Fig. 2.1
Portrait of Galileo. ©Bettmann/Corbis/
Magma.

Fig. 2.2
Cathedral at Pisa. The thin vertical wire
indicates a hanging chandelier.

Pendulums somewhat
simple

There are many kinds of pendulums. In this chapter, however, we intro-
duce a simplified model; the small amplitude, linearized pendulum. For the
present, we ignore friction and in doing so obviate the need for energizing
the pendulum through some forcing mechanism. Our initial discussion will
therefore assume that the pendulum’s swing is relatively small; and this
approximation allows us to linearize the equations and readily determine
the motion through solution of simplified model equations. We begin with
a little history.

2.1 The beginning

Probably no one knows when pendulums first impinged upon the human
consciousness. Undoubtedly they were objects of interest and decoration
after humankind learnt to attend routinely to more basic needs. We often
associate the first scientific observations of the pendulum with Galileo
Galilei (1554-1642; Fig. 2.1).

According to the usual story (perhaps apocryphal), Galileo, in the
cathedral at Pisa, Fig. 2.2 observed a lamplighter push one of the swaying
pendular chandeliers. His earliest biographer Viviani suggests that Galileo
then timed the swings with his pulse and concluded that, even as the
amplitude of the swings diminished, the time of each swing was constant.
This is the origin of Galileo’s apparent discovery of the approximate iso-
chronism of the pendulum’s motion. According to Viviani these obser-
vations were made in 1583, but the Galileo scholar Stillman Drake (Drake
1978) tells us that guides at the cathedral refer visitors to a certain lamp
which they describe as “Galileo’s lamp,” a lamp that was not actually
installed until late in 1587. However, there were undoubtedly earlier
swaying lamps. Drake surmises that Galileo actually came to the insight
about isochronism in connection with his father’s musical instruments and
then later, perhaps 1588, associated isochronism with his earlier pendulum
observations in the cathedral. However, Galileo did make systematic
observations of pendulums in 1602. These observations confirmed only
approximately his earlier conclusion of isochronism of swings of differing
amplitude. Erlichson (1999) has argued that, despite the nontrivial
empirical evidence to the contrary, Galileo clung to his earlier conclusion,
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in part, because he believed that the universe had been ordered so that
motion would be simple and that there was “no reason” for the longer path
to take a longer time than the shorter path. While Galileo’s most famous
conclusion about the pendulum has only partial legitimacy, its importance
resides (a) in it being the first known scientific deduction about the
pendulum, and (b) in the fact that the insight of approximate isochronism
is part of the opus of a very famous seminal character in the history of
physical science. In these circumstances, the pendulum begins its history as
a significant model in physical science and, as we will see, continues to
justify its importance in science and technology during the succeeding
centuries.

2.2 The simple pendulum

The simple pendulum is an idealization of a real pendulum. It consists of a
point mass, m, attached to an infinitely light rigid rod of length / that is
itself attached to a frictionless pivot point. See Fig. 2.3. If displaced from its
vertical equilibrium position, this idealized pendulum will oscillate with a
constant amplitude forever. There is no damping of the motion from
friction at the pivot or from air molecules impinging on the rod. Newton’s
second law, mass times acceleration equals force, provides the equation of
motion:
d? .

ml 7 —mgsin 6, (2.1)
where 6 is the angular displacement of the pendulum from the vertical
position and g is the acceleration due to gravity. Equation (2.1) may be
simplified if we assume that amplitude of oscillation is small and that
sin f ~ 0. We use this /inearization approximation throughout this chapter.
The modified equation of motion is

do g
s + 70 =0. 2.2)
The solution to Eq. (2.2) may be written as
0 = 6y sin (wt + ¢p), (2.3)

where 0y is the angular amplitude of the swing,

W= \/‘% 2.4)

is the angular frequency, and ¢, is the initial phase angle whose value
depends on how the pendulum was started—its initial conditions. The
period of the motion, in this linearized approximation, is given by

T= 27r%, (2.5)
g

Fig. 2.3
The simple pendulum with a point
mass bob.
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Fig. 2.6
Phase orbits for pendulums with
different energies, E; and £;.
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which is a constant for a given pendulum, and therefore lends support to
Galileo’s conclusion of isochronism.

