
Chapter 10

Diffraction

Christiaan Huygens (1629–1695,
Dutch) was born in The Hague, Nether-
lands. His father was friends with the
mathematician René Descartes, which
probably influenced his upbringing. Huy-
gens studied law and mathematics at
the University of Leiden, which preceded
a very productive career as a scientist
and mathematician. During mid career,
Huygens held a position in the French
Academy of Sciences in Paris for 15
years, but he spent the majority of his
life in The Hague. Huygens was the
first to advocate the wave theory of light.
He was able to explain birefringence in
terms of his wave theory assuming a
refractive index that varied with direc-
tion. Huygens constructed a telescope
with which he discovered Saturn’s moon
Titan. He also made the first detailed
observations of the Orion nebula. Huy-
gens made significant advancements
in clock-making technology and wrote
a book on probability theory. Huygens
was one of the earliest science-fiction
writers and speculated that life exists on
other planets in his book Cosmotheoros.
(Wikipedia)

In the 1600’s, Christiaan Huygens developed a wave description for light. Unfor-
tunately, his ideas were largely overlooked at the time because Sir Isaac Newton
promoted a competing theory. Newton proposed that light should be thought
of as many tiny bullets, or corpuscles, as he called them. Newton’s ideas pre-
vailed for more than a century, perhaps because he was right on so many other
things, until 1807 when Thomas Young performed his famous two-slit experiment,
conclusively demonstrating the wave nature of light. Even then, Young’s conclu-
sions were accepted only gradually by others, a notable exception being a young
Frenchman named Augustin Fresnel. The two formed a close friendship through
correspondence, and it was Fresnel that followed up on Young’s conclusions and
dedicated his life to a study of light.

Fresnel’s skill as a mathematician allowed him to transform physical intuition
into powerful and concise ideas. Perhaps Fresnel’s greatest accomplishment was
the adaptation of Huygens’ principle of wavelet superposition into a mathematical
formula. Ironically, he used Newton’s calculus to achieve this. Huygens’ principle
asserts that a wave front can be thought of as many wavelets, which propagate and
interfere to form new wave fronts. This is illustrated in Fig. 10.1. The phenomenon
of diffraction is then understood as the spilling of wavelets around obstructions
in the path of light.

After formulating Huygens’ principle as a diffraction integral, Fresnel made
an approximation to his own formula, called the Fresnel approximation, for the
sake of making the integration easier to perform. As far as approximations go,
the Fresnel approximation is surprisingly accurate in describing the light field
in the region downstream from an aperture. The diffraction pattern can evolve
in complicated ways as the distance from an aperture increases. At distances far
downstream from an aperture, the diffraction pattern acquires a final form that
no longer evolves, other than to grow in proportion to distance. This far-field
limit is often of interest, and it turns out that the Fresnel diffraction formula can
be simplified further in this case. The far-field limit of the Fresnel diffraction
formula is called the Fraunhofer approximation.

From the modern perspective, Fresnel’s diffraction formula needs justifica-
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tion starting from Maxwell’s equation. The diffraction formula is based on scalar
diffraction theory, which ignores polarization effects. In some situations, ignor-
ing polarization is benign, but in other situations, ignoring polarization effects
produces significant errors. These issues as well as the approximations leading to
scalar diffraction theory are discussed in section 10.2.

10.1 Huygens’ Principle as Formulated by Fresnel

Figure 10.1 Wave fronts depicted
as a series of Huygens’ wavelets.

In this section we discuss the calculus of summing up the contributions from the
many wavelets originating in an aperture illuminated by a light field. Each point
in the aperture is thought of as a source of a spherical wavelet.1 In our modern
notation, such a spherical wave can be written as proportional to e i kR /R, where
R is the distance from the source. As a spherical wave propagates, its strength
falls off in proportion to the distance traveled and the phase is related to the
distance propagated, similar to the phase of a plane wave. It should be noted that
by choosing k, we consider only a single wavelength of light (i.e. one frequency).

