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. w(;ttu‘ne:\nn s constan.t ‘g was measured by observing the Brownian motion of polystyrene spheres

, er. yn inexpensive monochrome CCD camera and video card were used to create a video of

U_le spheres’s motion. After preprocessing the images, custom routines were used to examine the

\'l‘deo and to identify and track the particles from one frame to the next. From the mean squared
displacement of the particles versus time, we extracted the value of kg from the slope, assuming

thatv the drag force on an individual sphere is well modeled by Stokes’ law. By averaging over 77§ ¢ v e~
particles, we obtained kg = (1.49 £ 0.07) x 10"J/K. “ '

o i T I. INTRODUCTION particles, in which the diffusion coefficient is related to
¥ S \L‘\ the mean squared displacement of a Brownian particle,
while the second part consists in relating the diffusion

coefficient to measurable physical quantities. (2]
~— Classical mechanics is unable to determine this
because of the enormous number of bombardments
Brownian particle will undergo, roughly of the order of
10 collisions per second. Einstein regarded the incre-

Brownian motion is the random motion of particles
suspended in a fluid {aliquid-or-a~gas) resulting from
their collision with the fast-moving molecules in the
fluid.[1) This pattern describes a fluid at thermal equi-
libritm, defined by a given temmperature. Within such o
fluid there exists no prelerential direction of flow as—in-

s s v ) transport phenomena. More specifically the fluid'd over-  ment of particle positions in time 7 in a one dimensional
"all linear and angular momenta remain null over time. (z) space (with the coordinates chosen so thetdhe, ori-

It is important also to note that the kinetic energies of gin lies at the initial position of the particle) as a ran-

the molecular Brownian motions, together with those of dom variable (z') with some probability density function

g \’\ molecular rotations and vibrations sum up to the caloric ¢(z'). Further, assuming conservation of particle num-
ber, he expanded the density (number of particles per

AR ' §, 4
\':nhg//- component of a fluid’s internal energy.
e his motion is named after the botanist Robert Brown, unit volume) at time ¢ + 7 in a Taylor series,

distance
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3 who was the most eminent microscopist of his time. In O P
(T 1827, while l'ooking throggh a microscope at pollen.of the (}, o(z, t) + Taﬂ(l') P f’(;r, t4+7)) (1)
plant Clarkia pulchella immersed in water, the triangu- ot
V‘//

lar shaped pollen burst at the corners, emitting particles

which he noted jiggled around in the water in random 456

fashion. He was not able to determine the mechanisms A — / p(z —a',t) - p(z’)da’ = Eu[p(z,t +7)] (2)
— 00

Cos N _that caused this motion. Atoms and molecules had long
A been theorized as the constituents of matter, and Al-
bert Einstein published a paper in 1905 that explained oo oo
in precise de_ztaﬂ how the motion that Brown hgd'observed — p(z,t) - / o(z') da’ — ap / 2 p(z')dz’
was a result of the pollen being moved by individual wa- = 0r J_wo
ter molecules, making one of his first big contributions [‘\){5)'3\\"—”
to science. This explanation of Brownian motion served O
as convincing evidence that atoms and molecules exist, &l 8%p . [T a'? oo 0
and was further verified experimentally by Jean Perrin B4 o +3-x§kf) /_ - o p(a’)da’ + - (3)
in 1908. The direction of the force of atomic bombard- | i”\“"‘u S
ment is constantly changing, and at different times the N e\ cdot )
particle is hit more on one side than another, leading to 9%p +00 412
the seemingly random nature of the motion. = p(z, )l + 0+ 9z / o p(a')dz’ + - (4)
e, —oo

definition of ¢. The integral in the

TSt ternyis equal to one by the definition of probability,

. . and the second and other even terms (i.e. first and other

There are two parts of theory: the first part consists odd moments) vanish because of Sﬁl{é‘e)\sﬂnmetrv. What
in the formulation of a diffusion equation for Brownian g left gives rise to the following relation: ;
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Where the coetherent hetore the Faplacian, the mecoyg
moment of probabihity of displacement 7

as mass ditfusivity D
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Then the density of Brownian

SAanterpreted

(6)

wn‘tivlvsl £ At point poat

time 7 satisfies the diffision cauation
dp I)) Fp
\ a Ul e ()

assuming that N particles start from

& he origin at the
mitial time ¢ = 0, (he diflusion o

quation has the solution

A
C

51
e im
Vst

(8)