The dependence of the period on the geometry of the pendulum and the
strength of gravity has very interesting consequences which we will explore.
But for the moment we consider further some of the mathematical rela-
tionships. Figure 2.4 shows the angular displacement 6 = 6, sin (wt + @)
and the angular velocity 6 = fyw cos (wt + ¢y), respectively, as functions of
time. We refer to such graphs as time series. The displacement and velocity
are 90 degrees out of phase with each other and therefore when one
quantity has a maximum absolute value the other quantity is zero. For
example, at the bottom of its motion the pendulum has no angular dis-
placement yet its velocity is greatest.

The relationship between angle and velocity may be represented
graphically with a phase plane diagram. In Fig. 2.5 angle is plotted on the
horizontal axis and angular velocity is plotted on the vertical axis. As time
goes on, a point on the graph travels around the elliptically shaped curve.
In effect, the equations for angle and angular veloeity are considered to
be parametric equations for which the parameter is proportional to time.
Then the orbit of the phase trajectory is the ellipse

0 2

CANR o

Since the motion has no friction nor any forcing, energy is conserved on
this phase trajectory. Therefore the sum of the kinetic and potential
energies at any time can be shown to be constant as follows. In the line-
arized approximation,

1 e i d 2
E= 2ml 0 +2mg19 2.7
and, using Egs. (2.3) and (2.4), we find that
1
E= Emgzez, (2.8)

which is the energy at maximum displacement.

The phase plane is a useful tool for the display of the dynamical prop-
erties of many physical systems. The linearized pendulum is probably one
of the simplest such systems but even here the phase plane graphic
is helpful. For example, Eq. (2.6) shows that the axes of the ellipse in
Fig. 2.5 are determined by the amplitude and therefore the energy of
the motion. A pendulum of smaller energy than that shown would exhibit
an ellipse that sits inside the ellipse of the pendulum of higher energy.
See Fig. 2.6. Furthermore the two ellipses would never intersect because
such intersection implies that a pendulum can jump from one energy to
another without the agency of additional energy input. This result leads
to a more general conclusion called the no-crossing theorem; namely, that
orbits in phase space never cross. See Fig. 2.7.
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Why should this be so? Every orbit is the result of a deterministic
equation of motion. Determinism implies that the orbit is well defined and
that there would be no circumstance in which a well determined particle
would arrive at some sort of ambiguous junction point where its path
would be in doubt. (Later in the book we will see apparent crossing points
but these false crossings are the result of the system arriving at the same
phase coordinates at different times.)

We introduce one last result about orbits in the phase plane. In Fig. 2.6
there are phase trajectories for two pendulums of different energy. Now
think of a large collection of pendulums with energies that are between the
two trajectories such that they have very similar, but not identical, angles
and velocities. This cluster of pendulums is represented by a set of many
phase points such that they appear in the diagram as an approximately solid
block between the original two trajectories. As the group of pendulums
executes their individual motions the set of phase points will move between
the two ellipses in such a way that the area defined by the boundaries of the
set of points is preserved. This preservation of phase area, known as
Liouville’s theorem (after Joseph Liouville (1809-1882)) is a consequence
of the conservation of energy property for each pendulum. In the next
chapter we will demonstrate how such areas decrease when energy is lost in
the pendulums. But for now let us show how phase area conservation is
true for the very simple case when 6y = 1, ¢ = 0, and w = 1. In this special
case, the ellipses becomes circles since the axes are now equal. See Fig. 2.8.
A block of points between the circles is bounded by a small polar angle
interval Ac, in the phase space, that is proportional to time. Each point in
this block rotates at the same rate as the motion of its corresponding
pendulum progresses. Therefore, after a certain time, all points in the
original block have rotated, by the same polar angle, to new positions
again bounded by the two circles. Clearly, the size of the block has not
changed, as we predicted.

The motion of the pendulum is an obvious demonstration of the
alternating transformation of kinetic energy into potential energy and
the reverse. This phenomenon is ubiquitous in physical systems and is
known as resonance. The pendulum resonates between the two states
(Miles 1988b). Electrical circuits in televisions and other electronic devices
resonate. The terms resonate and resonance may also refer to a sympathy
between two or more physical systems, but for now we simply think of
resonance as the periodic swapping of energy between two possible
formats.

