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Abstract: The Fundamental Algorithm between concentration (Ci) and intensity (Ri) in X-ray fluorescence analysis is 

deduced from Sherman's equation without any approximation. Its explicit expression is thus theoretically exact and it cor-

rects completely for all matrix effects on the intensity Ri emitted by the analyte i in a given specimen. This powerful algo-

rithm combines the practical flexibility of the influence coefficient concept and the theoretical exactness of the Funda-

mental-Parameters method. In association with its innovative calibration procedure, the Fundamental Algorithm can be 

applied to the analysis of any sample type and offers maximum accuracy, limited only by the quality of sample prepara-

tion and the standards used. 

1. INTRODUCTION 

 In the early seventies, X-ray fluorescence (XRF) analysts 
were confronted with the problem to choose the most appro-
priate method for calculating the composition of the samples 
to be analyzed. In order to choose the appropriate method for 
a given analytical context, the author made an exhaustive 
study of the most popular methods published between 1954 
and 1984. From this study, he learnt which methods are most 
performing, in which experimental conditions they must be 
applied, which features contribute to improve the quality of 
results and how to apply all this knowledge in practice. He 
attempted to regroup all these performing features in a new 
fundamental method valid for the complete analytical range 
(0-100%). The resulting method was named the Fundamental 
Algorithm [1]. 

 The Fundamental Algorithm between Ci and Ri in XRF 
analysis is deduced from Sherman's equation without any 
approximation. Its explicit expression is thus theoretically 
exact and it corrects completely for all matrix effects on the 
intensity Ri emitted by the analyte i in a given specimen. 
This powerful algorithm combines the practical flexibility of 
the influence coefficient concept and the theoretical exact-
ness of the Fundamental-Parameters method. In association 
with its innovative calibration procedure, the Fundamental 
Algorithm can be applied to the analysis of any sample type 
and offers maximum accuracy, limited only by the quality of 
sample preparation and the standards used. 

 When a theoretical analytical method is implied, a special 
calibration procedure [2, 3] must be used, because it is well 
known that theory cannot account for the variations of all 
instrumental parameters. An innovative calibration proce-
dure, comparing measured intensities to calculated ones, is 
then proposed. 

 Using the Fundamental Algorithm as basis, three opti-
mized methods that cover the complete analytical range  
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 (0-100%) are proposed. To learn how to apply these three 
optimized methods in practice, an experimental verification 
comparing given concentrations for Fe in a set of Cr-Fe-Ni 
specimens to the values calculated by the three different 
methods [4] is given. 

2. ORIGIN OF THE FUNDAMENTAL ALGORITHM 

 The Fundamental Algorithm (FA) is the synthesis of 30 
years of research and development on the correction for matrix 
effects in XRF analysis. A list of XRF scientists and a brief 
description of their main contributions to the FA, together 
with the publication year, is presented below. The ideas men-
tioned have been incorporated in the FA in one way or an-
other, and contributed to make the FA one of the most effi-
cient methods of correcting for matrix effects. They are: 

1955 Sherman's equation [5]  

1966 Lachance and Traill [6] (LT): 
Concept of the influence coefficient 
Theoretical, binary, absorption 
influence coefficients (alphas) for a 
monochromatic excitation source 
During the concentration calculation, 
there is no need for normalization to 100% 

1967 Claisse and Quintin [7] (CQ): 
Generalization of the LT method for 
matrix effect corrections 
Introduce the weighting factor for each 
incident wavelength k 
Influence coefficients vary with 
concentrations 

1968 Gilfrich and Birks [8]: the first measured 
incident spectrum 
Criss and Birks [9]: the Fundamental- 
Parameters method 
Show how to use Sherman's equation 
in practice 

1970 Rousseau's Master thesis [10]: 
For the first time, proposes the FA for 
a monochromatic excitation source 
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1973 de Jongh [11]: 
Theoretical multi-element influence 
coefficients can be calculated from the 
Sherman equation 
Calibration lines of measured intensities 
versus calculated intensities 
(or apparent concentration) 

1974 Rasberry and Heinrich [12]: 
Absorption and enhancement effects obey 
to different mathematical rules and they 
must be treated separately 

1974 Rousseau and Claisse [13]: 
Propose a new method to calculate 
theoretical binary influence coefficients 
in the CQ algorithm 

1976 Tertian [14]: 
Introduces the CM factor in the 
CQ algorithm 

1980 Criss [15]: 
Proposes calculation of an initial 
estimate of the sample composition 
for calculating the ij and ij coefficients 
once 

1982 Rousseau: 
First public presentation of the FA at the 
31

st
 Annual Denver X-Ray Conference 

1984 Rousseau [16]: 
First publication on the Fundamental 
Algorithm 

1985 Pella, Feng and Small [17]: 
Calculate intensity for each wavelength 
of the incident spectrum 

 The unification of all these XRF methods has led to a 
new fundamental method called the Fundamental Algorithm. 
As it stands, the Fundamental Algorithm contains all that is 
needed to calculate a sample composition from measured X-
ray intensities and also provides a complete and accurate 
correction for all matrix effects. This relation is theoretically 
exact since it has been deduced from the Sherman equation 
without any approximation during the process of derivation. 

 In X-ray fluorescence analysis, the Sherman equation 
describes very well the relationship between the measured 
intensities emitted by a specimen and its composition. In-
deed, in 1955, the physicist Jacob Sherman [5], from the 
Philadelphia Naval Shipyard (USA), published a detailed 
demonstration of an equation enabling one to calculate theo-
retical net X-ray intensities emitted by each element from a 
specimen of known composition when a polychromatic X-
ray beam irradiates it. This equation can be written in the 
form 

Ii = f (Ci, Cj, Ck, …, CN )           (1) 

where Ix and Cx are the net intensity and the concentration 
of the N elements present in the sample, respectively. Unfor-
tunately, this equation is not reversible for transformation to 

Ci = f ( Ii, Ij, Ik, …, IN )           (2) 

which is required for the calculation of unknown sample 
compositions. In the initial Sherman equation, a factor of  

in the part of the secondary fluorescent X-ray intensity (en-
hancement) and another one of  in the part of the tertiary 
fluorescent X-ray intensity (third-element effect) were left 
out as demonstrated by Shiraiwa and Fujino [18]. Of course, 
these missing factors have now been added to the initial 
Sherman equation. This equation is of vital importance in 
XRF analysis for two main reasons. Firstly, it enables us to 
calculate what we measure: line intensities. This feature is 
unique to X-ray spectrometry. No other analytical technique 
allows for such a combination of theoretical physics and 
experimental results. Secondly, the Sherman equation can 
provide the theoretical basis of all modern models for the 
correction of matrix effects [1]. 