23

This expression (whieh is

A normal distribution with the
mean

O and variance o2 2Dt usually called Brown-
1an motion By ) allowed Einstein to caleulate the moments
directlv. The first moment s seen to vanish, meaning
that the Brownian particle is equally likely to move t(:
! Ve Lo the right. The second moment
non-vanishing, being given by

el as it o mo

N, howey el

¢ =2 P7 (i)

We can also write the mean squared displacement m two
dimensions,

ry D, (10)

& Tl o

“This «.\‘wew‘s«\s the mean squared displacement in terms
of the time elapsed and the diffusivity. From this expres-
ston Einstein argued that the displacement of a Brown-
wrticle 1s not proportional to the elapsed time, but

oS square ropt 2] His argument s based on a
conceptual switeh fml;l\‘he “ensemble” of Brownian par-
Ueies 1o the “single” Brownian particle: we can speak of

© reial

« number of particles at a single instant just as
{the time it takes a Brownian particle to reach a
s poit 3] The second part of theory relates the dif-
condtme Lo physically measurable quantities, such

mean squared displacement of a particle i a given
auterval This result enables the experimental de-
termination of Avogadro's number. Einstein analyzed a
dvimnic equibibriun being established between opposing
forces. The beanty of his argnment 1s that the final pe-
sult does not depend upon which forees are involved in
setting up the dynamic equilibrium » .
Consider, for instance, particles suspended ina viscous

Ml voa gravitational field Gravity tends to make
the partles settle. whereas «l:i!’ujug}; acts 9 ‘y\",”j"”“‘(‘
them, drivine them into regions of sinsllericontentration
Under the n;)l i of gravity, a particle acquires a down-

Lime

ward speed of 1 pong, where m s the mass of the
part e, 4 s the acceleration due to gravity, and pis

sarticle’s mobihity i the Huid. George Stokes had
particl nuti

ol

Shown that the mobility for s apherienl particle witly py
“ing r w jo VGryr where y g the dynmmie viscosity
of the Huid  Iny oy slakg of dynamic cquilibrivn . and un-
der the hypotheais of daol bermal (ind . thee particles are
distributed acearding o the barometrie distribution

“,.;'5‘)

-1}
by T ‘

[ (1)

where p g is the difference in density of particles sepie

tated by a height difference of I, ks Boltamann's con
stant (namely, the ratio of the universal gas constant, i
W Avogadra's number, NaJ, and T is the nhsolute Lo
Perative - Avogadra's nmber s to be determined.” 3y
e equilibrinm s established bhecanse the more that
particles are pulled down by gravity, the greater the ten-
deney for the particles to migrate Lo regions of lower con

centrat lx)l\la—#{lhw'ﬂTn; s ogiven by Fiok's liw,
/

t“, q " ‘[‘

' ?‘\?—xﬁ ek /)41;1 (12)
where JJ = pro Tatroducing the formula for p. we find
that

Dimg ,
— (13
kgl )

Inastate of dynamical equilibrium, this speed st also
be equal to v~ pmg. Notice that both expressions for v
are proportional to mg, veflecting that the derivation is
independent of the type of forces considered Similarly
one can derive an equivalent formula for identical charged
particles of charge ¢ i a wniform electric field of magni
tude £, where mg 1s replaced with the electrostatic force
¢ Equating these two expressions vields a formula for
the diffusivity, mdependent of mg or ¢ or other such
forces:

nr
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Here the tirst equality tollows from the first part of the
theory the third equality follows from the definition of
Boltzmann's constant_y« kg R/N 4, and the fourth
equality follows from Stokes’s formula for the mobility
By measuring the mean squared displacement over a time
interval along with the universal gas constant B, the tem-
perature T', the viscosity 7, and the particle radios r,
Avogadro's number V4 (',zmg be determined
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III. EXPERIMENTAL SETUP

We used an inexpensive Amevican Optical Spencer M
croscope. The mmage from the objective lens s divectly
unaged onto the CCDCWe calibrated the tnage using a
Motie calibrating shide and obtaited values of 0207101
g/ prrcl horizontal and 0208055 i /purel vertieal
To observe Brownun wotion, we used 0.750m diames
ter polystyrene micro-spheres One drop of the mucne

over shin and the o
sphere solution was placed o acover shp and the cov
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(a)

