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Since 87 4+ 8% + 8 = S2, only three of the four components of the Stokes vector
are independent; they completely define the intensity and the state of polarization of
the light. A generalization of the Stokes parameters suitable for describing partially
coherent light is presented in Sec. 11.4.

We conclude that there are a number of equivalent representations for describing
the state of polarization of an optical field: (1) the polarization ellipse, (2) the Poincaré
sphere, and (3) the Stokes vector. Yet another equivalent representation, the Jones
vector, 1s introduced in the following section.

B. Matrix Representation

The Jones Vector

As indicated above, a monochromatic plane wave of frequency » traveling in the =z
direction is completely characterized by the complex envelopes A, = a, exp(jp.)
and A, = ayexp(jp,) of the 2 and y components of the electric-field vector. These
complex quantities may be written in the form of a column matrix known as the Jones
vector:

J= BJ . (6.1-10)

Given J, we can determine the total intensity of the + |4,%)/2n,
and use the ratio R = a,/a; = |- =y — Py =
arg{ A, } —arg{ A, } to determine the orientation and shape of the polarization ellipse,
as well as the Poincaré sphere and the Stokes parameters.

The Jones vectors [or some special polarization states are provided in Table 6.1-1.
The intensity in each case has been normalized so that |A,|[* +|A,|* = 1 and the phase
of the o component is taken to be ¢, = 0.

Table 6.1-1 Jones vectors of lincarly polarized (LP) and right- and left-circularly polarized (RCP,
LCP) light.
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Orthogonal Polarizations

Two polarization states represented by the Jones vectors Jy and J5 are said to be
orthogonal if the inner product between J; and Js is zero. The inner product is defined

by
(J1,d2) = A1 A}, + A AL, (6.1-11)

where Aj, and A;, are the elements of J; and As, and Ay, are the elements of J».
An example of orthogonal Jones vectors are the linearly polarized waves in the z and
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y directions, or any other pair of orthogonal directions. Another example is provided
by right and left circularly polarized waves.

Expansion of Arbiirary Polarization as a Superposition of Two
Orthogonal Polarizations

An arbitrary Jones vector J can always be analyzed as a weighted superposition of
two orthogonal Jones vectors, say J, and Js, that form the expansion basis; thus J =
a1 + agJs. If Jy and Js are normalized such that (J;,J1) = (Jz,J5) = 1, the
expansion coefficients are the inner products oy = (J,J D and ap = (J,J 9).

EXAMPLE 6.1-1. Expansions in Linearly Polarized and Circularly Polarized Bases.

0

Using the = and y linearly polarized vectors [(IJ] and [1

] as an expansion basis. the expansion

coefficients for a Jones vector of components A; and Ay with [Az]* + |A,|? = 1 are, by definition,
a, = A, and ap = Ay, The same polarization state may be expanded in other bases.

m In a basis of linearly polarized vectors at angles 45° and 1357, Le., J = j} [ﬂ and J; =
:}5 [ '], the expansion coefficients cv, and ey are:

y Y 1 ; 2

A45 — E(:‘Lﬂ 4= .Ay), :"1135 = '\E(z‘diy = ATJI (6]‘1,_,}

1

® Similarly, if the right and left circularly polarized waves = L] and — [ _lj] are used as an

expansion basis, the coelficients cv; and v, are:

1 . 1 : .
AAR = ﬁ(}l;ﬂ —]Ay), A}_ = E(-’qx +_’}flyj (61-13)
For example, a linearly polarized wave with a plane of polarization that makes an angle 0 with
the = axis (i.e., A4, = cosf and A, = sin #) is equivalent to a superposition of right and

left circularly polarized waves with coefficients L 7 and % &9 respectively, A linearly

polarized wave therefore equals 4 weighted sum of right and left Eircu]arly polarized waves.

