Section 8-4

‘u used to test the optlcal quality of another optical component, such as a
rlsm situated as shown in Figure 8-4b. Surface imperfections or internal
jations in refractive index show up as a distortion of the fringe pattern.
Lenses are tested for aberrations in the same way, once plane mirror M1 is re-
placed by a convex spherical surface that can reflect the refracted rays back
along themselves, as suggested in the inset of Figure 8-4b.

’.“ lach-Zehnder Interferometer - \
A more radical variation, sketched in Figure 8-5, is the Mach-Zehnder inter-
ometer. The incident beam of roughly collimated light is divided into two
ms at beam splitter BS. Each beam is again totally reflected by mirrors
M1 and M2, and the beams are made coincident again by the semitransparent
mirror M3. Path lengths of beams 1 and 2 around the rectangular system and
ough the glass of the beam splitters are identical. This interferometer has
n used, for example, in aerodynamic research, where the geometry of air
w around an object in a wind tunnel is revealed through local variations of
ssure and refractive index. A windowed test chamber, into which the model
a streamlined flow of air is introduced, is placed in path 1. An identical
mber is placed in path 2 to maintain equality of optical paths. The air-flow
pattern is revealed by the fringe pattern. For such applications the interfer-
ometer must be constructed on a rather large scale. An advantage of the
lach-Zehnder over the Michelson interferometer is that, by appropriate
all rotations of the mirrors, the fringes may be made to appear at the object
ng tested, so that both can be viewed or photographed together. In the
Michelson interferometer, fringes appear localized on the mirror and so cannot
seen in sharp focus at the same time as a test object placed in one of its arms.
The Michelson, Twyman-Green, and Mach-Zehnder interferometers
all two-beam interference instruments that operate by division of ampli-
e. We turn now to an important case of a multiple-beam instrument, the
ry-Perot interferometer.

THE FABRY-PEROT INTERFEROMETER

fhe Fabry-Perot interferometer makes use of an arrangement similar to the
ne parallel plate, discussed in Section 7-9, to produce an interference pat-
that results from the superposition of the multiple beams of the trans-
mitted light. This instrument, probably the most adaptable of all
interferometers, has been used, for example, in precision wavelength mea-
surements, analysis of hyperfine spectral line structure, determination of re-
fractive indices of gasses, and the calibration of the standard meter in terms
of wavelengths. Although simple in structure, it is a high-resolution instru-
ment that has proven to be a powerful tool in a wide variety of applications.
. A possible arrangement is shown in Figure 8-6. Two thick glass or
quartz plates are used to enclose a plane parallel “plate” of air between
t hem which forms the medium within which the beams are multiply reflect-
ed. The glass plates function as mirrors and the arrangement is often called
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M1 (1) M3

IBS  (2) 2

Figure 8-5 Mach-Zehnder interferometer.

Figure 8-6 Fabry-Perot interferometer.



1
i
i

e

—

!

216

Figure 8-7 (a) Fabry-Perot interferome-
ter, used with an extended source and a
fixed plate spacing. A circular fringe pattern
like the one shown may be photographed at
the screen. (Photo from M. Cagnet, M. Fran-
con, and J. C. Thrierr, Atlas of Optical Phe-
nomenon, Plate 10, Berlin: Springer-Verlag,
1962.) (b) Fabry-Perot interferometer, used
with a point source and a variable plate
spacing. A detector at the focal point of the
second lens records intensity as a function of
plate spacing d. If a laser source is used, the
lenses may not be needed.
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a cavity. The important surfaces of the glass plates are therefore the innf
ones. Their surfaces are generally polished to a flatness of better than A
and coated with a highly reflective layer of silver or aluminum. Silver fi
are most useful in the visible region of the spectrum, but their reflecti
drops off sharply around 400 nm, so that for applications below 400
aluminum is usually used. Of course, the films must be thin enough to b
partially transmitting. Optimum thicknesses for silver coatings are aro
50 nm. The outer surfaces of the glass plate are purposely formed at a smé
angle relative to the inner faces (several minutes of arc are sufficient (’
eliminate spurious fringe patterns that can arise from the glass itself ac
as a parallel plate. The spacing, or thickness, d of the air layer, is an im
tant performance parameter of the interferometer, as we shall see. W
the spacing is fixed, the instrument is often referred to as an etalon.
Consider a narrow, monochromatic beam from an extended source poil
S making an angle (in air) of 6, with respect to the optical axis of the system,'
in Figure 8-6. The single beam produces multiple coherent beams in the intef
ferometer, and the emerging set of parallel rays are brought together at a poinl
P in the focal plane of the converging lens L. The nature of the superposition d
P is determined by the path difference between successive parallel beam§
A = 2nd cos ,. Using n; = 1 for air, the condition for brightness is

