However, we have just said that the equipartition theoreml is only
valid at high temperature. Thus we see that the temperature must
be high enough that we can safely ignore the quanturn nature of
the energy spectrum, but not so high that we invalidate the ap-
proximation of treating the relevant potential wells as perfectly
quadratic. Fortunately there is plenty of toom between these two
extremes.

19.4 Brownian motion

We close this chapter with one example in which the effect of the equipar-
tition of energy is encountered.

Example 19.3

Brownian motion:
In 1827, Robert Brown used a microscope to observe pollen grains jig-
gling about in water. He was not the first to make such an observation
(any small particles suspended in a fluid will do the same, and are very
apparent when looking down a microscope), but this effect has come to
be known as Brownian motion.

The motion is very irregular, consisting of translations and rotations;
with grains moving independently, even when moving close to each other.
The motion is found to be more active the smaller the particles. The
motion is also found to be more active the less viscous the fluid. Brown
was able to discount a ‘vital’ explanation of the effect, i.e. that the pollen
grains were somehow talive’, but he was not able to give a correct ex-
planation. Something resembling a modern theory of Brownian motion
was proposed by Wiener in 1863, though the major breakthrough was
made by Einstein in 1905. )

We will postpone a full discussion of Brownian motionmntil Chap-
ter 33, but using the equipartition theorem, the origin of the effect can
be understood in outline. Each pollen grain (of mass m) is free to
move translationally and so has mean kinetic energy WSA‘%V = 3ksT.
This energy is very small, as we have seen, but leads to a measurable
amplitude of vibration for a small pollen grain. The amplitude of vibra-
tion is greater for smaller pollen grains because a meat kinetic energy
of mrna,ﬁ gives more mean square velocity {v?) to less massive grains.
The thermally excited vibrations are resisted by viscous damping, SO
the motion is expected to be more pronounced in less viscous fluids.

19.4

Brownian molion
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Chapter summary
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Exercises
(19.1) What is the mean kinetic energy in eV at room where A and B are positive constants and n > 2.
temperature of a gaseous (a) He atom, (b) Xe Show that the bottom of the well is approxi-
atom, (c) Ar atom and (d) Kr atom. [Hint: do mately quadratic in r. Hence find the particle’s
you have to do four separate caleulations?] mean thermal energy at temperature T above the
(19.2) Comment on the following values of molar heat voﬁoﬁ 0m the well mm.mnﬂmwm .ﬁ:m wﬂm&% of the
capacity in JK™' mol™?, all measured at constant equipartition theorem in this situation. _
pressure at 298 K. (19.4) In example 19.1, show that |
o kel _ _
Al 24.35 Pb  26.44 =gy (19:29)
Ar  20.79 Ne 20.79
Au 2542 Ny  29.13 (19.5) If the energy E of a system is not quadratic, but ,
Cu 2444 0. 29.36 behaves like K = a|z| where o > 0, show that
He 20.79 Ag 2553 {B) = ksT. ;
H: 28.82 Xe 20.79 (19.6) Tf the energy E of a system behaves like £ = alz|™,
Fe  25.10 Zn 2540 where n.=1,2,3... and a > 0, show that (£) =

$keT, where £ is a numerical constant.

[Hint: express them in terms of R; which of the (19.7) A simple pendulum with length # makes an angle 8
substances is a solid and which is gaseous?] »  with the vertical, where # < 1. Show that it oscil-
lates with a period given by 2r ,\mﬂ\m The pendu-
lum is now placed at rest and allowed to come into
A B equilibrium with its surroundings at temperature

Viny= = = =, (19.28) T'. Derive an expression for (4.
r r

(18.3) A particle at position r is in a potential well V(r)
given by




33.1 Brownian motion 369

has solution
w{t) = v(0) exp(~t/(ma™)], (33.3) o
.0 that any velocity component dies awsiy with a time constant given by
. The random foree F(t) is necessary to give a model in which the
icle’s motion does not die away.
To solve eqn 33.1, write v = % and premultiply both sides by . This