 The complex Sherman equation can be rewritten more 
simply, after some algebraic manipulations, in the following 
mathematical form [1]: 

 

Ri = Ci

1+ ijC jj

1+ ijC jj

           (3) 

where 

ij =
Wi( k ) ij( k )k

Wi( k )k

          (4) 

ij =
Wi( k ) ij( k )k

Wi( k )k

          (5) 

 The weighting factor, Wi( k), is defined by 

 

Wi( k ) =
μi( k ) Io( k ) k

μi
* [1+ Cj ij( k )]

j

          (6) 

 Eq. (3) is still the same Sherman equation as before, ex-
cept that the absolute intensity (Ii) has been replaced by the 
relative one (Ri) simply to allow the calculated intensities to 
be independent of the instrument. In this form, the Sherman 
equation still shows that the relative intensity Ri is propor-
tional to the concentration Ci but also to the ratio on the 
right-hand side of it. The numerator contains all the en-
hancement coefficients ij (or ij) of each element j of the 
matrix, at concentration Cj, and the denominator contains all 
the absorption coefficients ij (or ij) of each element j. 
Thus, Ri will increase with the enhancement effects and 
decrease with the absorption effects (if ij is positive). Fur-
thermore, all these matrix effects are weighted by the factor 
Wi( k), which takes into account the polychromaticity of the 
incident spectrum and the matrix composition of the speci-
men. For the identification of the other undefined variables, 
the reader is referred to Ref. [1]. 

 Since in practice XRF analysts are interested in calculat-
ing concentrations rather than intensities, which are meas-
ured, Eq. (3) must be reversed in order to obtain an equation 
enabling us to calculate the composition of the samples to be 
analyzed. Thus, we obtain 
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Ci = Ri

1+ ijC jj

1+ ijC jj

           (7) 

or 

 
C

i
= R

i
M

is
            (8) 

with 

 

Mis =

1+ ijC jj

1+ ijC jj

           (9) 

where the Mis factor is the correction factor for the matrix 
effects of specimen "s" on analyte i. In practice, the Ri inten-
sities are measured and the Mis factor is calculated from the 
Sherman equation or any theoretically valid algorithm [4] 
selected by the analyst for a given analytical context. For the 
calculation of concentrations from the measured intensities, 
an accurate value of Mis is needed for each unknown sam-
ple. However, Mis is strongly dependent on the sample com-
position, which is obviously unknown prior to the analysis. 
Consequently, we are trapped in a vicious circle… We will 
see later the different solutions proposed to solve this prob-
lem in practice. 

3. PHYSICAL INTERPRETATION 

 The physical interpretation of the Fundamental Algo-
rithm (Eq. 7) is quite simple and elegant. To a first approxi-
mation, equation (7) reveals that the concentration of the 
analyte i, Ci, is proportional to its measured relative inten-
sity, Ri, which is multiplied by a ratio correcting for all ma-
trix effects. 

 The numerator contains all the absorption coefficients ij 
of each element j of the matrix. Thus, the numerator corrects 
for all absorption effects of the matrix on the analyte i, each 
element j bringing its contribution to the total correction in a 
proportion Cj. If the numerator is greater than unity (it could 
be lower if the matrix is less absorbent than the analyte), the 
intensity Ri will be increased by a quantity equivalent to that 
absorbed by the matrix. 

 The denominator contains all the enhancement coeffi-
cients ij of each element j of the matrix. If some elements j 
are able to enhance the analyte i, the corresponding coeffi-
cient ij will be different from zero and always positive. 
Thus, the denominator corrects for all enhancement effects 
of the matrix on the analyte i, each element j bringing its 
contribution to the total correction in a proportion Cj. In the 
case of enhancement, the denominator will be greater than 
unity and the intensity Ri will be reduced by a quantity 
equivalent to that caused by the enhancement. Thus, the in-
tensity Ri in the equation (7) will increase with the absorp-
tion effects (if the term j ijCj is positive) and decrease 
with the enhancement effects. 

 Since the numerator of the Fundamental Algorithm cor-
rects for all absorption effects of the matrix on the analyte 
and since the denominator corrects for all enhancement ef-
fects, the form of this equation makes it easier to understand 
the physical principles behind the complex equation of 
Sherman. 

 In physics, the validity of a new theory is confirmed if it 
reveals new facts. Regarding the FA, it reveals that the coef-
ficients ij and ij are the weighted means of all absorption 
and enhancement effects, respectively, caused by element j 
on analyte i, where to each incident wavelength k is given a 
weight Wi, which takes into account the polychromaticity of 
the incident spectrum [1]. 

 The knowledgeable reader may ask why I have not re-
tained the canonical form of the algorithm proposed by 
Broll-Tertian [19] or Lachance-Claisse [20] rather than the 
one of the FA? These two algorithms have in common the 
fact that they merge in one new coefficient the coefficients 
for the correction of absorption and enhancement effects. By 
doing it, the above algorithms do not describe properly, or 
distort, physical reality as described by the Sherman equa-
tion [21, 22]. Such is not the case with the FA, which com-
pletely respects the Sherman equation. 

4. A PHYSICAL DEMONSTRATION OF THE FUN-
DAMENTAL ALGORITHM 

 A more "physical" demonstration of the Fundamental 
Algorithm is as follows. In 1966, Lachance and Traill [6] 
proposed the following definition of the absorption influence 
coefficient for a monochromatic incident source of wave-
length k: 

ij( k ) =
μ j
*

μi
*

1          (10) 

where 

μ j
*
= μ j( k ) cosec ' + μ j( i ) cosec "        (11) 

μi
*
= μi( k ) cosec ' + μi( i ) cosec "        (12) 

 The ij( k) coefficient corrects for the absorption effect 
of the matrix element j on the analyte i when the incident  
X-ray source is monochromatic [1]. In 1984, Rousseau [16] 
generalized this definition for a polychromatic incident 
source: 

ij =
Wi( k )k ij( k )

Wi( k )k

        (13) 

where 

Wi( k ) =
μi( k )