A spherical wave of the form e i kR /R technically does not satisfy Maxwell’s
equations (see P10.4). For one thing, it utterly fails near R = 0. However, if R is
large compared to a wavelength, this spherical wave starts to resemble actual
solutions to Maxwell’s equations, as will be examined in the next section. It is
within this regime that the diffraction formula derived here is successful.

Consider an aperture or opening in an opaque screen located at the plane
z = 0. Let the aperture be illuminated with a light field distribution E(x ′, y ′, z = 0)
within the aperture. Then for a point (x, y, z) lying somewhere after the aperture
(z > 0), the net field is given by adding together the contribution of wavelets
emitted from each point in the aperture.

Figure 10.2

Each spherical wavelet is assigned the strength and phase of the field at the
point where it originates. Mathematically, this summation takes the form

E(x, y, z) =− i

λ

Ï
aperture

E(x ′, y ′,0)
e i kR

R
d x ′d y ′ (10.1)

where

R =
√

(x −x ′)2 + (y − y ′)2 + z2 (10.2)

is the radius of each wavelet as it individually intersects the point (x, y, z). We will
call (10.1) the Huygens-Fresnel2 diffraction formula, although Fresnel is credited
with this integral formulation. The factor −i /λ in front of the integral in (10.1)
ensures the right phase and field strength (not to mention correct units). Justifica-
tion for this factor is given in section 10.3 and in appendix 10.A. To summarize,

1For simplicity, we use the term ‘spherical wave’ in this book to refer to waves of the type
imagined by Huygens (i.e. of the form ei kR /R). There is a different family of waves based on
spherical harmonics that are also sometimes referred to as spherical waves. These waves have
angular as well as radial dependence, and they are solutions to Maxwell’s equations. See J. D.
Jackson, Classical Electrodynamics, 3rd ed., pp. 429–432 (New York: John Wiley, 1999).

2M. Born and E. Wolf, Principles of Optics, 7th ed., p. 414 (Cambridge University Press, 1999).
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(10.1) tells us how to compute the field downstream given knowledge of the field
in an aperture. The field at each point (x ′, y ′) in the aperture, which may vary
with strength and phase, is treated as the source for a spherical wave. The integral
in (10.1) sums the contributions from all of these wavelets.

Figure 10.3 Circular aperture illu-
minated by a plane wave.

Example 10.1

Find the on-axis3 (i.e. x, y = 0) intensity following a circular aperture of diameter
D illuminated by a uniform plane wave.

Solution: The diffraction integral (10.1) takes the form

E (0,0, z) =− i

λ

Ï
aperture

E
(
x ′, y ′,0

) e i k
p

x′2+y ′2+z2√
x ′2 + y ′2 + z2

d x ′d y ′

The circular hole encourages a change to cylindrical coordinates: x ′ = ρ′ cosφ′ and
y ′ = ρ′ sinφ′; d x ′d y ′ → ρ′dρ′dφ′. In this case, the limits of integration define the
geometry of the aperture, and the integration is accomplished as follows:

E (0,0, z) =− i E0

λ

2π∫
0

dφ′
D/2∫
0

e i k
p
ρ′2+z2√

ρ′2 + z2
ρ′ dρ′

=− i E0

λ
2π

e i k
p
ρ′2+z2

i k

∣∣∣∣∣
D/2

0

=−E0

(
e i k

p
(D/2)2+z2 −e i kz

)
The on-axis intensity is then proportional to

E (0,0, z)E∗ (0,0, z) = |E0|2
(
e i k

p
(D/2)2+z2 −e i kz

)(
e−i k

p
(D/2)2+z2 −e−i kz

)
= 2 |E0|2

[
1−cos

(
k
√

(D/2)2 + z2 −kz

)] (10.3)

A graph of this function is shown in Fig. 10.4.

z (mm)

Figure 10.4 Intensity on axis fol-
lowing a circular aperture with
D = 20λ and wavelength λ = 500
nm.

Figure 10.5 Aperture comprised of
the region between a circle and a
square.