Brownian motion and
fluctuations

i ds to "

: mzi = —opxi + zF{t). (33.4)
i d o, a2

! 33.1 Brownian motion 368 Our treatment of the thermodynamic properties of thermal systems ha &‘t(%’J =zi+d" (33.5)

I 33.2 Johnson noise 371 assumed that we can replace quantities such as pressure by their averag ind hence we have that

I 33.3 Fluctuations 372 values. Even though the molecules in a gas hit the walls of their contai d, . - )

u 33.4 Fluctuations and the avail. stochastically, there are so many of them that the pressure does ng ma(m) =mi® — exi + (). (33.6)
ey 573 appear to fluctuate. But with very small systems, these fluctuations e now average this result over time. We note that = and F" are uncorre-
| 33.5 Linear response 375 beuo_me important. In this chapter, we consider these fluctuations § od, and hence (zF) = (£)(F) = 0. We can also use the equipartition
} 33.6 Correlation functions 378 detail. A _useﬁﬂ insight comes from the fuctuation- dissipation theorer i, srhichhiere stikes thak

l‘{‘ Chapter summary 384 which is derived from the assumption that the response of & system } 3 . 1 "

:‘t Further reading 385 thermodynamic equilibrium to a small external perturbation is the sa im(:iz) = EkBT‘ (33.7)
i Fxarciss 35 85 its response to a spontaneous fluctuation. This implies that there

a direat relation between the fluctuation properties of a thermal syst nee, using eqn 337 in eqn 33.6, we have

; e : d
and what are known as its linear response properties, ’"E(-T-@, =kaT— alzd), (33.8)
¥ ¥ qr equivalently =
33.1 Brownian motion ( 4. 3) ey = 28T (339)
; & m T e
We introduced Brownian motion in Section 19.4. There we showed thatgle fui haseon, aitfition
the equipartition theorem implies that the translational motion of par: g il

(zd) = Ceot™ 4 (33.10)

ticles at temperature T fuctuates since each particle must have me
kinetic energy given by m{v?) = 3kgT. Einstein, in his 1905 papef
on Brownian motion, noted that the same random forces which causs
Brownian motion of a particle would also cause drag if the particle werg

=
: utting the boundary condition that z = 0 when t = 0, one can find
at the constant (' = —kpT'/e, and hence

pulled through the fuid, (o) = "L 1 _grautmy. (33.11)
a
"L‘- I Using the identity i a
It T he 2
Wy _ ') = o) (83.2)
b E we then have
’ 2ksT M
9y, Bl W at/m 9
@)=t e 7 )| (33.13)
i hen't < m/a, ”
! o kpTt
(%) = ‘?T (33:14)

| while for £ > m/a, )

force whose average value over a long time period, (F), is zero. (e = ?@ (3315)

Solution:

Note tirst that in the absence of the random force, eqn 33.1 becomes *See Appendix €12,

mi = —at,
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Correlation functions are discussed in
more detail in Section 33.6. The ve-
locity correlation function (w(0ju(t)) is
defined by

lim L3 o dt' vt hult + 1)
T T /12 i
and describes how well, on average, the

velocity at & certain time is correlated
with the velocity at & later time.

1f & steady force F had been applied instead of a random one, then the
terminal velocity (the velocity achieved in the steady state, with o =0)
of the particle could have heen obfained from

mi = —aw+ P =0, (33.16)

yielding v = o~ VF, and so a~! plays the role of a mobility (the ratio &

of velocity to force).
locity should be limited by frictional forces, and hence depends on o
However, the previous example shows that the diffusion constant D is
proportional to kT’ and also to the mability a1 Note that the diffu-

It is easy to understand that the terminal ve-

sion constant D = kpT /o is independent of mass. The mass only enters 2

in the transient term in eqn 33.13 (see also equ 33.14) that disappears
at long times.

Remarkably, we have found that the diffusion rate D, describing the
random fluctuations of the particle’s position, is related to the fric-
tional damping @ The formule D =
fuctuation-dissipation sheorem, which we will prove later in the chapter
(Section 33.6). ‘

As & prelude to what will come later, the following example considers
the correlation function for the Brownian motion problem.