2d cos 6, = mA (81 x

Other beams from different points of the source but in the same plane and maks
ing the same angle 6, with the axis satisfy the same path difference and also
arrive at P. With d fixed, Eq. (8-15) is satisfied for certain angles 6,, and the
fringe system is the familiar concentric rings due to the focusing of fringes
equal inclination. When a collimating lens is used between source and intefs
ferometer, as shown in Figure 8-7a, every set of parallel beams entering t
etalon must arise from the same source point. A one-to-one corresponden
then exists between source and screen points. The screen may be the retina
or a photographic plate. Figure 8-7b illustrates another arrangement, il
which the source is small. Collimated light in this instance reaches the plates
at a fixed angle 6, (6, = 0 is shown) and comes to a focus at a-light detector:
As the spacing d is varied, the detector records the interference pattern asa
function of time in an interferogram. If, for example, the source light consists
of two wavelength components, the output of the two systems is either a double:
set of circular fringes on a photographic plate or a plot of resultant irradiance
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Iversus the plate spacing d, as suggested in Figure 8-7b. In many common ap-
plications the source is a laser, in which case the lenses shown in Figure 8-7b
may not be needed. It is this last arrangement that we will discuss in the fol-
lowing sections.

!

85 FABRY-PEROT TRANSMISSION:
_ THE AIRY FUNCTION

The irradiance transmitted through a Fabry-Perot interferometer can be cal-
culated with the help of the analysis used to treat the parallel plate arrange-
nent of Section 7-9. In this section we present an alternative method that can
also be used to determine the loss rate of a laser cavity. Consider the arrange-
ment of Figure 8-8. We will assume that the two mirrors that form the Fabry-
Perot cavity are identical, are separated by a distance d, and have real
“v‘n ternal surface) electric-field reflection and transmission coefficients r and ¢.
Further, we will assume that an electric field suffers no absorption upon en-
untermg the cavity mirrors, so that

b/ P+ =1 lossless mirrors (8-16)
A useful parameter associated with the Fabry-Perot interferometer is the
ty round-trip time 7. The cavity round-trip time is the time needed for
ight to circulate once around the cavity and so is given by

7 =2d/v = 2nd/c

ere,v = c/n s the speed of light in the medium filling the space between the
ors, n is the index of refraction of this medium, and c is the speed of light in
acuum.

We wish to express the electric field E transmitted through the Fabry-
erot interferometer in terms of the field £, incident on the interferometer, the
ectlon coefficient r of the cavity mirrors, and the length d of the cavity. In the
nalysis that follows, we will make use of the notion of a propagation factor
p(Az, Ar). As we define it, the propagation factor is the ratio of an electric
a E(z, 1) associated with a traveling monochromatic plane wave at position
=7)+ Az and time ¢t = 5 + At to the same electric field at position z = )
tlmet = to. That is,

E(ZO + AZ, [O + At) = PF(AZ, At)E(Zo,to)

)t example, for a plane monochromatic wave traveling in the +z direction
ncountering no changes in optical media,

E(zg + Az, tg + At)  Egellelotan—ka+az)]

‘; b A = _ . — ei(wAt—kAz)
F( > ) E(Zo, tO) EOez(wto—kZO)
b (8-17)
Mirror 1 i Mirror 2
E; | EY Er Tz
§5 >
Eg

Section 8-5 Fabry-Perot Transmission: The A m 217

Figure 8-8 Schematic of a Fabry-Perot in-
terferometer consisting of two mirrors with
reflection and transmission coefficients r
and r. The electric field incident on the in-
terferometer from the left is E;, the reflect-
ed field is Eg, the transmitted field is Ey,
and EY is the right-going intracavity field at
Mirror 1.
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We choose not to include electric field changes caused by reflection from or -
transmission through mirrors in the definition of the propagation factor, but ‘
rather we will include these factors explicitly when we track changes to an elec~
tric field that encounters mirrors. :

