STUDIO GROUP 9 -ELECTROMAGNETIC INDUCTION IN 5 SOLENOIDS

S

Group Members: Saad Afzal - 18100055 Saad Chughtai - 18100094 Abuzar Ahmad - 18100075 N

Velocity Measurement Using Naïve VS Accurate Methods

- Naïve Method

 $v = \Delta z / \Delta t$, where $\Delta z = a$.

Approx. Value Peak 2 for V = 2.438 m/s.

Theoretical Derivation

$$B_{d} = \frac{\mu \circ}{4\pi R^{3}} \left[\frac{(3m.R)R}{R^{2}} - m \right]$$

$$R = \rho \cos \varphi i + \rho \sin \varphi j + zk$$

$$B_{d} = \frac{\mu_{o}m}{4\pi (\rho^{2} + z^{2})^{5/2}} \left[3z\rho \cos \varphi i + 3z\rho \sin \varphi j + (2z^{2} - \rho^{2})k \right]$$

$$B_{d} = \frac{\mu_{o} m}{4\pi (\rho^{2} + z^{2})^{5/2}} [3z\rho \cos\varphi i + 3z\rho \sin\varphi j + (2z^{2} - \rho^{2})k]$$

$$\Phi_{\rm d} = \int_{0}^{2\pi} d\phi \int_{0}^{a} d\rho \frac{\mu_{\rm o} m (2z^2 \rho - \rho^3)}{4\pi (\rho^2 + z^2)^{5/2}}$$

$$\Phi_{\rm d} = \frac{\mu_{\rm o} m a^2}{2(a^2 + z^2)^{3/2}}$$

$$\Phi_{d} = \frac{\mu_{o}m a^{2}}{2(a^{2} + z^{2})^{3/2}}$$

$$emf = \frac{-d\Phi_{d}}{dt} = \frac{-d\Phi_{d}}{dz}\frac{dz}{dt} = \frac{d\Phi_{d}}{dz}v$$

$$emf = -\frac{3}{2}\mu_{o}ma^{2}v\frac{z}{(a^{2} + z^{2})^{5/2}}$$

$$\operatorname{emf} = -\frac{3}{2}\mu_{o}\operatorname{ma}^{2}\operatorname{v}\frac{z}{\left(a^{2}+z^{2}\right)^{5/2}}$$

$$\frac{d \operatorname{emf}}{dz} = 0 \rightarrow z = \pm a/2$$

$$v = \frac{z(\varepsilon+)-z(\varepsilon-)}{t(\varepsilon+)-t(\varepsilon-)} = \frac{a/2-(-a/2)}{dt} = \frac{a}{dt}$$

Values of velocities calculated for each coil using the naïve method

Peak#	Max peak time/s	Min peak time/s	Max peak voltage/V	Min peak voltage/V	Velocity/ms^-1 (a/∆t)
1	0.295	0.264	0.0191	-0.0161	0.708
2	0.442	0.433	0.0469	-0.0483	2.740
3	0.549	0.541	0.0655	-0.0708	2.438
4	0.619	0.625	0.0825	-0.0765	3.650
5	0.681	0.686	0.0331	-0.0507	4.390

- Accurate Method

$$emf(\Delta t) = \frac{(-3/2)\mu \circ a^2 \alpha (v^2 \Delta t)}{(a^2 + v^2 \Delta t^2)^{5/2}}$$

Using LSQ Curve Fit, accurate value of V was measured.

Fitting Parameters:

- V
- α

Best value for v = 2.054 m/s Best value for α = 22.53

Deviations In Experiment2. Off-Axis3. Collision With Walls

1. Spinning

ANY QUESTIONS?