Example 33.2

Derive an expression for the velocity correlation function (v(0)v(t))
for the Brownian motion problem.

Solution:

The rate of change of v is given by

_ v(t+ 1) —u(t)

#(t)

in the limit in which r — 0. [nserting this into eqn 33.1 and premuli- 3§

plying by v(0) gives

p(D)u(t + ) — v{0)u(t) ”

v(0)F(t)
¥ m

~ S ale) +
m

Avernging this equation, and noting that (v(0)F(t) =0 because v and g

F are uncorrelated, yields

M = ‘%(‘U(mﬂ[t])‘
and taking the limit in which T — 0 yields
%(U(U)v(t)) = —%(v(muu)}, (33.20)
and hence -
((O)ul(t) = O™ (3321)

kaT /o is an example of the

(33.17) @

(33.18) '

(33.19) 3T

This example shows that the velocity correlation function decays to
zero as time increases at exactly the same rate that the velocity itself
relaxes (see eqn 33.3).

33.2 Johnson noise

We now consider another fluctuating system: the noise voltage which is
generated across a resistor of resistance R by thermal fluctuations. Let
us suppose that the resistor is connected toa transmission line of length
[ which is correctly terminated at each end, as shown in Fig. 3312
Because the transmission line is matched, it should not matter whether
it is connected or not. The transmission line can support modes of wave
vectar k = nw/L and frequency w = ¢k, and therefore there is one mode
per frequency interval A given by
Aw= 7L
By the equipartition theorem, each mode has mean energy kpT, and
hence the energy per_u.ujt length of transmission line, in an interval Aw,
is given by

(33.22)

Aw

kgT——. (33.23)
cr

Half this energy is travelling from left to right, and half from right to
Jeft. Herice, the mean power incident on the resistor is given by
1

gkgTAuJ, (33.24)

and in equilibrivm this must equal the mean power dissipated by the
resistor, which is given by

(IR). (33.25)
In the circuit, we have J = V/(2R) and hence
&2 _ ipgy= L 33
i (I*R) = 5o kT, (33_26)
and hence -
(V= ;kgmaw, * (382
which, using Aw = 2rAf, can be written in the form
(V¥ =4kaTRAS. (33.28)

This expression is known as the Johnson noise produced across 4 resis-
tor in a [requency interval Af. It is another example of the cormection
between fluctuations and dissipation, since it relates fluctuating noise
power (V) to the dissipation in the circuit (R).

We can derive a quantum mechanical version of the Johnson noise
formula by replacing kaT by hu/ (e — 1), which yields
_ 2R fwdw

(V= T T (33.29)

332 Jahmnny_‘;};‘]g 8

e will give a method of caloulating
the noise voltage that may seem a litile
artificial at first, but provides a conve-
nient way of calculating how the resis-
tot can exchange energy with a thermal
reservoir, A more elsgant approach will
be done in Example 33.9.
4

Fig. 33.1 The equivalent circuit to con-
sider the Johnson noise across a re-
sistor. The resistor is connected to &
matched transmission lime which is cor-
rectly terminated, hence the presence
of the second resistor; one can consider
the noise voltage as being an alternat-
ing voltage source which is connected
in series with the second resistor.
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This part of the argument assumes
that we are working in the microcanon-
ical ensemble (see Section 4.8).

33.3 Fluctuations

In this section, we will consider the origin of Auctuations and show how o
much freedom a system has to allow the functions of state to fluctuate,
We will focus on one such function of state, which we will call z, and
ask the question: if the system is in equilibrium, what is the probabil-
ity distribution of 27 Let us suppose that the number of microstates
associated with a system characterised by this parameter z and havmg
energy E (which we will consider fixed®) is given by

0z, E). (33.30) :

If z were constrained to this value; the entropy § of the system would -

be
S(z, E) = kg lnQ(z, E),

which we could write equivalently as Q(z; E) = e¥=E1/%8_ If 7 were not =
constrained, its probability distribution function would then follow the
funetion p(z), where

(33.31)

) x Yz, E) = o5 Elks, (33.32) 4

At equilibrium the system will maximize its entropy, and let us suppose = l

that this occurs when 2 = 1. Hence

(33(;;; E)

):U when 2 = 1.