When an aperture has a complicated shape, it may be convenient to break
up the diffraction integral (10.1) into several pieces. As an example, suppose that
we have an aperture consisting of a circular obstruction within a square opening
as depicted in Fig. 10.5. Thus, the light transmits through the region between
the circle and the square. One can evaluate the overall diffraction pattern by
first evaluating the diffraction integral for the entire square (ignoring the circular
block) and then subtracting the diffraction integral for a circular opening having
the shape of the block. This removes the unwanted part of the previous integration
and yields the overall result. When doing this, it is important to add and subtract
the integrals (i.e. fields), not their squares (i.e. intensity).

It may be less obvious at first that you can use the above superposition tech-
nique to handle diffraction from finite obstructions that interrupt an infinitely

3An analytical solution is not possible off axis.
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wide plane wave. One simply computes the diffraction of the blocked portion
of the field as though it came from an opening in a mask. The result is then
subtracted from the plane wave (no integration needed for the plane wave), as
depicted in Fig. 10.6. This is known as Babinet’s principle.

Block

Mask

Figure 10.6 Side view of a circular
block in a plane wave giving rise
to diffraction in the geometric
shadow.

When Fresnel first presented his diffraction formula to the French Academy
of Sciences, a certain judge of scientific papers named Siméon Poisson noticed
that Fresnel’s formula predicted that there should be light in the center of the
geometric shadow behind a circular obstruction. This seemed so absurd to
Poisson that he initially disbelieved the theory, until the spot was shortly thereafter
experimentally confirmed, much to Poisson’s chagrin. Needless to say, Fresnel’s
paper was then awarded first prize, and this spot appearing behind circular blocks
has since been known as Poisson’s spot.

Example 10.2

Find the on-axis (i.e. x, y = 0) intensity behind a circular block of diameter D
placed in a uniform plane wave.

Solution: From Example 10.1, the on-axis field behind a circular aperture is

E0

(
e i kz −e i k

p
(D/2)2+z2

)
. Babinet’s principle says to subtract this result from a

plane wave to obtain the field behind the circular block. The situation is depicted
in Fig. 10.6. The on-axis field is then

E (0,0, z) = E0e i kz −E0

(
e i kz −e i k

p
(D/2)2+z2

)
= E0e i k

p
(D/2)2+z2

The on axis intensity becomes

I (0,0, z) ∝ E (0,0, z)E∗ (0,0, z) = |E0|2 e i k
p

(D/2)2+z2
e−i k

p
(D/2)2+z2 = |E0|2

In the exact center of the shadow behind the circular obstruction, the intensity is
the same as the illuminating plane wave for all distance z. A spot of light in the
center forms right away; no wonder Poisson was astonished!

10.2 Scalar Diffraction Theory

In this section we provide the background motivation for Huygen’s principle and
Fresnel’s formulation of it. Consider a light field with a single frequency ω. The
light field can be represented by E (r)e−iωt , and the time derivative in the wave
equation (2.13) can be easily performed. It reduces to

∇2E (r)+k2E (r) = 0 (10.4)

where k ≡ nω/c is the magnitude of the usual wave vector (see also (9.2)). Equa-
tion (10.4) is called the Helmholtz equation. Again, it is merely the wave equation
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written for the case of a single frequency, where the trivial time dependence has
been removed. To obtain the full wave solution, just append the factor e−iωt to
the solution of (10.4).

Francois Jean Dominique Arago
(1786-1853, French) was born in Cata-
lan France, where his father was the
Treasurer of the Mint. As a teenager,
Arago was sent to a municipal college
in Perpignan where he developed a
deep interest in mathematics. In 1803,
he entered the Ecole Polytechnique in
Paris, where he purportedly was dis-
appointed that he was not presented
with new knowledge at a higher rate.
He associated with famous French
mathematicians Siméon Poisson and
Pierre-Simmon Laplace. He later worked
with Jean-Baptiste Biot to measure the
meridian arch to determine the exact
length of the meter. This work took him
to the Balearic Islands, Spain, where
he was imprisoned as a spy, being sus-
pected because of lighting fires atop
a mountain as part of his surveying ef-
forts. After a heroic prison escape and
a subsequent string of misfortunes, he
eventually made it back to France where
he took a strong interest in optics and
the wave theory of light. Arago and Fres-
nel established a fruitful collaboration
that extended for many years. It was
Arago who demonstrated Poisson’s spot
(sometimes called Arago’s spot). Arago
also invented the first polarizing filter. In
later life, he served a brief stint as the
French prime minister. (Wikipedia)