EXERCISE 6.1-1

Measurement of the Stokes Parameters. Show that the Stokes parameters defined in (6.1-9)
for light with Jones vector components A, and A, are given by

So = |Aa* + 14,2 (6.1-142)
8; = |47 — 14,° (6.1-14b)
5o = 1A4512 il L‘lmslz (6.1-14c)
ss = |Arl* — |ALl®, ) (6.1-14d)

where A5 and A5 are the coefficients of expansion in a basis of linearly polarized vectors at angles
45° and 1357 as in (6.1-12), and AR and A are the coefficients of expansion in a basis of the right
and left circularly polarized waves set forth in (6.1-13). Suggest a method of measuring the Stokes
parameters of light with arbitrary polarization.

#
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Matrix Representation of Polarization Devices

Consider the transmission of a plane wave of arbitrary polarization through an optical
system that maintains the plane-wave nature of the wave, but alters its polarization, as
illustrated schematically in Fig. 6.1-6. The system is assumed to be linear, so that the
principle of superposition of optical fields is obeyed. Two examples of such systems are
the reflection of light from a planar boundary between two media, and the transmission
of light through a plate with anisotropic optical properties.

Optical
system ’ .
Figure 6.1-6 An optical system that alters
the polarization of a plane wave.

The complex envelopes of the two electric-field components of the input (incident)
wave, A, and A, and those of the output (transmitted or reflected) wave, A, and
Ay, are in general related by the weighted superpositions

Ag=T1141, + T1241,

, , (6.1-15)
Agy=T51 A1y + TopAyy,
where 771, Th9, T51. and 75 are constants describing the device. Equations (6.1-13)
are general relations that all linear optical polarization devices must satisfy.
The linear relations in (6.1-15) may conveniently be written in matrix notation by
defining a 2 x 2 matrix T with elements 7'y, T2, 75y, and 753 so that

Age| _ |Tu1 Tia| |Asg ]
[A2y] a {Tm Too| | A1y |- (6.1-16)

If the input and output waves are described by the Jones vectors J; and Jo, respectively,
then (6.1-16) may be written in the compact matrix form

Js = BTy, (6.1-17)

The matrix T, called the Jones matrix, describes the optical system, whereas the
vectors J; and Jo describe the input and output waves.

The structure of the Jones matrix T of a given optical system determines its effect
on the polarization state and intensity of the wave. The following is a compilation of
the Jones matrices of some systems with simple characteristics. Physical devices that
have such characteristics will be discussed subsequently in this chapter.

Linear polarizers. The system represented by the Jones matrix

T = [(1) 8} 6.1-18)
Linear Polarizer
Along = Direction

transforms a wave of components (A, Ay, ) into a wave of components (A, 0) by
eliminating the ¥ component, thereby yielding a wave polarized along the = direction,
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as illustrated in Fig. 6.1-7. The system is a linear polarizer with its transmission axis
pointing in the z direction.

Linearly polarized Figure 6.1-7 The linear polarizer. The lines in
light the polarizer represent the field direction that is
Polarizer permitted to pass.

Wave retarders. The system represented by the matrix

P [t O (6.1-19)
0 e

Wave-Retarder

(Fast Axis Along « Direction)

transforms a wave with field components (A;,, Ay,) into another with components
(A1, e_jl'}«ily), thereby delaying the y component by a phase I" while leaving the x
component unchanged. It is therefore called a wave retarder. The & and y axes are
called the fast and slow axes of the retarder, respectively.

The simple application of matrix algebra permits the results illustrated in Fig. 6.1-8
to be understood:

(a) Quarter-wave retarder (h) Half-wave retarder

Figure 6.1-8 Operations of quarter-wave (7/2) and half-wave (7) retarders on several particular
states of polarization are shown in (@) and (b), respectively. F and S represent the fast and slow axes
of the retarder, respectively.
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8 When I' = 7/2, the retarder (called a quarter-wave retarder) converts the

linearly polarized wave H] into the left circularly polarized wave {jﬁ} and

converts the right circularly polarized wave B} into the linearly polarized wave

HE

m When I' = m, the retarder (called a half-wave retarder) converts the linearly

polarized wave [:E] into the linearly polarized wave [fl}, thereby rotating the

1
plane of polarization by 90°. The half-wave retarder converts the right circularly

polarized wave [;] into the left circularly polarized wave [_ﬂ

Polarization rotators. While a wave retarder can transform a wave with one form
of polarization into another, a polarization rotator always maintains the linear polar-
ization of a wave bul rotates the plane of polarization by a particular angle. The Jones
matrix