Let us now write a Taylor expansion of 5z, F) around the equilibrium
point = xp: ;

i

(e—zp)+ = (5&.“2) (I—J:g)2+' v

Slz, E) = S(zp, E) + (g—f)
(33.34)

z=x)
which with eqn 33.33 implies that

an

S(x) = S(za) + 5 (aﬁ) (m—a0)? 4+ (33.35)

Hence, defining Az = 2 — zy, we can write the probability function as a :

Gaussian, 2
. e ;
plir) exp( 2((A1‘)2)) (33.36)
where
kg

827 / E

This equation shows that if the entropy § changes Tapidly as a function 1
of &, we are more hkely to find the system with z elose to z. This §
makes sense. 4

334 Fluctuations and the availability 373

[jr JEE T R P T ] e LI -‘,:1'_“1

Example 33.3
Let x be the internal energy U for & system with fixed volume. Using
= (8U/3S)v, we have that

25\ _faymy\ 1 ,
(W)-v = ( ar )v =~Tag, (33.38)
and hence
{(AaU)?) = —% =k T*Cy. (33.39)
(W)V

Soif a system is in contact with a bath at temperature T, there is a non-
zero probability that we may find the system away from the equilibrium
internal energy: thus U can fluctuate. The size nf the fluctuations is
lmger if the heat capamf.y is 1arger

Both the heat capacity Cy and the internal energy [ are extensive
parameters and therefore they scale with the size of the system. The
r.m.s. fluctuations of U scale with the square root of the size of the
system, so the frac’nonal rans. fluctuations scale with the size of the
system to the power —- . Thus if the system has N atoms, then

CoxN, UxN {[(AT)) x VN, (33.40)
and _ =
M L [33‘41)

i x 75
Henee a3 N — oo, we can ignore fluctuations. Fluctuations are more
important in small systems. However, note that at a critical point for a
first-order phase transition, €' — oo and hence

{(avp)
r

Henee fluctuations become divergent at the critical point and cannot be
ignored, even for large systems.

(33:42)

— 0.

33.4 Fluctuations and the availability

We now generalize an argnment presented in Section 16.5 to the case in
which mumbers of particles can fluctuate, Consider a system in contact
with a reservoir. The reservoir has temperature Ty, pressure Py and
chemical potential pg. Let us consider what happens when we transfer
energy dU/, volume dV' and dV particles from the reservoir to the system.
The internal energy of the reservoir changes by dU, where

dly = —dU = Ty dSa — po(—dV) + o —dNV), (33.43)
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' Changes in the availability therefore follow:
dA=dU —TydS+podV = (T -To)dS + (mo—p)AV,  (33:51)

where the minus signs express the fact that the energy, volume &ndli
number of particles in the reservoir are decreasing. We can rea.rrange :
this expression to give the change of entropy in the reservoir as

—dU — pgdV + podN . and hence

sy = 33.44) & 84 '
T e (5,7) S (33.2)
If the entropy of the system changes by dS, then the tatal change of 8 J -
entropy S,y is B 94 dp
50 = dS + dSh, (33.45) (W)T o (av) e R
and the second law of thermodynamics implies that dS,,, > 0. Using : Hence
eqn 33:44, we have that 1 ((AVP) = —ksTy (BV (33.54)
)z’
~TydS + pgdV — pad ¥V i 3
dSior = T, : (33.46) B8 For an ideal gas, (AV/0p)r.y = —NkaT/p* = —V/p, and hence
. : ] %
which can be written as g : ((AV)Y) = = (33.55)
A8 = 5 (33.47)
Y ——
| e e R =L
where A =10 —TpS +pmV — gV is the availability (this generalizes I

eqn 16.32), Equation 33.55 implies that the fractional volume fuctuations follow

We now apply the concept of availability to ﬂuctuatlona Let us sup-
pose that the availability depends on some variable z, so that we can
write a function A(z). Equilibrium will be achieved when A(z) is mini-
?ﬁigﬁ;ﬁxﬂ%’; : :0‘ Hence my&g{yﬁii?r&jui pgs;:;‘:: - 4 Thusfora box' conta\il}ing 10% muh?cules of gas (a little n}rer a m;s: !)f
expansion arousid the equilibfum point and hence 1[)1% the fractional volume fluctuations are at the level of one part in

