

Lahore University of Management Sciences

PHY 502 - Electrodynamics 1 Fall 2016

Instructor	Dr. Muhammad Sabieh Anwar
Room No.	
Office Hours	
Email	sabieh@lums.edu.pk
Telephone	
Secretary/TA	
TA Office	
Hours	
Course URL (if	http://physlab.org/courses-taught/
any)	

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per	2	Duration	75 minutes
	Week			
Recitation (per week)	Nbr of Rec (s)	0	Duration	N/A
	Per Week			
Lab (if any) per	Nbr of Session(s)	0	Duration	See timetable issued by Registrar's
week	Per Week			office.
Tutorial (per week)	Nbr of Tut(s) Per	1	Duration	60 minutes
	Week			

Course Distribution		
Core		
Elective	For Physics and EE Majors and Physics and EE Graduate (MS and PhD) Students	
Open for Student	SSE	
Category		
Closed for Student	N/A	
Category		

COURSE DESCRIPTION

The course electrodynamics-1 is first part of a series of courses on electromagnetic theory aimed primarily at graduate students. In this course we will cover Maxwell's equations and describe primarily static electric and magnetic interactions while the subsequent course will deal with dynamic interactions and the coupling between electricity and magnetism. At the start of the course we will review some mathematical details

Lahore University of Management Sciences

concerning vector calculus, the Helmholtz theorem and Lagrange multipliers and will introduce the concept of Green's functions. However, most of the mathematical machinery will be introduced in parallel with the physics. Several interesting applications will be dealt during the course.

COURSE PREREQUISITE(S)		
•	Although there are no formal pre-requisites for this course, all students must have a good working knowledge of electromagnetism. At LUMS, the courses that deal with this body of knowledge are PHY 204, PHY 305. A sound mathematical appreciation of coordinate systems, curvilinear coordinates, multivariable calculus and vector calculus is a must too.	

COURSE OBJECTIVES		
•	Understanding Maxwell's equations, their meaning and applications Understanding the role of a medium, and interfaces between mediums and how electromagnetic interactions lead to interesting effects inside mediums and at their boundaries	

Learning Outcomes			
 After successful completion of this course, students should be able to: Spell out Maxwell's equations and describe their meaning and significance, Apply their knowledge of electrostatics and magnetostatics to solving problems some of which carry technological importance, Readily consider the energetic aspects of electric and magnetic interactions, Formulate interactions in terms of scalar and vector potentials. 			
Grading Bre	Grading Breakup and Policy		
Grading will be absolute if number of students is less than 20. I have the liberty of changing the grading criterion by 5%.			
Homework	Homework 35%		
Mid-Term	25%		
Final Exam	40%		

Lahore University of Management Sciences

Examination Detail		
Midterm Exam	Yes. Closed book, closed notes.	
Final Exam	Yes. Closed book, closed notes.	

COURSE OVERVIEW			
Week/ Lecture/ Module	Topics	Recommended Readings	
1.	Mathematical Preliminaries: Fourier analysis, curvilinear coordinates, coordinate transformations, Helmholtz theorem, Lagrange multipliers	Ch. 1	
2.	Review of Maxwell's Equations	Feynmann-Dyson's proof of Maxwell's equations (AJP 58, 209 (1990))	
3.	Electrostatics: Gauss's law, scalar potential, electrostatic stress tensor	Ch. 3	
4.	Electric multipoles: dipoles, quadrupoles, spherical multipoles	Ch.4	
5.	Mid-term		
6-7.	Electrostatics inside matter: dielectric, capacitance, screening, shielding	Ch. 5 and 6	
8.	Laplace's Equation	Ch. 7	
9-10.	Poisson's Equation: method of images, Green's function method	Ch. 8	
11.	Steady current: resistance, Joule heating, batteries	Ch. 9	
12.	Magnetostatics: Biot-Savart law, Ampere's law,	Ch. 9	
13-14.	Magnetic scalar and vector potential and review	Ch. 10	
15.	Final exam		

Textbook(s)/Supplementary Readings

1. Modern Electrodynamics, Andrew Zangwill, Cambridge University Press (2013). A review of the book is attached.