μi
*

Io ( k ) k
1+ Cj ij( k )j

       (14) 

is the weighting factor of each wavelength k of the incident 
X-ray spectrum. The ij coefficient is the weighted mean of 
all the absorption effects caused by matrix element j on ana-
lyte i in a given specimen when it is bombarded by a poly-
chromatic incident spectrum. The value of the ij coefficient 
is unique and fundamental for a given set of experimental 
conditions and for a given specimen composition. Note that 
the coefficient ij( k) is a binary coefficient depending only 
on elements i and j. On the other hand, the coefficient ij is a 
multi-element coefficient depending on the full matrix com-
position including element j. 
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 If there is no enhancement, the concentration Ci is cal-
culated by the following algorithm: 

Ci = Ri(1+ ijC j)j
         (15) 

which has the same form as the Lachance-Traill algorithm 
[6]. In the general case where both matrix effects, absorption 
and enhancement, are present, this latter algorithm becomes 

Ci = Ri

1+ ijC jj

1+ ijC jj

         (16) 

which is the Fundamental Algorithm where 

ij =

Wi( k )k ij
( k )

Wi( k )k

        (17) 

 The ij coefficient is the weighted mean of all the en-
hancement effects caused by matrix element j on analyte i in 
a given specimen when it is bombarded by a polychromatic 
incident spectrum. The value of the ij coefficient is unique 
and fundamental for a given set of experimental conditions 
and for a given specimen composition. 

 As demonstrated, the Fundamental Algorithm is the gen-
eralization of the Lachance-Traill algorithm when the speci-
men is bombarded by a polychromatic incident spectrum and 
where both matrix effects, absorption and enhancement, are 
present. The ij and ij coefficients are multi-element coef-
ficients depending on the full matrix composition of each 
specimen. We will see now how to calculate them for each 
sample to be analyzed. 

5. THE PRACTICAL APPLICATION OF THE FUN-
DAMENTAL ALGORITHM 

 When a series of values of the ij and ij coefficients is 
calculated for a given specimen, these values are valid only 
for this specific specimen since they depend on the full ma-
trix composition. Any other specimen with the same series of 
elements, but in different proportions, will need a new set of 
coefficient values to correct accurately for matrix effects. 

 Since the ij and ij coefficients depend on the total ma-
trix composition, the composition of each sample must be 
first calculated from an initial estimate of the composition. It 
is calculated using the Claisse-Quintin algorithm [7]: 

 

Ci = Ri[1+ aij + aijjCM( ) Cjj

+ aijkCj
k> j

j
Ck]

       (18) 

where CM is the concentration of the total matrix, aij and aijj 
are binary, and aijk, ternary influence coefficients. Then, 
from this estimated composition, all ij and ij coefficients, 
the complex part of Sherman's equation, are calculated once 
only. With these calculated coefficients now used as con-

stants, the final (and more accurate) composition of the 
sample is calculated by applying an iteration process to the 
Fundamental Algorithm. 

 To apply this method in practice, a commercial WIN-
DOWS  software package known as CiROU is available 
[23]. 

 The Fundamental Algorithm method has the following 
clear advantages: 

1. Since the numerator of equation (7) corrects for all 
the absorption effects of the matrix on the analyte and 
since the denominator corrects for all the enhance-
ment effects, the form of equation (7) makes it much 
easier to understand the physical principles behind the 
complex equation of Sherman. Consequently, its great 
beauty lies in its perfect symmetry. 

2. For the first time, it enabled to deduce the concept of 
influence coefficients directly from the Sherman 
equation without any approximation. It proposes the 
fundamental, unique and explicit equations for calcu-
lating the ij, ij coefficients, only in terms of fun-
damental parameters. 

3. The equations of the ij, ij coefficients reveal that 
they are the weighted means of all absorption and en-
hancement effects, respectively, caused by element j 
on analyte i in a given specimen. They also introduce 
a weighting factor, Wi, for each incident wavelength 

k of the incident spectrum. 

4. Empirical coefficients are no longer required. The 
Fundamental Algorithm uses only theoretical influ-
ence coefficients that are in full agreement with the 
treatment of physics as proposed by Sherman. They 
are calculated for each sample composition, increas-
ing the accuracy in so doing. 

5. This method also uses a fully theoretical approach to 
calculate all the required parameters. For example, the 
method uses equations proposed by Pella et al. [17] to 
calculate up to 350 different intensities of the incident 
spectrum emitted by the X-ray tube. It uses data from 
Heinrich [24] to calculate mass absorption coeffi-
cients by a method proposed by Springer and Nolan 
[25]. It also uses modern values of X-ray fluorescence 
yields [26, 27] and Coster-Kronig transition prob-
abilities [28]. 

6. The method can be used in practice to calculate the 
composition of any sample type, of any composition, 
i.e., for concentration ranges varying from 0 to 100%. 
It introduces a theoretical mean relative error of 
0.05% only [4]. An experimental verification of this 
method done by Rousseau and Bouchard [29] on dif-
ferent types of alloy has confirmed its accuracy and 
versatility. 

7. In contrast to the Fundamental-Parameters method, it 
directly calculates concentrations rather than intensi-
ties, and the calculation technique has been opti-
mized. 

8. Normalization of calculated concentrations is no 
longer required. Since the complex part of Sherman's 
equation is calculated once only, the calculation time 
is greatly reduced. 

9. It allows deduction of other theoretically valid algo-
rithms, such as the Lachance-Traill or the Claisse-
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Quintin algorithm [1]. In other words, it can be the 
source of all modern methods to correct for matrix ef-
fects. 

10. It takes advantage of 30 years of research and devel-
opment on mathematical models for matrix effect cor-
rections (see Section 2). 

 However, this theoretical approach needs to be adapted to 
the experimental data of each spectrometer, since theory 
cannot account for all the instrumental parameters. It is done 
through a smart calibration procedure that compares the 
measured intensities to the calculated ones [2]. 

6. THEORETICAL BINARY INFLUENCE COEFFI-
CIENTS 

 In quantitative XRF analysis, one of the major problems 
is the correction for matrix effects (absorption and enhance-
ment). The Fundamental Algorithm uses theoretical multi-
element influence coefficients, which are numerical coeffi-
cients that correct for the effect of each matrix element on 
the element to be determined (or analyte) in a given speci-
men. However, these coefficients depend on the full sample 
composition to be analyzed (see Eqns 4 and 5), which in 
practice is unknown prior to analysis and they must be calcu-
lated for each sample as already explained. One of the solu-
tions proposed to solve this problem was the concept of 
theoretical binary influence coefficients. 