{avy) _ 1

e = (33.56)

A We can derive other similar expressions for other fluctuating variables,
Alz) = Alxo) + 3 (azg)rz Az 4.y (33.48) including
2
so that we can recover the probability distribution in eqn 33.36 with ((L'AT)z) = %. (33.57)
((Bz)?) = — ";f“ = (33.49) ey = ??‘; (#358)
(%) ((ap) ) - ok (33.59)
CV W

O N e e

R
AR | where &g is the adiabatic compressibility (see eéqn 16.72).

Example 33.4

A system with a fixed number N of particles is in thermal contact with a 33.5 Linear response
reservoir at temperature T. It is surrounded by a tensionless membrane =
so that its volume is able to fluctuate. Calenlate the mean square volume
Ructuations. For the special case of an ideal gas, show that ((AV)?) =
V2IN.

Solution: £ 3
Fixing 7' and N means that U can fluctuate. Fixing N implies that
dN = (1 and hence we have that B

In order to understand in more defail the relationship between fluctua-
tions and dissipation, it is necessary to consider how systems respond to
external forces in a rather more general way. We consider a displacement
variable z(t) that is the result of some force f(t), and require that the
product zf has the dimensions of energy. {We will say that z and f are
conjugate variables if their product has the dimensjons of energy.)
We assume that the response of  to a force f is linear (so that, for

dUU =TdS —pdV. (33.50) example, doubling the force doubles the respanse), but there could be
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some delay in the way in which the system responds. The most genera] =
way of writing this down is as follows: we say that the average yalys W
of z at time ¢ is dénoted by (#(t)); (the subscript f reminds us that 5 &
force f has been applied) and is given by =

(e = [ :

where x(t —*) is a response function, This relates the value of z(t) to 4}

asum over values of the force f(t') at all other times, Now it makes sense 4}
to sum over past values of the force, but not to sum over future values
of the forve. This will force the response function x(t — t) to be zero if
t < t'. Before seeing what effect this has, we need to Fourier transform
eqn 33.60 to make it simpler to deal with. The Fourier transform of 2(t)
is given by the function #{w) given by

Hadp= [ Zdte_i'“x(w

x(t —£)f(¢)de, (33.60) &

(33.61)

The inverse transform is then given by

2ty = %f_ﬂc duw e F(w).

The expression in eqn 33.60 is a convolution of the functions y and £,
and hence by the convolution theorem we can write this equation in
Fourier transform form as

(#w))r = {w) flw).

This is much simpler than eqn 33.60 as it is a product, rather than a
convolution. Note that the response function ¥(w) can be complex. The :
real part of the response function gives the part of the displacement = |
which is in phase with the force. The imaginary part of the response i
function gives a displacement with is T out of phase with the force, ‘
It corresponds to dissipation because the external force does work on
the system at a rate given by the force multiplied by the velacity, i.e.
F(t)E(t), and this work is dissipated as heat. For f(t) and &{t) to be in
phase, and henee give a non-zero average, f(#) and z(t) have to be I
out, of phase (see Exercise 33.2). i

We can build causality into our problem by writing the response func-
tion as

(33.62)

(33.63)

x(t) =y(t)a), (33.64)
where 8(t) is a Heaviside step function {see Fig. 30.1) and y(t) is a
function which equals y(#) when ¢ > 0 and can equal anything at all when
t < 0. For the convenience of the following derivation, we will set y(t) =
—x{[t]) when ¢ < 0, making (t) an odd function (and, importantly,
making §(w) purely imaginary). By the inverse convolution theorem,
the Fourier transtorm of x(t) is given by the convolution