Figure 1¥Raw image gyesultmg from subtradting the back-
ground, smoothing, and adjusting the contrast. |(b) of 750 nm

spheres and corresponding spheres are marked by circle.
D
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slip was inverted the drop adhere'sgvia cohesive forces to
“the glass! and piaced on the glass slide in the center of
the plastic reinforcement. We observed the slide on the
computer using the live imaging module. If the
sample exhibited any evidence of a coherent macroscopic
oscillation or flow, we discarded the slide and mele d new
one. Our experience is that if an air bubble is visible in
the central circular area, there will be visible flow which
will make data from such a slide unusable. Although
we have not quantitatively studied the motion in such
a slide. our qualitative obseryation is that the fluid ap-
pears _ta oscillate. The data %‘?ﬁhis report jwas sampled
at ZO@i‘for a total oft9 9‘?

bl

“isthen converted to grayscale and each pixel’s li

is compared with a threshold variable. The pixels lighter
than the threshold i an the
_threshold-and are considered as the background. All re-
maining pixels are considered to be the micro-spheres
(the dark objects). The Matlab scripll;T?‘] i
manually mark thie objects to be trackéd, after marking
the script will start tracking the objects.,Once the mean
square disp/],zéement of all particles s known after pro-
cessing the/video, some more variables alé collected f{om
the user ysing message boxes. These variables include the
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Figure 2. (r2), (z) and (y) of the objects vs Z(ime.

sample temperature, viscosity and average sphere diam-
eter. At the end of a successful run, the script will leave
some variables (kg, Na and D) in the main workspace.

IV. RESULTS AND DISCUSSION

We reagf,{analyze, and plot the data from Matlab, arid
-the ir)litial z and y positions for each particle,
so that for the ith particle at time t, we have Az, (t) =
z,(t) — =,(0) and Ay, (t) = y;(t) — ¥.(0). The square
displacement of the ith particle at time ¢ is therefore

N
) = % Do AR = 2@+ @ (15)
=1

To obtain Boltzmann’s constant, we need to plot the
mean squared displacement versus time, so we calcu-
late the time dependent quantity where N is the num-
ber of particles tracked (7 in our case). From the slope
((2.8 £0.1) x 107'?) in Fig. 2, we use Eq. 14 to ob-
tain Boltzmann’s constant, kg. The coefficient of vis-
cosity is a nonlinear function_of temperature, so we
used data from the Lab manual[5] and used gxponential
ﬁtLS] interpolateddata to approximate the viscosity
n =9.0084 x 1074 Vsm™3 for (24.@@:0_)[9]

[

ky = (1.5 +£0.1) x 10:23»‘]/1{ (uncorrected) .

Error in kg is because the viscosity of water is a sensi-
tive furf'g\\t,iox\l of temperature, the value we obtained for
kg is verjbyaevﬁendent on both temperature and viscosity.
The most difficult aspect of our experiment is creating an
observation cell with no noticeable drift and with a suffi-
cient and quantifiable depth to allow us to ignore sphere-
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wall interactions. Although the value K B ‘is_‘ﬁéceptai?ié, /."

Th(ivalues of N4 and D are given-as-with-uncertainties/
A =) 74
Cop SR L = (5.5 4+0.3) x 1023 ,

[
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D= (7.1£0.3) x 10713 m2s~!

Some care must be taken when calculating the spheres’s
self-diffusivity D, due to the effects of the walls. For

a sphere far from two parallel walls, the modified self-
diffusivity 1s given by[4]

veoi-g(arm)] 0o

-
where 27 and 2z, 10] are the distances from the sphere
to the two walls. The distance d between the wall is
d = 0.11 + 0.01 mm (by measuring the width of tape

-,
N

4 =N

which is used between cover slip and glass slide measureq
by Screw gauge) and d = 0.146 mm (measured using fine
focusing knob of Microscope) }Applymg Eq. (16 ields
a wall-corrected value whichis 0.95% smaller:

D' = (6.99 +0.30) x 10713 m?s~
which also give us the corrected value of &y as:
ky = (1.49 £ 0.07) x 1072 J/K. g

Error in the value of Boltzmann's constant is 8% whigh
is good in agreement with the sensitivity of our experi-
mentation.
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