We conclude this section with the introduction of one more mathe-
matical device. Its use for the simple pendulum is hardly necessary but it will
be increasingly important for other parts of the book. Almost two hundred
years ago, the French mathematician Jean Baptiste Fourier (1768—-1830)
showed that periodic motion, whether that of a simple sine wave like our
pendulum, or more complex forms such as the triangular wave that
characterizes the horizontal sweep on a television tube, are simple linear
sums of sine and cosine waves now known as Fourier Series. That s, let /(¢)

n

Fig. 2.7

If two orbits in phase space intersect,
then it is uncertain which orbit takes
which path from the intersection. This
uncertainty violates the deterministic
basis of classical mechanics.

Fig. 2.8

Preservation of area for conservative
systems. A block of phase points keeps
its same area as time advances.
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be a periodic function such that f(¢) = f(¢ + (27)/wp), Where T = (2m)/wy
is the basic periodicity of the motion. Then Fourier’s theorem says that this
function can be expanded as

S =" bycosnwet + | ¢y sinnwot + d, (2.9)
n=1 n=1

where the coefficients b, and ¢, give the strength of the respective cosine
and sine components of the function and d is constant. The coefficients
are determined by integrating f(¢) over the fundamental period, 7. The
appropriate formulas are

1 T/2 1 T2
d=— foydt, b, =— f(t)cosnwyt dt,
T -T/2 /4 ~-T/2 71
. (2.10)
== f(©) sin nwyt dt.
T/ 1

These Fourier coefficients are sometimes portrayed crudely on stereo
equipment as dancing bars in a dynamic bar chart that is meant to portray
the strength of the music in various frequency bands.

The use of complex numbers allows Fourier series to be represented
more compactly. Then Egs. (2.9) and (2.10) become

i m/wy

= — ninwot h .= 0 —inwyt ! x
§i0) n;ooae , where a, =~ (1) M0t gy (2.11)

—7/wy

Example 1 Consider the time series known as the “sawtooth,” f(t) =t when
—% & 0 %, with the pattern repeated every period, T. Using Eq. (2.11) it
can be shown that

a, =0 forn=0,
A= ﬁ for n = odd integer, and

|

a, = mfor n = even integer.

Through substitution and appropriate algebraic manipulation we obtain
the final result:

2 0. 1. Tne,
) = — |sinw,yt — =sin 2wpt + =sin 3wpt + - - - |. (2.12)
wo 2 3

The original function and the first three frequency components are shown in
Figs. 2.9 and 2.10.

The time variation of the motion of the linearized version of the simple
pendulum is just that of a single sine or cosine wave and therefore one
frequency, the resonant frequency wy is present in that motion. Obviously,
the machinery of the Fourier series is unnecessary to deduce that result.
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However, we now have it available as a tool for more complex periodic
phenomena.

Fourier, like other contemporary French mathematicians, made his
contribution to mathematics during a turbulent period of French history.
He was active in politics and as a student during the “Terror” was arrested
although soon released. Later when Napoleon went to Egypt, Fourier
accompanied the expedition and coauthored a massive work on every
possible detail of Egyptian life, Description de I’Egypt. This is multivolume
work included nine volumes of text and twelve volumes of illustrations.
During that same campaign, one of Napoleon’s engineers uncovered the
Rosetta Stone, so-named for being found near the Rosetta branch of the
Nile river in 1899. The significance of this find was that it led to an
understanding of ancient Egyptian Hieroglyphics. The stone, was inscri-
bed with the same text in three different languages, Greek, demotic
Egyptian, and Hieroglyphics. Only Greek was understood, but the size and
the juxtaposition of the texts allowed for the eventual understanding of
Hieroglyphics and the ability to learn much about ancient Egypt. In 1801,
the victorious British, realizing the significance of the Rosetta stone, took it
to the British Museum in London where it remains on display and is a
popular artifact. Much later, the writings from the Rosetta stone become
the basis for translating the hieroglyphics on the Rhind Papyrus and the
Golenischev Papyrus; these two papyri provide much of our knowledge of
early Egyptian mathematics. The French Egyptologist Jean Champollion
(1790-1832) who did much of the work in the translation of Hieroglyphics
is said to have actually met Fourier when the former was only 11 years old,
in 1801. Fourier had returned from Egypt with some papyri and tablets
which he showed to the boy. Fourier explained that no one could read
them. Apparently Champollion replied that he would read them when he
was older—a prediction that he later fulfilled during his brilliant career of
scholarship (Burton 1999). After his Egyptian adventures, Fourier con-
centrated on his mathematical researches. His 1807 paper on the idea that
functions could be expanded in trigonometric series was not well received
by the Academy of Sciences of Paris because his presentation was not
considered sufficiently rigorous and because of some professional jealousy
on the part of other Academicians. But eventually Fourier was accepted as
a first rate mathematician and, in later life, acted a friend and mentor to a
new generation of mathematicians (Boyer and Merzbach 1991).

