
() | ®)

or a laser system like that shown in Figure 8-16a; a cavity mode of a
1 frequency will be present in the laser output only if it is amplified by the
. gain medium and satisfies also the low loss condition imposed by both the
avity and the etalon. The etalon, being much shorter than the laser cavi-
a free spectral range, v, = ¢/2d, that is much larger than that of the
cavity, c/2. The length of the etalon can be chosen so that only a single
n mode overlaps an existing cavity mode within the frequency range (the
ndwidth) of laser operation. In addition, if the width of the etalon mode
ss than the free spectral range of the cavity, only one cavity mode will be
t in the laser output. Mode spacings in a typical laser system using an
for mode suppression are shown in Figure 8-16b. Tuning of the position
etalon mode within the gain bandwidth can be accomplished by chang-
effective etalon spacing d, for example, by piezoelectric control of the
spacing or by tilting the etalon. The use of an etalon to limit a laser to
mode operation is explored in Example 8-5.

|
; o
LS
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—>{%<— Mirror : '-‘
Laser tube / — | K .
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Figure 8-16 (a) Laser with intracavity etalon for single-mode operation. (b) Transmit-
tance for laser cavity of length / (solid curve) and etalon of length d (dashed curve).

Section 8-8 Lasers and the Fabry-Perot Cavity
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Example 8-5

A certain argon-ion laser can support steady-state lasing over a range of fre
quencies of 6 GHz. That is, the gain bandwidth of the argon-ion laser is abol
6 GHz. If the length of the laser cavity is / = 1 m, estimate the number ¢
longitudinal cavity modes that might be present in the laser output. Also fin
the minimum length d of an etalon that could be used to limit this laser ¢
single-mode operation.

Solution

The longitudinal cavity modes are separated by the free spectral range
the laser cavity,

: laser _ € —3.108m/s—015GH
R T T W 47

Therefore, the number of lasing modes would be given by

6 GHz

| # i M=
‘ of lasing modes 015 GHz

To ensure single-mode operation, the free spectral range of the etalon must
exceed the gain bandwidth. This requirement allows for a determination of
the required etalon length d: ;

C
v ™ = 27> 6 GHz

| c 3-108m/s

d< = =25cm
2(6:-10°Hz) 1.2-10Hz

Laser Frequency Stabilization !
When embedded within a feedback loop, the Fabry-Perot cavity can be used
to provide state-of-the-art frequency or length stabilization. For example,
light output from a single-mode laser can be fed into a stabilized Fabry-Perot
cavity adjusted to allow maximum transmission of this frequency of the laser
light. When the laser frequency strays from the resonant frequency of the
Fabry-Perot interferometer, the resultant dip in the transmittance of the
Fabry-Perot can be used to initiate a feedback signal used to return the laser:
frequency to the resonant frequency of the Fabry-Perot cavity. Of course,
such a system does not really stabilize the absolute frequency of the laser out- ¢
put but rather locks it to the resonant frequency of the Fabry-Perot. If the
Fabry-Perot is in turn locked to a very stable frequency source of known fre-
quency, absolute stabilization of the laser frequency is achieved. '

8-9 FABRY-PEROT FIGURES OF MERIT

As we have seen, the Fabry-Perot interferometer is a flexible device that has
many modes of operation. In Table 8-1 we list relations involving some fig-
ures of merit for Fabry-Perot cavities. In Table 8-2, representative values of
these figures of merit, as well as some other quantities, are listed for different
mirror reflection coefficients. Note that in Table 8-2 there are two rows each
for the FSR and FWHM: The values in one set are pertinent when the trans-
mittance varies as a result of changing the mirror spacing d, and the values in
| the other set apply when the transmittance varies as a result of changing the
| input frequency v.
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nd mirror reflection coefficient, T is the Fabry-Perot transmittance, R is the
er of the Fabry-Perot with an input field of nominal wavelength A whose mirror
aried, 2 Avqj is the FWHM of a transmittance peak when the frequency of the
d around frequency v, I' is the decay rate of the light within the Fabry-Perot
photon lifetime of the cavity, and FSR stands for free spectral range.

477 1 Toax = Ty
of Finesse P e = F=- T
(L= r)” 1 + Fsin*(8/2) Tnin
548 aVF  ar 5. _FSR i e AT
2 =P ~ FWHM  Ah A
14 ]: 14 Q w :
. B Ledia
Vyyr 2Av1, r v

v-”"Fabry-Perot parameters for a cavity with a nominal spacing of d = 5¢cm, a nominal input wavelength of

nd a nominal frequency of v = 610" Hz. Photon iifetime and FWHM are quantities that are not applicable
ection coefficient is too low.

on Coefficient r 0.2 0.5 0.8 0.9 0.97 0.99

inesse, F (1‘4’—) 0.174 1.78 19.8 89.8 1080 9900
IR _
wr
T 0.655 2.09 6.98 14.9 516 156
g
14 =
. 131-10°  4.19-10° 140-10° 2.98-10° 1.03-10" 3.13-10’
Factor, 0 ) 3 0 0 03-107  3.13-10
i
fime, 7, (5) (1“) NA NA  463-107° 877107 282-10° 838-107
c i A
3 2dF s s 6 6 7 7
lving Power, R T 131-10°  419-10° 1.40-10° 2.98-10° 1.03-107 3.13-10
o A2 %
i (nm) gl 3.82-107 1.19-107° 358-107* . 1.68-10™* 4.85-10° 1.60-107
(Variable Spacing) (nm) A2 250 250 250 250 250 250
A
Variable Spacing) (nm) 55 NA NA 35.8 16.8 4.85 1.6
R (Variable Frequency) (GHz) i 3 3 3 3 3 3
Variable Frequency) (GHz) 2; = NA NA 0.43 0.202 00582  0.0192

GRAVITATIONAL WAVE DETECTORS

clude this chapter with a description of interferometers used for gravi-
wave detection. At the time of this writing, members of the Laser In-
meter Gravitational Observatory (LIGO) project are building, at two
t sites within the United States, interferometers designed to detect and
avitational waves. Similar interferometers are being developed by sci-
nd engineers in Europe and Japan. Gravitational waves result from the -
tion of mass in a manner that is analogous to the generation of electro-
¢ waves by the acceleration -of charge. Gravitational waves exert time-
forces on matter as they pass by. Because the gravitational force is so
gravitational waves coming from even the most dramatic astronomical
ke the collision of black holes or the explosion of supernovae lead
raordinarily small effects on earth. To date, gravitational waves have
en directly detected, but the interferometers currently being construct-
are predicted to be sensitive enough to detect the gravitational waves
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