=5 [ " i~ )il (33.65)

Writing the Heaviside step function as

a(t) = { Eiﬁ i zg . (33.66)
in the limit in which e — 0 its Fourier transform is given by
w) = fumdte‘“‘e"‘ T R e
E Thus, taking the limit € — 0, we have that
b(w) = 7o(w) - i (33.68)
Substituting this inte eqn 33.65 yields®
woy=ti-gr [ Y e
We now write #(w) in terms of its real and imaginary parts:
Hw) = ¥ (w) +17" (), (33.70)
and since §(w) is purely imaginary, eqn 33.69 yields
iy'(w) = %ﬂ(w). (33.71)
and henece
F(w) =P f_ : d:f f,'(i) . (33.72)

This is one of the Kramers—Kronig relations which connects the real
and imaginary parts of the response function.® Note that our derivation
has only assumed that the response is linear (eqn 33.60) and causal, 50

that the Kramers-Kronig relations are very general
By putting w = 0 inta eqn 33.72, we ohtain another very useful result;

|

w

(33.73)

xo=r[ =

Sometimes the response function is called a generalized susceptibil-
ity, and the zero frequency real part, Y'(0), is called the static sus-
ceptibility. As discussed above, the imaginary part of the response
function, §(w), corresponds to the dissipation of the system. Equa-
tion 33.73 therefore shows that the static susceptibility (the response at
zéro frequency) is related to an integral of the total dissipation of the

system.

33.5 Linear response 377

“The symbol P denctes the Cauchy
principal value of the integral. This
means that an integral whose integrand
hlows up at some value is evainated us-
ing an appropriate limit. For example,
JZ, dz/= is undefined since 1/ — oo
at z =0, bui

1 —e g
o[ - (e
- ; et \Joq B

=

SThe other Kramers—Krenig relation is
derived in Exercise 33.3.

' dg
ke

)
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X(0)

Fig. 33.2 (a) The real and imaginary
parts of ¥[w) as a function of w. (b) An
illustration of eqn 33.73 for the damped
harmonie oscillator.

65ee Appendix C.11

Example 33.5

Find the reponse function for the damped harmonic oscillator (mass m,

spring constant k, damping o) whose equation of motion is given by
mi4ott+kr=f

and show that eqn 33.73 holds.
Solution:
Writing the resonant frequency wf = k/m, and writing the damping
¥ = a/m, we have
Fyi+win= i
m
and Fourier transforming this gives immediately that

e 1 =

T o Y| S SR .76) B

b waeibar = LT

Hence, the imaginary part of the response function is o
=k

Sy _i Wy -}%

¥lw)=— [( P e B (33.17) 2§

and the static susceptibility is

X)) = ??MLE = i (33.78)

The real and imaginary parts of %(w) are pletted in Fig. 33.2(a). The
imaginary part shows & peak near wg.  Equation 33.77 shows that

(W)l = (ofml(e? = ud) + (uy
shnws that [7 (¢"(w)/w)dw = vr/ (mwsd)

7x'(0) and hence that

oqﬂ 33.73 hoids This is illustrated in FJg 33. E(b)

33.6 Correlation functions

Consider & function x(t). Its Fourier transform® is given by

¥ / dte " x(t),

as before, and we define the power spectral density as (|Z(w)|?). This
function shows how much power is associated with different parts of the
frequency spectrum, We now define the autocorrelation function
Cralt) by

(33.79)

Crea(t) = (x(0)z(1)) jw 2 (ot + )t (33.80)

(3374

(33.75)

b e

wr ) und straightforward integration |

st

73

)

o e

sopemas ol |

e fpwinn

0] gt e

The notation here is that the double subscript means we are measur-
ing how much z at one time is correlated with = at another time. (We
could also define a cross-correlation function Cyy(t) = (2(0)y(t)) which
measures how much T at one time is correlated with a different vari-
able y at another time.) The autocorrelation function is connected to
the power spectral density by the Wiener—Khinchin theorem” which
states that the power spectral density is given by the Fourier transform