To determine the field transmitted through the Fabry-Perot cavity, itis con-
venient to first determine the amplitude of the intracavity nght going electric -
field shown as E7 in Figure 8-8. Proceeding, we write the right-going (traveling in
the +z direction) electric field incident on the Fabry-Perot cavity from the left as -

- EOIei“" (8-18) 3

and the right-going electric field in the cavity, at the position of the first mirror '_
as, i

Et = Eh(t)e (8-19)

Note that the amplitude of this field is, in general, time dependent to allow for '
the buildup or decay of the 1ntracav1ty field as the incident field is turned on
or off. At time ¢ + 7, the right-going 1ntracav1ty field E{(t + 7) can be |
formed as the sum of two parts. One part is the fraction of the incident field
tE(t + 7) that is transmitted through Mirror 1 at this time. The other partis -
the fraction ”Pp(Az = 2d, At = 7)E{(t) of the entire right-going intracavi- -
ty field that existed at Mirror 1 one cavity round-trip time 7 earli ’e_rﬂhls latter
part has propagated around the cavity a distance 2d in a time 7, reflecting once
from each mirror and returning back to Mirror 1 at time ¢ + 7. That is,

T(t + 1) =tE/(t + 7) + r*Pp(Az = 2d, At = T)E{(1)  (8-20) |
Using Egs. (8-17) through (8-19) in Eq. (8-20) gives
E01(t + T)euu(l+'r) s tE ezw(t+f) it r2E+ (t)etwt i(wT— 2kd) (8-21) ;

Some time after the incident field is first directed onto the cavity, the in-
tracavity electric field will settle down to a constant steady -state value.
Once such a steady state has been reached, E§y(t + 7) = Eg(t) = Eg. In
steady state, Eq. (8-21) can be solved for the intracavity right-going field
amplitude E0+1,

t
Ey = 1 a5 Eu (8-22)
Here,
8 = 2kd

is the round-trip phase shift.
The transmitted field £ can be found by propagating the right-going cav-
ity field E{ at Mirror 1 through the cavity and out of Mirror 2,

E eiw(t+1’/2) = tPF(AZ = dj At = T/Z)ET(t)

— IE+ ezwt i(w7/2-8/2)

ET(t + T/Z)

Il

Using Eq. (8-22) in the preceding expression and performing some simplifi-
cation leads to
e/

Eor = TWEOI (8-23)
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Irradlance is proportional to the square of the magnitude of the field ampli-
' tude, / 7 < EgrEgr, so the transmittance T of the Fabry-Perot cavity is

s

7o ﬁ B EOTE()T B ‘l‘ e—zS/Zezﬁ/Z
- I; E()[E?)I (L = rze—ia)(l'_ fzeﬂa)
4 el r?)?

1+ =2cos8 1+ r* — 2rt cos &

‘{vhere we have used the lossless mirror condition > = 1 — r* and one of the
Euler identities. Note that this relation is in agreement with Eq. (7-49), which
glves the transmittance of a parallel plate. Using Eq. (8-16), the trigonometric

f‘ance to be put into the form of the Airy function,

1

T [ - A)sin(8/2) H§20)

Coefficient of Finesse
abry called the square-bracketed factor in Eq. (8-24), which is a functlon
nly of the reflection coefficient r of the mirrors, the coefficient of finesse, F:

2
F= (1—4_%7)3 (8-25)

ation (8-24) can then be expressed more compactly as

1
1+ Fsin%(8/2)

(8-26)

coefficient of finesse is a sensitive function of the reflection coefficient r
e, as r varies from 0 to 1, F varies from 0 to infinity. We show that F also
esents a certain measure of fringe contrast, written as the ratio

(IT)max = (IT)min o Tmax = Tmin
(I T)min Tmin
rom the Airy formula, Eq. (8-26), T takes on its maximum value T, = 1,

n sin(6/2) = 0, and its minimum value T.;, = 1/(1 + F), when
8/2) = +1. Thus,

(8-27)

(IT)max Py (IT)min o 1 - 1/(1 + F) :

(I )min T (828)