We have now developed the basic equations for the linearized,
undamped, undriven, very simple harmonic pendulum. There are an
amazing number of applications of even this simple model. Let us review
some of them.

2.3 Some analogs of the linearized pendulum
2.3.1 The spring

The linearized pendulum belongs to a class of systems known as harmonic
oscillators. Probably the most well known realization of a harmonic

13
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Slope: k

Fig. 2.11

A mass hanging from a spring. The
graph shows the dependence of the
extension of the spring on the force
(weight). The linear relationship is
known as “Hooke’s law.”

0.4
0.3
0.2
0.1}
0.0 2

-0.1
02

0.3
-0.4

Potential

Radius

Fig. 2.12

A typical Lennard-Jones potential curve
that can effectively model, for example,
intermolecular interactions. For this
illustration,a=b=1.

Pendulums somewhat simple

oscillator is that of a mass suspended from a spring whose restoring force
is proportional to its stretch. That is

Frestoring = —Jcx, (2.13)

where k is the spring constant and rate at which the spring’s response
increases with stretch, x. This force law was discovered by Robert Hooke in
1660. The equation of motion

d*x

m—+kx =0 (2.14)

is identical in form to that of the linearized pendulum and therefore its
solution has corresponding properties: single frequency periodic motion,
resonance, energy conservation and so forth. A schematic drawing of the
spring and a graph of its force law are shown in Fig. 2.11.

The functional dependence of the spring force (Eq. (2.13)) can be viewed
more generally. Consider any force law that is derived from a smooth
potential V(x); that is F(x) = —dV//dx. The potential may be expanded in a
power series about some arbitrary position x, which, for simplicity, we will
take as xo = 0. Then the series becomes

V(x) = V(0) + V'(0)x + % V"(0)x2 + é (1) P 2.15)

The first term on the right side is constant and, as the reference point of a
potential, is typically arbitrary and may be set equal to zero. The second,
linear, term contains ¥/(0) which is the negative of the force at the reference
point. Since this reference point is, again typically, chosen to be a point of
stable equilibrium where the forces are zero, this second term also vanishes.
For the spring, this would be the point where the mass attached to the
spring hangs when it is not in motion. Thus, the first nonvanishing term in
the series is the quadratic term $/”(0)x* and comparison of it with the
spring’s restoring force (Eq. 2.13) leads to the identification

k=00 (2.16)
The spring constant is the second derivative of any smooth potential.

Example2 The Lennard-Jones potential is often used to describe the electro-
static potential energy between two atoms in a molecule or between two
molecules. Its functional form is displayed in Fig. 2.12 and is given by the
equation

b

s (2.17)

a

V(V) = ;"1_2 =
where a and b are constants appropriate to the particular molecule. The
positive term describes the repulsion of the atoms when they are too close
and the negative term describes the attraction if the atoms stray too far from
each other. Hence, the two terms balance at a stable equilibrium point as
shown in the figure, req = (zb—‘f)1 S, The second derivative of the potential may

ja |
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be evaluated at req to yield the spring constant of the equivalent harmonic

oscillator,
182 b\ '3
P (reg) = ——{ — = k. 2.18
(o) == <2a) (2.18)

Knowledge of the molecular bond length provides roq and observation of the
vibrational spectrum of the molecule will yield avalue for the spring constant k.

With just these two pieces of information, the parameters, a and b of the
Lennard-Jones potential may be determined.

The linearized pendulum is therefore equivalent to the spring in that they
both are simple harmonic oscillators each with a single frequency and
therefore a single spectral component. Occasionally we will refer to a
pendulum’s equivalent oscillator or equivalent spring, and by this ter-
minology we will mean the linearized version of that pendulum.