 These binary coefficients are based on the hypothesis that 
the total matrix effect on the analyte i is equal to the sum of 
the effects of each element j of the matrix, each of these ef-
fects being calculated independently of each other. In other 
words, from a practical point of view, it is easier to consider 
a sample as a sum of binary mixtures rather than as a multi-
element mixture. Of course, this approach is an approxima-
tion because one cannot isolate the matrix effect of each 
element j on the analyte i from the effect of the rest of the 
matrix. But this approach allows one to correct for matrix 
effects with accuracy as long as the composition range of 
samples to analyze is fairly limited. With this approach it 
was then possible to calculate a set of theoretical binary in-
fluence coefficients valid for a given composition range 
rather than for a given sample. In other words, with binary 
coefficients it is assumed that the binary coefficient aij is a 
constant for a given range of Ci and Cj rather than being a 
variable dependent on the whole matrix composition of each 
sample. 

 Theoretical binary influence coefficients can be calculated 
by using the Fundamental Algorithm. With this equation, the 
intensities emitted by representative binary standards are cal-
culated rather than being measured. With this approach, one 
assumes that the composition of a complex sample is made up 
of a series of binary elements or compounds where one con-
siders the effect of one matrix element at a time on each ana-
lyte, independently of the rest of the matrix composition. 
Thus, a series of influence coefficients is calculated from hy-
pothetical compositions for the binary series of elements or 
compounds that are present in the samples. 

 Two different algorithms can use the modern concept of 
theoretical binary influence coefficients. These two algorithms, 
among all the proposed ones, have been chosen because of 
their accuracy and their sound theoretical basis. They are: 

 First, the Lachance-Traill (LT) algorithm [6]: 

Ci = Ri(1+ aijC j)j
         (19) 

where Ri is the ratio of the measured net intensity Ii to the 
measured net intensity of the pure analyte i. The binary coef-
ficient aij is calculated using the following equation [1]: 

aij =
ij ij

1+ ijC jm
          (20) 

where ij and ij, defined by equations (5) and (4), are cal-
culated for the special case of a binary standard having a 
composition (Cim, Cjm), where Cim is the mid-value of the 
calibration range of the analyte i and where 

Cjm = 1 Cim           (21) 

 Nowadays, the alpha coefficients as proposed by 
Lachance and Traill [6] are no longer used in practice be-
cause of their lack of accuracy. They have been replaced by 
the theoretical binary influence coefficients aij, which, as 
opposed to the alpha coefficients, take into account the en-
hancement effect as well as the polychromaticity of the inci-
dent radiation [1]. 

 This approach assumes that the coefficient aij is a con-

stant (it is an approximation!) when it is applied to speci-
mens with a limited concentration range (0-10%), such as, 
for example, oxides in rock samples diluted in fused discs. In 
this case, the calculation method by itself (Eqns 19, 20 and 
21) introduces a theoretical mean relative error of only 
0.02% on the calculated concentrations. On the other hand, 
for concentration variations greater than 10%, the concentra-
tions calculated by this algorithm associated to the aij coeffi-
cients are unacceptable [4]. See the experimental verification 
at the end of this paper. 

 In the case of diluted samples such as fused discs or 
pressed powder pellets, the theoretical binary influence coef-
ficient (aij) defined above can be modified by incorporating 
a constant term. For example, when a sample is fused in a 
fixed sample/flux ratio to produce a fused disc, or when a 
pulverized sample is mixed in a fixed sample/binder ratio 
and pressed, the aij coefficient can be modified by including 
the weight fraction and the composition of the flux or the 
binder, which are essentially constant for every specimen. In 
this case, the aij coefficient is referred to as a modified coef-
ficient. The coefficients aij can also be modified to express 
them in terms of oxides rather than elements themselves. 

 Two different aij coefficients, calculated for the correc-
tion of matrix effects of two different matrix elements on the 
analyte, can be combined to form only one coefficient. In 
this case, the new coefficient is referred to as a hybrid coef-
ficient. It is an elegant way to eliminate the measurement of 
one analyte and to correct for its matrix effects even if it has 
not been measured or its concentration is not known. How-
ever, this approach introduces more approximations and 
must be used with caution and applied with great care. The 
terminology “modified” and “hybrid” influence coefficients 
has been proposed by Lachance [30] in 1979 but his methods 
of calculation have not been retained. 
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 When samples are prepared as fused discs, volatile prod-
ucts (e.g. CO2, H2O, SO2, Cl, F, etc.) can be lost during the 
fusion and/or it can be accompanied with a gain in weight 
due to oxidation (e.g. FeO  Fe2O3). In this case, there are 
three different ways to calculate the sample composition: 

1. A conventional Loss On Ignition (LOI) is done on the 
pulverized sample BEFORE the fusion and the ig-
nited powder is used to prepare the fused disc. In this 
case, there is usually NO further loss of volatile or 
gain in weight during the fusion and all the calculated 
concentrations in the fused disc are adjusted to take 
into account the LOI and get the analyte concentra-
tions in the sample [31]. This approach generates ac-
curate results except it is time consuming. 

2. A conventional LOI is done on the pulverized sample, 
but the original sample is used to prepare the fused 
disc. In this case, there is loss of volatile and/or gain 
in weight during the fusion. It changes the sam-
ple/flux ratio and may severely both affects the accu-
racy of results. The method developed by us takes this 
phenomenon into account by using a theoretical ap-
proach based on the famous Sherman equation [31]. 
The coefficient thus calculated for the loss of volatile 
products and/or gain in weight is included in the term 
[1 + …] correcting for matrix effects, even if it is not 
an influence coefficient. This approach generates ac-
curate results and it is less time consuming than the 
previous one because the LOI and the fused disc can 
be done at the same time. 

3. No conventional LOI is done on the pulverized sam-
ple. In this case, there is loss of volatile and/or gain in 
weight during the fusion and the LOI value is un-
known. The LOI value is calculated by difference be-
tween 100% and the sum of calculated concentrations 
in the sample [31]. Knowing the LOI value, the sam-
ple composition is recalculated as in the previous 
case. This approach introduces more approximations 
in the calculation method and is sensitive to any ex-
perimental errors. Since the accuracy of this approach 
is more “unpredictable”, it must be applied with cau-
tion and great care. 

