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At wavelengths for which A < A; the ith term becomes approximately proportional to
A2, and for A > ); it becomes approximately constant. As an example, the dispersion
in fused silica, illustrated in Example 5.6-1, is well described by three resonances. For
some materials the Sellmeier equation is conveniently approximated by a power series.

D. Optics of Conductive Media

Conductive materials such as metals, semiconductors, doped dielectrics, and ionized
gases have free electric charges and an associated electric current density J. In such
media, the first of the source-free Maxwell’s equations, (5.1-7). must be modified by
including the current density J along with the displacement current density D /01, so
that

V% H = %—? +9. (5.5-29)

The other three Maxwell’s equations remain the same. For a monochromatic wave of
angular frequency w, this equation takes the form

VxH=jwD+J, (5.5-30)
which is a modified version of (5.3-2).
For a medium with linear dielectric properties, D = ¢E = €,(1 + x)E. Similarly,
for a medium with linear conductive properties and conductivity o, the eleciric current
density is proportional to the electric field,

J=0E, (5.5-31)

which is a form of Ohm’s law [see (18.1-13) and (18.1-14)]. The right-hand side of
(5.5-30) then becomes (jwe + o)E = jw(e + o/ jw)E, so that

V x H = jweE, (5.3-32)

where the effective electric permittivity €. 18

£ = B (5.5-33)

Jw Effective Permittivity

The effective permittivity ¢, is a complex frequency-dependent parameter that repre-
sents a combination of the dielectric and conductive properties of the medium. Since
the second term in (5.5-33) varies inversely with frequency, the contribution of the
conductive component diminishes as the frequency increases.

Moreover, since (5.5-32) takes the same form as the analogous equation for a dielec-
tric medium, the laws of wave propagation derived in Secs. 5.3-5.5 are applicable even
in the presence of conductivity. Thus, the wavenumber in (5.5-2) and (5.5-3) becomes
kEk=0- j%a = w./€cflo, and the impedance in (5.5-6) becomes n = il ol €
while the refractive index 7 and the attenuation coefficient «v in (5.5-5) are determined
from the complex equation n—jo/2k, = \/€./€,. When o /w > €, conductive effects

dominate and e, = o/ jw. We then have n— ja/2k, = \/o/jwe, and i =2 \/jwpo/c,
from which we obtain
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na o dwe, (5.5-34)
& 72/ 2w o0 =515y
n& (L+§)vwn/20, (5.5-36)

Conductive Medium

where we have made use of the relation k, = w/c, = w,/€,ji,. The optical intensity
is attenuated by a factor e~ at a depth d, = 1/ = 1/y/2wp,o . which is known as
the penetration depth or skin depth. * Both d,, and n vary as 1//w .

For metals, ¢ is very large and therefore so is «, indicating that optical waves
are significantly attenuated as they cross the surface of the material. However, the
impedance ) is very small, so these materials are highly reflective (see Exercise 6.2-2).

EXAMPLE 5.5-1. Penetration Depth and Refractive Index of Copper. Copper has a
conductivity of o = 0.58 x 10% (£2-m)™", so that the penetration depth is a scant d, = 1.9 nm at a
wavelength A, = 1 um. In accordance with (5.5-34) and (5.5-33), the refractive index is related o
the penetration depth via n = on,d, . which, for the case at hand, turns out to be n. = 41.6.

The Drude Model

Since the relation between J and € is dynamic, the conductivity o must be frequency
dependent with a finite bandwidth. Treating the conduction electrons as independent
particles in an ideal gas that move freely between scattering events, the Drude model
prescribes a frequency-dependent conductivity

an

=, 5.5-37
7 1+ jwr ( )
where oy is the low-frequency conductivity and 7 is a relaxation time. 1t then follows
from (5.5-33) that

ap

ey 5.5-38
Jw(l + jwr) ( )

€ = &

For w > 1/7, (5.5-38) provides ¢. = € — aq/w?7. It is apparent that the conductivity
then reduces the real part of the permittivity of the medium, acting like a negative con-
tribution to the dielectric constant, with a functional form that is inversely proportional
to the square of the frequency. In particular, if the medium has free-space-like dielectric
properties with € = €, the effective permittivity can be written as

2

sar=ts || 1 ——D I, (5.539)
W

where w, = /oy /€, is known as the plasma frequency.
A simple classical microscopic theory provides an underlying rationale for the re-
sults of the Drude model. The construct is similar to that of the Lorentz model; since the

! The penetration depth is sometimes defined as the distance over which the field, rather than the intensity, is

attenuated by a factor ¢!,
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electrons of interest in a conductive medium are free rather than bound, however, the
restoring force is excluded (x = 0) as is the damping (o = 0). Under these conditions,
the Lorentz equation of motion (5.5-16) becomes m d*z/di* = —e&, so that the
corresponding polarization density P = —Nex obeys the simple equation d*P/di* =
(Ne?/m)E, where N is electron density of the medium. For a field oscillating at an
angular frequency w, this gives rise to —w’P = (Ne? /m)E, which is equivalent
to a conductivity-related reduction of the dielectric constant of magnitude P/e,E =
—(Ne? /e,m) /w?. This is consistent with (5.5-39), with a plasma frequency given by

, —

2
Wy = \/ Ne (5.5-40)

EptTt

Combining (5.5-40) with the Drude result w, = +/oo/e,7 yields og = Ne*7/m,
which accords with (18.1-13).