¢ that this measure of fringe contrast, the coefficient of finesse, differs
m the related quantity, introduced in Chapter 7 as Eq. (7-17), called the
bility. The fringe profile may be plotted once a value of r is chosen.
h a plot, for several choices of r, is given in Figure 8-9. For each
weseethat T = Ty = 1at§ = m(2w),and T = Ty, = 1/(1 + F)

zero but approaches this value as r approaches 1. For real mirrors with
orption losses, the maximum transmittance is somewhat less than unity.
ansmittance peaks sharply at higher values of r as the phase difference
aches integral multiples of 27, remaining near zero for most of the re-
etween fringes. As r increases even more to an attainable value of 0.97,
ample, F increases to 1078 and the fringe widths are less than a third of

identity cos 8 = 1 — 25sin%*(8/2), and simplifying a bit allows the transmit-

(m + 1/2)2m. Notice that T,,,, = 1 regardless of r and that T, is
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Transmittance

2(m + V)7 2(m + 2)w 2(m + 3)w

Round-trip phase difference

Figure 8-9 Fabry-Perot fringe profile. A plot of transmittance 7 versus round-trip
phase difference 8 for selected values of reflection coefficient r. Dashed lines repre-
| sent comparable fringes from a Michelson interferometer.

their values at half-maximum for r = 0.9. The sharpness of these fringes is to
be compared with the broader fringes from a Michelson interferometer, which
have a simple cos?(8/2) dependence on the phase (Eq. (8-2)). These are also
shown in Figure 8-9 by the dashed lines, normalized to a maximum value of 1.

Finesse
The coefficient of finesse F is not to be confused with a second commonly
used figure of merit F, called simply the finesse:

77\/;_ T

L i 2 1—r?

(8-29)

We now show that the finesse F is the ratio of the separation between trans-
mittance peaks to the full-width at half-maximum (FWHM) of the peaks.
Equations (8-26) and (8-29) can be combined to write the transmittance as

B 1
oy (4F2/m?)sin(8/2) (6:30)

The phase separation between adjacent transmittance peaks is sometimes
called the free spectral range (FSR) of the cavity, &,. Thus,

8 = Omi1 — 6, = (m + 1)2m — m2m = 2m

The half-width at half-maximum (HWHM) 8, , of the transmittance peaks (see
Figure (8-10)) can be found from Eq. (8-30) by showing that when T’ = 1/2,

2
in*(8/2) = — ‘(831
sin“(8/2) = w( )
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~ where
8 = 2m7r + 51/2

- Trigonometric identities and a small angle approximation can be used to ver-
ify that, at the half-maxima,

8 81 \2
sin(8/2) = sin’(mm + 8,,/2) = sin2<17/2> ~ (»12—/2) (8-32)

: Combining Equations (8-31) and (8-32), we find that

Sip =7/ F (8-33)
‘ Cavities with more highly reflecting mirrors have higher values for the fi-
- nesse and so narrower transmittance peaks than do cavities with less highly
- reflecting mirrors. As suggested, the finesse of a cavity is the ratio of the free
. spectral range of the cavity to the FWHM of the cavity transmittance peaks:

8fsr _ 2 _
FWHM 26,

F (8-34)
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ﬁ'he transmittance may be regarded as a function of the round-trip phase shift & or
any of the factors upon which & depends, such as the mirror spacing (cavity length)
- d, the frequency » (and so wavelength A) of the input field, or the index of refrac-
tion 7 of the medium in the space between the mirrors. In different modes of oper-
- ation, one of these quantities is typically varied while the others are held constant.
Although the values of the free spectral range and the FWHM of the transmittance
peaks depend, of course, on the chosen independent variable, the ratio of these
 quantities (i.e., the finesse) depends only on the reflectivities of the mirrors and
' sois a useful figure of merit for the Fabry-Perot cavity. We shall use the term free
spectral range to refer to the separation between adjacent transmittance peaks
regardless of the choice of independent variable but take care to symbolically dif-
ferentiate between the free spectral ranges in the different modes of operation. For
example, we shall give the free spectral range of a variable-length Fabry-Perot in-
?{i’érferometer the symbol dy,, and that of a variable-input-frequency Fabry-Perot
jénterferometer the symbol vy, .

3 ample 8-2

Estimate the coefficient of finesse F, the finesse , and the mirror reflectivity r
for a Fabry-Perot cavity with the transmittance curve shown in Figure 8-10.

Fabry-Perot Transmission: The Airy Function

Figure 8-10 Transmittance T as a function
of round-trip phase shift 5. The paramgters

_used to produce this plot are discussed in

Example 8-2.
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