. of the autocorrelation function:

(8 = Coel = [ : i (2 0)z()) (3351)
The inverse relation also must hold:
(w(0)e(t) = - Z A 5() %) s, (3.52)
and hence for t = 0 we have that
(a0 =55 [ (et (5058
or, more succinetly,
(@)= ﬁ [_ o: Cralw) dus, (33.34)

This is a form of Parseval’s theorem that states thas the integrated
power is the same whether you integrate over time or over frequency.®

e L R B

Example 33.6
A random force F(t) has average value given by

(F(t)y =0 o (33.85)
and its autocorrelation function is given by
(F()F(t") = A8(t - '), (33.86)

where §(t — 1) is a Dirac delta function.” Find the power spectrum,
Solution:

By the Wiener-Khinchin theorem, the power spectrum is simply the
Fourier transform of the autocorrelation function, and hence

(IFw)®)=A

(33.87)

is a flar powrr wpectrum

33.6 Correlation functions 378

"Norbert  Wiener  (1894-1964);
Alexsandr Y. Khinchin ({1894-1958).
The proof of this theorem is given in
Appendix C.11.

B payrseval's theorem is actually noth-
ing more than Pythagoras' theorem in
an mfinite-dimensional vector space. If
you think of the function z(t), or its
transform Z(w), as a single vector in
such a space, then the square of the
length of the vector is equal to the
sum of the squares on the ‘other sides’,
which in this case is the sum of the
squares of the components (i.e. an inte-
gral of the squares of the values of the
function).

98ee Appendix €.10.
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This demonstrates that if the random force F(t) has zero autocorre.
lation, it. must have infinite frequency content.

[ e e s e

Example 33.7

Find the velocity autocorrelation for the Brownian motion particle gov-
erned by eqn 33.1 where the random force F(t) is as described in the
previous example, i.e. with (F(1)F(t')) = Ad(t —t'). Hence relate the
constant A to the temperature T.

Solution:

Equation 33.1 states that

mi = —av+ F(t), (33.88) |
and the Fourier transform of this equation is !

) ]

i) = —— (33.89)

This implies that the Fourier transform of the velocity autocorrelation
function is «

. 5 "
Conlw) = (W)} = P (33.90) ’
using the result of eqn 33.87. The Wiener—Khinchin theorem states that

Coulw) = [ e u(0)u(t)) dt, (33.91)

and hence

Cnlt) = (w(O)u(t)) = (P4, (33.92)
in agreement with eqn 33.21 derived earlier using another method. Par-
seval’s theorem (eqn 33.84) implies that

(33.93)
Equipartition, which gives that Im(v?) = %kgT, leads immediately to

A= 20ksT. (33.04)

R i ]

Let us next suppose that the energy E' of a harmonic system is given _
by B = 1a2® (asin Chapter 19). The probability P(z) of the system
taking the value z is given by a Boltzmann factor e % and hence

P(z) = Ne~fo="/3, (33.95)
where A is & normalization constant. Now we apply a force f which is
conjugate to r so that the energy F is lowered by 2. The probability
P(z) becomes

Pla) = Na~Bloz/2-21), (33.06)

e

and by completing the square, this can be rewritten as

Plz) = N~ Fle=1)°, (33.97)
where A is a different normalization constant. This equation i of the
usual Gaussian form
P(z) = Ne~le=tan*/2t"), (33.98)

where (z) = f/a and (2*) = 1/Ba. Notice that (z) is telling us about
the average value of z in response to the force f, while (x%) = kpT /o is
telling us about fAuctuations in . The ratio of these two quantities is
given by

@y _

@)~
Now {z)f is the average value x takes when a force f is applied, and we
know that (z); is related"to f by the static susceptibility by

(33.99)

B — v,

g0 that eqn 33.99 can be rewritten as

(33.100)

(a?) = ksT'(0). (33.101)

Equation 33.101 thus relates (22) to the static susceptibility of the sys-
tem. Using eqn 33.73, we can express this relationship as

53 ‘Jiu(wq
2 )
= [ X,

: (33.102)
w

and together with eqn 33.84, this motivates

(33.103)

which is a statement of the fluctuation—dissipation thieorem. This
shows that there is a direct connection between the autocorrelation func-
tion of the Auctuations, Cue(w), and the imaginary part x"(w) of the
response function which is associated with dissipation.