It is apparent from (5.5-39) that wave propagation in a medium described by the
Drude model assumes distinctly different behavior below, at, and above the plasma
frequency, as illustrated in Fig. 5.5-10.
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Figure 5.5-10 Frequency dependence of the relative permittivity e, /€4, propagation constant /3,
refractive index n, and attenuation coefficient o of a medium described by the Drude model.

» At frequencies below the plasma frequency (w < wy), the effective permittivity is
negative, so that k = w/€./1, is imaginary, corresponding to attenuation without
propagation. This spectral band may therefore be regarded as a forbidden band.
The attenuation coefficient o = 2k, (w? /w? —1)1/# decreases monotonically with
increasing frequency and vanishes at the plasma frequency. A negative permit-
tivity also corresponds to an imaginary impedance. Therefore, at the boundary
between an ordinary medium with real impedance and a conductive medium with
imaginary impedance, the light is fully reflected (see Sec. 6.2) so that the interface
serves as a perfect mirror,

m At frequencies above the plasma frequency (w > wy), the effective permittivity is
positive and real so that the conductive medium behaves like a lossless dielectric,
albeit with unique dispersion characteristics. The propagation constant becomes
3 = (w? — w?)!/?/c, while the refractive index n = (1 — w? fw?)*? Ties below
unity and is very small near the plasma frequency. This spectral band is referred
to as the plasmonic band.

m At the plasma frequency, w = w,, the propagation constant 3 = 0 so that the
wave does not travel in the conductive medium. However, the electric current
density oscillates and the free electrons undergo longitudinal oscillations; the
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quantum quasi-particle associated with these oscillations is called a plasmon
(much as a photon is associated with an optical field, as discussed in Chapter 12).

In most metals, the plasma frequency lies in the ultraviolet so that they are reflective
and shiny in the visible band. Some metals, such as copper, have a plasma frequency in
the visible band so that they reflect only a portion of the visible spectrum and therefore
have a distinct color. In doped semiconductors, the plasma frequency is usually in the
infrared.

5.6 PULSE PROPAGATION IN DISPERSIVE MEDIA

"The propagation of pulses of light in dispersive media is important in many applications
including optical fiber communication systems, as will be discussed in detail in Chap-
ters 9 and 24. As indicated above, a dispersive medium is characterized by a frequency-
dependent refractive index and absorption coefficient, so that monochromatic waves of
different frequencies travel through the medium with different velocities and undergo
different attenuations. Since a pulse of light comprises a sum of many monochro-
matic waves, each of which is modified differently, the pulse is delayed and broadened
(dispersed in time); in general its shape is also altered. In this section we provide a
simplified analysis of these effects; a detailed description is deferred to Chapter 22.

Group Velocity

Consider a pulsed plane wave traveling in the z direction through a lossless disper-
sive medium with refractive index n(w). Following the example set forth in Sec. 2.6,
assume that the initial complex wavefunction at z = 0is U(0,¢) = A(t) exp(jwot),
where wy is the central angular frequency and A(t) is the complex envelope of the
wave. It will be shown below that if the dispersion is weak, i.e., if n varies slowly
within the spectral bandwidth of the wave, then the complex wavelunction at a distance
% is approximately U (z, t) = A(t —z/v) exp[jw (t— z/c)], where ¢ = ¢, /n(wp) is the
speed of light in the medium at the central frequency, and v is the velocity at which the
envelope travels (see Fig. 5.6-1). The parameter v, called the group velocity, is given
by

=8 =—, (5.6-1)
Y Group Velocity

where 7 = wn(w)/c, is the frequency-dependent propagation constant and the deriva-
tive in (5.6-1), which is often denoted /', is evaluated at the central frequency wy. The
group velocity is a characteristic of the dispersive medium, and generally varies with
the central frequency. The corresponding time delay 7; = z/v is called the group
delay. )

Since the phase factor exp[jwy(t — z/c)| is a function of ¢ — z/c, the speed of
light ¢, given by 1/¢ = ((wg)/wo, is often called the phase velocity. In an ideal
(nondispersive) medium, #{w) = w/c whereupon v = ¢ and the group and phase
velocities are identical.

[J  Derivation of the Formula for the Group Velocity, The proof of (5.6-1) relies on a Fourier de-
composition of the envelope A({) into its constituent harmonic functions. A component of frequency
{2, assumed to have a Fourier amplitude A(€2), corresponds to 2 monochromatic wave of frequency
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