 Second, the Claisse-Quintin (CQ) algorithm [7,13,14,29]: 

 The Claisse-Quintin algorithm (CQ) can be described as 
an extension of the Lachance-Traill algorithm (LT) taking 
into account the fact that the LT coefficient, aij

LT
 (see Eq. 

22), is not a constant but varies with the concentration of the 
matrix elements. According to Claisse and Quintin the LT 
coefficient aij

LT
 varies linearly with the concentration Cj, i.e. 

aij
LT

= aij + aijjC j          (22) 

 Thus, the general form of the Claisse-Quintin algorithm 
for a multicomponent sample can be written as: 

 

Ci = Ri.[1+ (aij + aijjCM )
j

Cj

+ aijkCjCk
k> j

j
]

       (23) 

where the matrix concentration CM is the sum of all ele-
ments in the sample except i, i.e. 

CM = 1 Ci = Cj + Ck + ...+ CN         (24) 

and where the “crossed” ternary coefficient aijk has been 
added to compensate for the fact that the total matrix correc-
tion cannot be strictly represented by a weighted sum of bi-
nary corrections. The binary coefficients aij and aijj are cal-
culated from theory at hypothetical binary compositions of 
(Ci, Cj) = (0.2, 0.8) and (0.8, 0.2), respectively. The cross-
product coefficient, aijk, is calculated at the ternary composi-
tion of (Ci, Cj, Ck) = (0.30, 0.35, 0.35). To be more explicit 
[32], if for a ternary system (Ci, Cj, Ck), the variable Fi(Ci, 
Cj, Ck) is defined by 

Fi(Ci,C j,Ck ) =
1

Cj

Ci
Ri

1         (25) 

 Note that: if Cj = 0, then 

Fi(Ci, 0, Ck ) =
1

Ck

Ci
Ri

1         (26) 

where the ratio Ci/Ri is calculated by the Fundamental Algo-
rithm (Eq. 7) for a ternary system: 

Ci
Ri

=

1+ ijC j + ikCk
1+ ijC j + ikCk

         (27) 

 The three coefficients of the CQ algorithm are calculated 
by means of: 

aij =
1
3

Fi(0.2, 0.8, 0) + 4Fi(0.8, 0.2, 0)[ ]        (28) 

aijj =
5
3
Fi(0.2, 0.8, 0) Fi(0.8, 0.2, 0)[ ]        (29) 

 

aijk =
20

7

Fi(0.3,0.35,0.35)

Fi(0.3,0.7,0)

Fi(0.3,0,0.7)

        (30) 

 The influence coefficients of the CQ algorithm are con-
sidered as constants when they are applied to specimens with 
a medium concentration range (0-40%), such as, for exam-
ple, oxides in cement samples in pressed pellets. In this case, 
the calculation method by itself introduces a theoretical 
mean relative error of 0.04% on the calculated concentra-
tions [4]. 

 As with the LT algorithm, when a pulverized sample is 
mixed in a fixed sample/binder ratio and pressed, the influ-
ence coefficients of the CQ algorithm can be modified by 
including the weight fraction and the composition of the 
binder, which are essentially constant for every specimen. 
The influence coefficients of this algorithm can also be 
modified to express them in terms of oxides rather than ele-
ments themselves. The hybrid coefficients are not calculated 
for the CQ algorithm because there is no LOI (or gain in 
weight) during the preparation of pressed pellets. 
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 The experimental verification of these two algorithms 
(see Section 10) confirms the expected theoretical accuracy. 
Consequently, XRF analysts should consider the theoretical 
binary coefficient approach within the LT and CQ algo-
rithms as a valuable alternative to the Fundamental-
Parameters approach, especially when the variations of ma-
trix effects or composition of samples to analyze are small. 
For the calibration and calculation of sample compositions 
using the two presented algorithms with their associated 
theoretical influence coefficients, some commercial WIN-
DOWS  software packages, such as CiLT and CiROU, run-
ning only on PC, are available [23]. 

7. CALIBRATION 

 Calibration is a very important part of any solution to any 
FP method because it takes into account the imperfections of 
theory and experimental errors. Indeed, as pointed out by 
Criss [33], many assumptions are made in order to be able to 
use the Sherman equation in practice. For example, the ge-
ometry of the specimen excitation is oversimplified: The exit 
angle from the tube target and the incident angle of the pri-
mary radiation over the surface of the specimen vary widely; 
nevertheless, both parameters are represented by a single 
number. One also assumes that the primary radiation is par-
allel, and that the X-rays travel effectively in a straight line 
within the specimen until they are absorbed. Moreover, only 
one level of enhancement is taken into account, and it is as-
sumed that there is no scattering of X-ray fluorescence inten-
sities and that all measured fluorescence X-rays exit the 
specimen at the same angle. There are many reasons to doubt 
the accuracy of the absorption and enhancement corrections: 
Mass absorption coefficients are only known to about 1%; in 
calculating the corrections, and the total attenuation coeffi-
cient is often used as an approximation for the photoelectric 
coefficient. 

 Finally, there are many effects that the model does not 
address at all. For example, it does not account for the X-ray 
tube current, various solid angles, the reflectivity of the ana-
lyzing crystal and the detector efficiency. The 1/r2 depend-
ence of intensity on distance from the target is also ignored. 
In conclusion, the Sherman equation neglects several types 
of interactions. Clearly, the mathematical model proposed by 
Sherman is imperfect, but no model can account totally for 
all the subtleties of instrument response and X-ray interac-
tions within the specimen. Nevertheless, experience shows 
that the model performs very well in practice [29] if all of 
these approximations are compensated by using an appropri-
ate calibration procedure [3], as illustrated below. Willy de 
Jongh [11] was the first in 1973 to propose the philosophy of 
this calibration procedure that compares measured intensities 
to calculated intensities (he called them unrealistically "ap-
parent concentrations"). However, the author proposes the 
same thing today from a completely new approach. 

8. CALIBRATION AND DRIFT MONITORS 

 Although in many cases the analysis of samples with a 
limited composition range may allow the use of empirical 
calibration curves comparing uncorrected (for matrix effects) 
net intensities to concentrations, it is usually preferable to 
work with a general-purpose calibration procedure that is 
applicable to a larger variety of matrix types covering wide 
concentration ranges. Furthermore, with theoretical FP mod-

els (such as the FA), a special calibration procedure must be 
used, because it is well known that any theory cannot ac-
count for the variations of all instrumental parameters. To 
reach these two objectives, the following calibration proce-
dure is proposed. 

