Quiz 3a: Modern Physics Date: 12 April 2018

Useful Formulae

$$h = 6.64 \times 10^{-34} \text{ Js}$$
 $m_e = 9.11 \times 10^{-31} \text{ kg}$
 $E_n = \frac{-13.6}{n^2} \text{ eV in a } H \text{ atom}$ $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J.}$

1. The radial wavefunction for $n = 2, \ell = 1$ is given by,

$$R(r) = A\left(\frac{r}{a_0}\right)e^{-(r/2a_0)},$$

where A is a constant and a_0 is the Bohr's radius. Where is the maximum likelihood of finding the electron in this state? (5 marks)

2. A particle of mass m is at a fixed radius R from the origin. The moment of inertia is $I = mR^2$. The time dependent Schrödinger equation is,

$$-\frac{\hbar^2}{2I}\;\frac{\partial^2\Psi(\phi,t)}{\partial\phi^2}=i\hbar\frac{\partial\Psi(\phi,t)}{\partial t}$$

where ϕ is the variable angle in space. Use separation of variable to

- (a) write down the spatial (space) and temporal(time) component of the schrodinger equation. (5 marks)
- (b) Solve the spatial part to find $\Phi(\phi)$. (5 marks)
- (c) We want the spatial part $\Phi(\phi)$ to be single-valued meaning that if ϕ changes by 2π or multiples thereof, the function does not change, i.e., $\Phi(\phi + 2\pi n) = \Phi(\phi)$. What kind of quantization does this led to? Comment. (5 marks)

3. An electron is injected into a potential energy landscape from the left region I as shown below. It encounters a potential step. The energy of the electron is E and $E < |V_0|$. If the electron is to emerge in region III with a faster speed, the appropriate potential step is given by which of the following?

(e) The speed of the electron cannot increase.