Example 33.8

Show that eqn 33.103 holds for the problem considered in Example 33.5.
Solution:
Recall from Example 33.7 that

) =Ap(e)P,

B f e 2(0)2(t)) d = (|5 () (33.104)
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OHere we are making the assumption
that the linear response function ¥(w)
governs both Auctuations and the usual
response to perturbations.
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noise

¢ Fig. 33.3 Circuit for analysing John-
500 MDise ACTOSS & Fesistor.

and hence using ¥(w) from eqn 33.76 and A from eqn 33.94, we hage and hence

that SkaT
A sy 1
|2 =t s ol e M
L [(wz ~w&)‘+{wv)“]'

Cyv(w) = 2aTR. (33.113)
Foquation 33.84 implies that

Equation 33.77 shows that V= 21_” f B, (33.114)

X'(w)  29ksT [
R (e el
and hence eqn 33.103 holds.

BT T fisiTs

2T

ﬂ.nd hence if this integral is carried out, not over all frequencies, but
only in a small interval Af = Aw/(27) about some frequency g (see
Fig. 33.4);

(V3 = 20yv(w)Af = dkgTRAS, (33.115)

. n agreement with eqn 33.28.

ol 3 TR AT B S e s B el [ B a R gty Lt
- L We close this chapter by remarking that our treatment so far ap-
" plies only to classical systems. The quantum mechanical version of the
¢ fuctuation-dissipation theorem can be evaluated by replacing ks T, the
mean thermal energy in a classical system, by

Example 33.9

Derive an expression for the Johnson noise across a resistor R using thg'
circuit in Fig. 33.3 (which includes the small capacitance across the ends

of Lhel resistor).
gflil}:;:ﬁrcuit theory yields His (n[-;u) 4 é) — % coth %, (33.116)
VIR = g (33107 which is the mean energy in 2 quantum harmonic oscillator. Ineqn33.116,
o) = (3.117)

The charge () and voltage V' are conjugate variables (their product hag -

dimensions of energy) and so we write ; 3 . !

= s the Bose factor, which is the mean number of quanta in the harmonic
Qw) = g(w}l}(w), (33.108) b oscillator at temperature T. Hence, in the quantum mechanical case,
: aqn 33.103 is replaced by

where the response function ¥(w) is given for this cireuit by

: B
1 Crezlw) = Ax"(w) cath % (33.118)
Xlw) = Wk (33.109) Sef
1w £ At high temperature, coth(Shw/2) — 2/(8hw) and we recover eqn 33.103.
Hence ¥"(w) is given by § The quantum mechanical version of eqn 33.102 is '
ey wR 2 :E e A’ {h-@. B 33119
X'(w) = TF iR (33.110) (z9) 2/_90 ¥'(w')co 5 ( )

At low frequency (w < 1/RC, and since the capacitance will be small; =
1/RC will he very high so that this is not a severe resistriction) we _§
have that ¥/(w) — wRC®. Thus the Ructuation—dissipation theorem ' f
(eqn 33.103) gives }

L e
Gaalu) = zm"% = ks TRCE @auy f
Because ¢ = CV for a capacitor, correlations in @ and V are related by *

2 Cogle 3
Gyl = %”— (33.112) 5
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Codw)

—uh wp Y

Fig. 33.4 The voltage fluctuations
{V*)in a small frequency interval- A f =
Auw/(2r) centred on fuwyg are due to
the part of the Cyv (w) shown by the
shaded boxes. One can imagitie that
the noise is examined through a fil-
ter which only allows these frequen-
cies throngh, so that the integral in
eqn 33.114 only picks up the regions
shown by the shaded boxes.
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