 Recalling that the relative intensity Ri is defined as the 
ratio of the net intensity Ii of the analyte i to the net intensity 
I(i) of the pure analyte i: 

 

Ri =
Ii

I(i)

          (31) 

 This simple equation can be rewritten in the following 
form: 

 
Ii = I(i)Ri           (32) 

 Dividing both sides of this equation by IiM, the measured 
gross intensity of the analyte i in any drift monitor, leads to 

 

Ii

IiM

=

I(i)

IiM

Ri           (33) 

 This simple mathematical operation allows to correct any 
measured intensity for the instrumental drift. Indeed, even if 
the absolute value of intensities Ii and IiM vary because of 
the instrumental drift, their ratio remains constant [3]. 

 The drift monitor is any type of stable specimen contain-
ing a statistically significant concentration of one or several 
analytes. The drift monitor intensities for the various ana-
lytes must be in the linear range of the counting electronics 
and high enough so that counting errors are minimized 
within reasonable counting times for each element (e.g. 60 
s). In practice, it is recommended that the drift monitor in-
tensity of each analyte is slightly higher than the highest in-
tensity of the analyte concentration range. When a single 
drift monitor specimen does not contain all the elements to 
be determined in the samples, or when it is not possible to 
measure statistically significant intensity values for all ana-
lytes from a single drift monitor specimen, the use of several 
drift monitor specimens is required. The matrix composition 
of a drift monitor may be completely different from that of 
the samples to be analyzed. For example, for the analysis of 
rock samples, a good drift monitor can be a vitrified syn-
thetic specimen, a glass, an alloy, a selected standard or any 
other sample that is completely different physically from the 
samples to be analyzed. If available, pure element specimens 
can be used for every high-concentration analyte. Otherwise, 
for each analyte, a selected unknown sample containing the 
highest concentration of the considered analyte is used. A 
drift monitor does not need to be (but preferably should be) 
homogeneous and infinitely thick. However, it must have a 
flat and polished (without grooves) surface for high repro-
ducibility. Since it is used solely as an intensity reference to 
evaluate the instrumental drift, its exact composition does 
not need to be known, provided that it remains stable with 
time. Finally, the measured intensity IiM of the analyte i in 
the drift monitor does not need to be corrected for back-
ground, line overlaps, blank, etc., since it is always measured 
under the same experimental conditions. 
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 Eq. (33) has the general form of a straight-line equation, 
i.e. 

 
Y

i
= m

i
X

i
          (34) 

where mi is the slope of the line. If we plot a calibration line 
of the measured relative intensity Ii/IiM (Y-axis) as a func-
tion of the calculated (or theoretical) relative intensity Ri (X-
axis), the slope mi of the line is equal to 

 

mi =
I(i)

IiM

          (35) 

 The theoretical relative intensity Ri can be calculated 
from Eq. (8) rewritten in the following form: 

 

R
i
=

C
i

M
is

          (36) 

 The Mis factor, that corrects for matrix effects, can be 
calculated from the Sherman equation or any theoretically 
valid algorithm between Ci and Ri [4], for example, the one 
of Lachance-Traill or Claisse-Quintin or the Fundamental 
Algorithm, selected by the analyst for the given type of sam-
ples to be analyzed. The Ri intensities are calculated for the 
composition of all the standards at hand and their Ii intensi-
ties, and also the IiM intensities, are measured. 

 The combination of (33), (35) and (36) leads to 

 

I
i

I
iM

= m
i

C
i

M
is

          (37) 

 This linear equation does not contain an intercept value 
because it is assumed that the true net intensity Ii is equal to 
zero when Ci is equal to zero. However, for many reasons 
(incorrect background, interference or blank subtraction, 
etc.), it may happen that Ii is different from zero even if Ci is 
zero. In that case, the introduction of an intercept can allow 
avoiding important systematic errors, especially for low con-
centration values. Allowing then for the presence of an inter-
cept bi, Eq. (37) becomes 

 

I
i

I
iM

= m
i

C
i

M
is

+ b
i
         (38) 

which is the equation used to plot any calibration line in as-
sociation with any FP model. Here, the intercept bi is theo-
retically zero, unless Ii has not been perfectly corrected for 
background, line overlaps, etc. When calibrating for an ana-
lyte, it must always be kept in mind that a significant inter-
cept value indicates the presence of systematic errors and 
therefore should not be tolerated unless one knows the rea-
son for it and is ready to accept it. 

 Thus, we can plot a calibration line of measured net in-
tensity of the analyte i (Ii), corrected for the instrumental 
drift by IiM, as a function of the calculated ratio Ci/Mis. Ci 
is the concentration of the analyte i in a standard and the 
term Mis is calculated from the Sherman equation [1] or any 
theoretically valid algorithm [4]. The slope of the line repre-
sents the net intensity of the pure element i (see Eq. 35). 
Thus, this calibration procedure represents very well the 
physical reality because we are consistently comparing 

measured relative intensities (Ii/IiM) to calculated relative 
intensities (Ri=Ci/Mis). It is the best way to get a true cali-
bration straight-line. This feature makes the calibration lines 
robust, i.e., they can be extrapolated by a factor of two or 
three, thus protecting the analyst from errors when the con-
centrations of samples to be analyzed exceed the calibration 
range. In addition, incorrect standards will be shown clearly 
as outliers in the calibration line. Fig. (1) shows an example 
of the type of calibration straight line represented by equa-
tion (38). 

 

Fig. (1). Fe calibration graph using NIST alloy standards. The 

graph of measured relative intensities as a function of the concen-

tration CFe gives scattered points (o). On the other hand, the plot of 

the same measured relative intensities as a function of the theoreti-

cal relative intensities calculated by the Fundamental Algorithm 

(Eq. 7) lines up each point (•) on the calibration line. 

 The calibration slope mi allows the theory to be adapted 
to the experimental data for each spectrometer. If the pure 
analyte specimen is used as a drift monitor, Eq. (35) gives a 
slope mi=1.0. If the experimental value of mi 1.0, the devia-
tion results from the imperfections of the theoretical model 
that cannot account for all of the experimental parameters of 
a given spectrometer. The slope of the calibration line repre-
sents the experimental average intensity of the pure analyte 
determined from a set of multi-element standards. Depend-
ing on the analytical context, this measured value might be 
substantially different from the theoretical value. It is this 
difference that compensates to a large extent for all the theo-
retical limitations mentioned above. The observed slope 
value is the required factor allowing adapting theory to a 
particular set of experimental data and makes truly meaning-
ful the equal sign in Eq. (38) or Eq. (39). 

