Tutorial 4: Modern Physics

1. Consider a particle that is bound inside an infinite well whose "floor" is sloping as shown on the next page.

Sketch a plausible wave function when the energy is E_1 and when the energy is E_2 .

2. In an infinite well, consider the 1st excited state, i.e., n = 2.

(a) What is the most probable position of the particle after a measurement has been made?

- (b) What is the average position, $\langle x \rangle$?
- 3. The nuclear potential that binds protons and neutrons in the nucleus of an atom is often approximated by a square well. Imagine a proton confined in an infinite square well of length 10^{-5} nm, a typical nuclear diameter. Calculate the wavelength and energy associated with the photon that is emitted when the proton undergoes a transition from the first excited state (n = 2) to the ground state (n = 1). In what region of the electromagnetic spectrum does this wavelength belong?