2.3.2 Resonant electrical circuit

We say that a function f(¢) or operator L(x) is linear if

L(x +y) = L(x) + L(y)

(2.19)
L(ax) = al(x).

Examples of linear operators include the derivative and the integral. But
functions such as sin x or x> are nonlinear. Because linear models are
relatively simple, physics and engineering often employ linear mathemat-
ics, usually with great effectiveness. Passive electrical circuits, consisting of
resistors, capacitors, and inductors are realistically modeled with linear
differential equations. A circuit with a single inductor L and capacitor C, is
shown in Fig. 2.13. The sum of the voltages measured across each element
of a circuit is equal to the voltage provided to a circuit from some external
source. In this case, the external voltage is zero and therefore the sum of the
voltages across the elements in the circuit is described by the linear dif-
ferential equation
d’q 1

L i + Eq =10, (2.20)
where g is the electrical charge on the capacitor. The form of Eq. (2.20) is
exactly that of the linearized pendulum and therefore a typical solution is

q = qo sin(wt + ¢), 2.21)
where the resonant frequency depends on the circuit elements:
oy (2.22)
w=\Te :

The charge ¢ plays a role analogous to the pendulum’s angular displace-
ment @ and the current i = dg/dt in the circuit is analogous to the pendu-
lum’s angular velocity, df/dt. All the same considerations, about the motion
in phase space, resonance, and energy conservation, that previously held

Fig. 2.13
A simple LC (inductor and capacitor)
circuit.
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for the linearized pendulum, also apply for this simple electrical circuit. In a
(¢. 1) phase plane, the point moves in an elliptical curve around the origin.
The charge and current oscillate out of phase with each other. The capa-
citor alternately fills with positive and negative charge. The voltage across
the inductor is always balanced by the voltage across the capacitor such
that the total voltage across the circuit always adds to zero as expressed by
Eq. (2.20). As with the spring, we will return to this electrical analog with
additional complexity. For now, we turn to some applications and com-
plexities of the linearized pendulum.

2.3.3 The pendulum and the earth

From ancient times thinkers have speculated about, theorized upon,
calculated, and measured the physical properties of the earth (Bullen
1975). About 900Bc, the Greek poet Homer suggested that the earth
was a convex dish surrounded by the Oceanus stream. The notion that
the earth was spherical seems to have made its first appearance in Greece
at the time of Anaximander (610-5478c). Aristotle, the universalist thin-
ker, quoted contemporary mathematicians in suggesting that the
circumference of the earth was about 400,000 stadia—one stadium being
about 600 Greek feet. Mensuration was not a precise science at the time
and the unit of the stadium has been variously estimated as 178.6 meters
(olympic stadium), 198.4 m (Babylonian—Persian), 186 m (Italian) or
212.6 m (Phoenician-Egyptian). Using any of these conversion factors
gives an estimate that is about twice the present measurement of the
earth’s circumference, 4.0086 x 10* km. Later Greek thinkers somewhat
refined the earlier values. Eratosthenes (276-194Bc), Hipparchus
(190—-1258c), Posidonius (135-518c), and Claudius Ptolemy (Ap100-161)
all worked on the problem. However the Ptolemaic result was too low. It
is rumored that a low estimate of the distance to India, based on the
Ptolemy’s result, gave undue encouragement to Christopher Columbus
1500 years later.

In China the astronomer monk Yi-Hsing (ap683-727) had a large
group of assistants measure the lengths of shadows cast by the sun and
the altitudes of the pole star on the solstice and equinox days at thirteen
different locations in China. He then calculated the length L of a degree
of meridian arc (earth’s circumference/360) as 351.27 li (a unit of the Tang
Dynasty) which, with present day conversion, is about 132 km, an estimate
that is almost 20% too high.

The pendulum clock, invented by the Dutch physicist and astronomer
Christiaan Huygens (1629-1695) and presented on Christmas day, 1657,
provided a powerful tool for measurement of the earth’s gravitational field,
shape, and density. The daily rotation of the earth was, by then, an
accepted fact and Huygens, in 1673, provided a theory of centrifugal
motion that required the effective gravitational field at the equator to be
less than that at the poles. Furthermore, the centrifugal effect should
also have the effect of fattening the earth at the equator, thereby further