 The above described calibration procedure is truly matrix 
independent because it can put on a straight line any type of 
matrix compositions containing the analyte. Thus, its great 
advantage is that it can include on the same calibration line a 
large variety of matrix compositions, limited only by the 
physical effects (particle or grain size, mineralogy, heteroge-
neity, surface, thickness, etc.). However, the preparation of 
standards must in all aspects be absolutely identical to that of 
the unknowns. 

 If empirical coefficients are used rather than theoretical 
ones, they are calculated during the calibration procedure by 
regression analysis, at the same time that the mi and bi val-
ues of all analytes. Because of the large number of unknown 
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values to determine, a corresponding large number of stan-
dard specimens is needed. On the other hand, if theoretical 
coefficients are used, they are calculated before the calibra-
tion procedure from theory [4]. Knowing them, each calibra-
tion line requires only a minimum of two points for calculat-
ing the mi and bi values. Therefore, the great advantage of 
theoretical coefficients, in addition to be accurate, is that 
only a few standards are needed to calibrate. 

 This calibration procedure enables each analyte to be 
calibrated over wide concentration ranges and requires only 
a few good standards. However, for getting accuracy, it must 
be stressed that the complete composition of each standard is 
needed because the analyte line intensity is affected by the 
concentration of all the elements present in the specimen. If 
only 98% or 99% of the composition of a standard is certi-
fied, it will have limited capability for accurately calculating 
all the corrections for matrix effects, because the matrix 
composition is not well known. 

 Finally, one should recall that any theoretically valid 
model corrects only for variations in the chemical composi-
tion of the samples or standards, i.e., for elemental interac-
tions. It does not correct for instrumental (background, line 
overlaps and dead time) and physical effects (variations of 
particle size, mineralogical, thickness and surface effects). 
Both must be reduced to a minimum by careful selection of 
measurement conditions and sample preparation procedure. 

9. ROUTINE ANALYSIS 

 To apply the calibration procedure explained above in 
practice, rearranging Eq. (38) for Ci leads to 

 

C
i
=

1

m
i

I
i

I
iM

b
i

M
is

        (39) 

 The interpretation of Eq. (39) makes physical sense. 
Firstly, if there are some errors in the background calcula-
tion, bi is different from zero and subtracted from the meas-
ured net intensity Ii before being corrected for matrix effects 
by the Mis factor. Secondly, the concentration is propor-
tional to the true net intensity, corrected for the instrumental 
drift (by IiM), so that only the true net intensity is corrected 
for matrix effects by the Mis factor. Thirdly, the measured 
relative intensities 

 

R
i
=

1

m
i

I
i

I
iM

b
i

         (40) 

used with any FP model for calculating the concentrations 
must be corrected absolutely for the imperfections of theory 
by the calibration slope mi before being corrected for matrix 
effects. 

 As stressed before, the values of the slope (mi) and the 
intercept (bi) of the calibration line remain valid even after 
the drift of the instrument. Indeed, the slope is equal to the 
intensity of the pure analyte, I(i), divided by the monitor 
intensity IiM (see Eq. 35). The intercept bi is the interception 
of the calibration line with the Y-axis and is equal to the re-
sidual background intensity divided by the monitor intensity. 
Thus, if the absolute values of the intensities change further 
to an instrumental drift, their ratio remains constant [34]. 

 Thus, Eq. (39) is in perfect agreement with the basic 
physical rules of XRF spectrometry. For accurate results, it 
is imperative that any theoretically valid model respects the 
underlying physics in XRF analysis. 

 In routine analysis, Eq. (39) is used to calculate concen-
trations. A practical application of this analytical method is 
given in Ref. [29], where 15 different analytes were deter-
mined in many different types of alloys, covering large con-
centration ranges. However, the analyst must be aware of 
some precautions to take before using this equation: 

1. When possible, and especially for trace elements, 
peak and background(s) should be measured for each 
analyte. 

2. All the peak intensities should be corrected for back-
ground, line overlaps and blank, an essential step. 
Without effective background subtraction strategies, 
the accuracy of the results may be severely compro-
mised, especially for trace elements. Background and 
line overlaps must be subtracted before the calibration 
procedure, since the concentration is proportional 
only to the net intensity. 

3. Drift correction should be applied to the net intensity 
of every analyte. Only one high-point drift monitor 
per analyte should be used where the intensity of the 
analyte in the drift monitor is slightly higher than the 
highest measured intensity of the analyte calibration 
range [34]. At the same time, this procedure for drift 
monitors guarantees low counting statistical errors. 

4. Matrix effects (by calculating the Mis factor) can be 
corrected using any theoretically valid model, such as 
the Lachance-Traill, or Claisse-Quintin or Fundamen-
tal Algorithm, in association with theoretical influ-
ence coefficients. The choice of a particular algorithm 
depends on the analytical context [4]. 

10. EXPERIMENTAL VERIFICATION 

 An application example [31] of the Fundamental Algo-
rithm is given at Fig. (7). The concentration and the meas-
ured relative intensity data of a set of Cr-Fe-Ni specimens 
are given in Table 1. Figs. (3-7) compare given concentra-
tions for Fe in a set of Cr-Fe-Ni specimens to the values cal-
culated by different algorithms [4] in Fig. (2). In these fig-
ures the measured intensities are shown, respectively, uncor-
rected, and corrected using the Lachance-Traill (LT) algo-
rithm (used in association with empirical and binary constant 
influence coefficients), the Claisse-Quintin (CQ) algorithm 
and the Fundamental Algorithm (FA). It can be observed that 
there is a progressive improvement in the fit of the data in 
Figs. (3-7). The data fit for the LT algorithm is not as good 
as the CQ or Fundamental algorithm because the Fe concen-
tration range is too large (1-96%). Here, the LT algorithm is 
used beyond its application range. Otherwise, it should give 
excellent results in specific contexts, such as limited concen-
tration range (0-10%). On the other hand, there is little im-
provement between the results from the CQ algorithm and 
the FA, which is normal. Remember that the CQ algorithm is 
used in association with the FA for calculating the composi-
tion of a sample. The CQ algorithm calculates an accurate 
first estimate of the sample composition, while the FA  
calculates from it the final composition. In order to make the 
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FA method viable and valid, the first composition estimation 
must be very close to the final result. This is what we ob-
serve for these samples. 