(6.1-20)

Polarization Rotator

cos th

represents a device that converts a linearly polarized wave L—,in 61 ] into another linearly

cos fy
sin Ug

of a linearly polarized wave by an angle 9.

polarized wave [ } , where 5 = €7 +0. It therefore rotates the plane of polarization

Cascaded Polarization Devices

The action of cascaded optical systems on polarized light may be conveniently deter-
mined by using conventional matrix multiplication formulas. A system characterized
by the Jones matrix T followed by another characterized by T’ are equivalent to
a single system characterized by the product matrix T = T;T;. The matrix of the
system through which light is first transmitted must stand to the right in the matrix
product since it is the first to affect the input Jones vector.

S e )
EXERCISE 6.1-2

Cascaded Wave Retarders. Show that two cascaded quarter-wave retarders with parallel fast
axes are equivalent to a half-wave retarder. What is the result il the fast axes are orthogonal?

Coordinaite Transformation

The elements of the Jones vectors and Jones matrices are dependent on the choice of
the coordinate system. However, if these elements are known in one coordinate system,
they can be determined in another coordinate system by using matrix methods. If Ji is
the Jones Vt,ctor in the z—y coordinate system, then in a new coordmate system x —y ;
with the z’ direction making an angle § with the x direction, the Jones vector J’ is
given by

=R(0)J, (6.1-21)
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where R(#) is the matrix

y,\ Vi
el R(6) = [;Z?flg ig}fg] (6.1-22)
T X ' Coordinate
. L Transformation

This can be verified by relating the components of the electric field in the two coordi-
nate systems.

The Jones matrix T, which represents an optical system, is similarly transformed
into T, in accordance with the matrix relations

T' = R(0) TR(—8) (6.1-23)
T = R(—0) T'R(6), (6.1-24)

where R(—@) is given by (6.1-22) with —8 replacing #. The matrix R(—6) is the in-
verse of R(#), so that R{—8) R{#) is a unit matrix. Equation (6.1-23) can be obtained
by using the relation Jo = TJ, and the transformation J, = R(#)J» = R(#) T J,.
Since J; = R(—#)J), we have J, = R(0) TR(—0) J{: since J;, = T'J7, (6.1-23)
tollows.

R e e
EXERCISE 6.1-3

Jones Matrix of a Polarizer.  Show that the Jones matrix of a linear polarizer with a transmission
axis making an angle & with the x axis is

05?6 sin  cos 0
B Lhi%gcosﬁ blziig(; (6.1-25)
" 4 h Linear Polarizer
at Angle ¢

Derive (6.1-25) using (6.1-18), (6.1-22), and (6.1-24).
e e

Normal Modes

The normal modes of a polarization system are the states of polarization that are not
changed when the wave is transmitted through the system (see Appendix C). These
states have Jones vectors satisfying

TT =, (6.1-26)

where s is constant. The normal modes are therefore the eigenvectors of the Jones
matrix T, and the values of u are the corresponding eigenvalues. Since the matrix
T is of size 2 x 2 there are only two independent normal modes, TJ; = fi1J; and
TJy = podo. If the matrix T is a Hermitian, i.e., if T2 = T3, , the normal modes are
orthogonal: (J;,J2) = 0. The normal modes are usually used as an expansion basis, so
that an arbitrary input wave J may be expanded as a superposition of normal modes:
J = aJ; + asJs. The response of the system may then be easily evaluated since
TJ = T(aqJ; + azds) = a0y Ty + a2 TIs = aypinJy + a2 (see Appendix C).
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