Linear Algorithm 

Ci = Ki Ii =
1

I(i)
Ii = Ri  

Lachance-Traill Algorithm 

Ci = Ri 1+ aijC jj
 

Claisse-Quintin Algorithm 

 

Ci = Ri[1+ aij + aijjCM( )j
C j

+ aijkCjCk
k> j

j
]

 

Fundamental Algorithm (Proposed by Rousseau) 

Ci = Ri

1+ ijC jj

1+ ijC jj

 

Fig. (2). A comparison of some algorithms using influence coeffi-

cients. 

 The two last ternary specimens of Table 1, i.e. numbers 
161 and 1189, have a low total of 96.18% and 94.30%, re-
spectively, which means that we cannot correct for matrix 
effects of 3.82% and 5.70%, respectively, of missing ele-
ments. Therefore, the data points of these two specimens has 
been omitted from Figs. (4-7) because the low totals would 
distort the average errors introduced by the different algo-
rithms for the calculation of matrix effect corrections. On the 
other hand, Fig. (3) represents the plot of the Fe concentra-
tion (in %) as a function of the Fe relative intensity (in %). 
The data of the two low total specimens have been included 
in this figure to illustrate the effects of the matrix on the Fe 
peak intensities. In this case, the missing elements do not 
introduce any additional errors. 

 

Fig. (3). Given Fe concentrations in Fe-Cr-Ni alloys plotted against 

concentrations calculated from uncorrected Fe intensities. Note the 

large absolute and relative errors. 

 

Fig. (4). Given Fe concentrations in Fe-Cr-Ni alloys plotted against 

concentrations calculated using the Lachance-Traill algorithm (LT) 

and empirical influence coefficients calculated by multiple regres-

sion analysis (CiREG program). Note that absolute and relative 

errors are still unacceptably large. 

 

Fig. (5). Given Fe concentrations in Fe-Cr-Ni alloys plotted against 

concentrations calculated using the Lachance-Traill algorithm (LT) 

and theoretical binary influence coefficients (CiLT program). Note 

the very considerable improvement in absolute and relative errors. 

 

Fig. (6). Given Fe concentrations in Fe-Cr-Ni alloys plotted against 

concentrations calculated using the Claisse-Quintin algorithm (CQ) 

and theoretical binary influence coefficients (CiROU program). 

Note the smaller absolute and relative errors. 

11. CONCLUSION 

 In this paper, it was shown that the Fundamental Algo-
rithm firmly combines the traditional influence coefficient 
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concept and the modern Fundamental-Parameters approach, 
thus restoring a perfect complementarity between the two 
approaches and giving the analyst a valuable method for 
mathematical matrix effect corrections. An obvious conclu-
sion is that influence coefficients and Fundamental Parame-
ters are not two different solutions to the Sherman equation, 
but two parts of the same solution. 

 The Fundamental Algorithm method is one of the valid 
solutions proposed for calculating sample compositions with 
the Sherman equation. This valid solution consists to calcu-
late influence coefficients first and then concentrations by 
iterations, not intensities. With the FA method, the accuracy 
of results depends only on the quality of sample preparation 
and the standards used. 

 In addition, some algorithms making use of theoretical 
influence coefficients were presented. The accuracy obtain-
able using the different algorithms is very much dependent  
 

 

Fig. (7). Given Fe concentrations in Fe-Cr-Ni alloys plotted against 

concentrations calculated using the Fundamental Algorithm (FA) 

and theoretical multi-element influence coefficients (CiROU pro-

gram). Note the very small absolute and relative errors. 

Table 1. Sample Compositions and Relative Intensities for Cr-Fe-Ni Specimens (W tube, 45 kV, Geometry 63° /33°) 

 

Concentration, C Relative Intensity, R 
Specimens  

Cr Fe Ni Total Cr Fe Ni 

Fe-Ni Binaries 

971  0.0462 0.9516 0.9978  0.0789 0.8782 

972  0.0659 0.9322 0.9981  0.1104 0.8321 

974  0.1018 0.8964 0.9982  0.1621 0.7595 

983  0.2263 0.7711 0.9974  0.3172 0.5483 

986  0.3067 0.6931 0.9998  0.4007 0.4515 

987  0.3431 0.6552 0.9983  0.4373 0.4073 

1159  0.5100 0.4820 0.9920  0.5907 0.2553 

126B  0.6315 0.3599 0.9914  0.6958 0.1720 

809B  0.9549 0.0329 0.9878  0.9659 0.0125 

 Fe-Cr Binaries 

4061 0.0353 0.9627  0.9980 0.0617 0.8970  

4062 0.0608 0.9372  0.9980 0.1004 0.8270  

4065 0.1214 0.8766  0.9980 0.1817 0.6974  

4173 0.1900 0.8080  0.9980 0.2587 0.5739  

4181 0.2503 0.7477  0.9980 0.3326 0.4748  

4183 0.3194 0.6786  0.9980 0.4023 0.4048  

4184 0.3658 0.6322  0.9980 0.4476 0.3579  

Fe-Ni-Cr Ternaries 

5074 0.2525 0.6838 0.0498 0.9861 0.3258 0.4511 0.0203 

5181 0.1988 0.6945 0.0996 0.9929 0.2651 0.4971 0.0416 

5324 0.2696 0.5280 0.1927 0.9903 0.3311 0.3529 0.0821 

5321 0.1988 0.5919 0.2002 0.9909 0.2582 0.4343 0.0898 

7271 0.1879 0.7159 0.0829 0.9867 0.2536 0.5298 0.0343 

161 0.1688 0.1501 0.6429 0.9618 0.2072 0.1460 0.4367 

1189 0.2030 0.0140 0.7260 0.9430 0.2263 0.0125 0.5630 

Data taken from: S.D. Rasberry and K.F. Heinrich, Analytical Chemistry, Vol. 46, No. 1, p. 86, January 1974 
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on the nature of the specimens being analyzed and concen-
tration ranges. Examples were given and compared for the 
system Cr-Fe-Ni that is subject to severe absorption and en-
hancement effects. As a general rule it is best to make use of 
an algorithm that corrects for matrix effects, absorption and 
enhancement, and in which the magnitude of the influence 
coefficients can be made to vary with the concentration of 
the matrix elements. Influence coefficients, except in special 
and specific circumstances (e.g. limited concentration 
ranges), are not constant, and should not be treated as such if 
the best results are to be obtained. 
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