At this point we take an egregious step: We ignore the vectorial nature of E(r)
and write (10.4) using only the magnitude E(r). When using scalar diffraction
theory, we must keep in mind that it is based on this serious step. Under the
scalar approximation, the vector Helmholtz equation (10.4) becomes the scalar
Helmholtz equation:

∇2E (r)+k2E (r) = 0 (10.5)

This equation of course is consistent with (10.4) in the case of a plane wave.
However, we are interested in spherical waves of the form E (r ) = E0r0e i kr /r . It
turns out that such spherical waves are exact solutions to the scalar Helmholtz
equation (10.5). The proof is left as an exercise (see P10.3). Nevertheless, spherical
waves of this form only approximately satisfy the vector Helmholtz equation (10.4).
We can get away with this sleight of hand if the radius r is large compared to a
wavelength (i.e., kr À 1) and if we restrict r to a narrow range perpendicular to
the polarization.

Significance of the Scalar Wave Approximation

The solution of the scalar Helmholtz equation is not completely unassociated with
the solution to the vector Helmholtz equation. In fact, if Escalar (r) obeys the scalar
Helmholtz equation (10.5), then

E (r) = r×∇Escalar (r) (10.6)

obeys the vector Helmholtz equation (10.4).

Consider a spherical wave, which is a solution to the scalar Helmholtz equation:

Escalar (r) = E0r0e i kr /r (10.7)

Remarkably, when this expression is placed into (10.6) the result is zero. Although
zero is in fact a solution to the vector Helmholtz equation, it is not very interesting.
A more interesting solution to the scalar Helmholtz equation is

Escalar (r) = r0E0

(
1− i

kr

)
e i kr

r
cosθ (10.8)

which is one of an infinite number of unique ‘spherical’ solutions that exist. Notice
that in the limit of large r , this expression looks similar to (10.7), aside from the
factor cosθ. The vector form of this field according to (10.6) is

E (r) =−φ̂r0E0

(
1− i

kr

)
e i kr

r
sinθ (10.9)

This field looks approximately like the scalar spherical wave solution (10.7) in the
limit of large r if the angle is chosen to lie near θ ∼= π/2 (spherical coordinates).
Since our use of the scalar Helmholtz equation is in connection with this spherical
wave under these conditions, the results are close to those obtained from the
vector Helmholtz equation.

http://en.wikipedia.org/wiki/Francois_Arago
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Figure 10.7

Fresnel developed his diffraction formula (10.1) a half century before Maxwell
assembled the equations of electromagnetic theory. In 1887, Gustav Kirchhoff
demonstrated that Fresnel’s diffraction formula satisfies the scalar Helmholtz
equation. In doing this he clearly showed the approximations implicit in the
theory, and made a slight revision to the formula:

E
(
x, y, z

)=− i

λ

Ï
aperture

E
(
x ′, y ′,0

) e i kR

R

[
1+cos(R, ẑ)

2

]
d x ′d y ′ (10.10)

The factor in square brackets, Kirchhoff’s revision, is known as the obliquity factor.
Here, cos(R, ẑ) indicates the cosine of the angle between R and ẑ. Notice that this
factor is approximately equal to one when the point (x, y, z) is chosen to be in
the forward direction; we usually study diffraction under this circumstance. On
the other hand, the obliquity factor equals zero for fields traveling in the reverse
direction (i.e. in the −ẑ direction). This fixes a problem with Fresnel’s version of
the formula (10.1) based on Huygens’ wavelets, which suggested that light could
as easily diffract in the reverse direction as in the forward direction

In honor of Kirchhoff’s work, (10.10) is referred to as the Fresnel-Kirchhoff
diffraction formula. The details of Kirchhoff’s more rigorous derivation, including
how the factor −i /λ naturally arises, are given in appendix 10.A. Since the Fresnel-
Kirchhoff formula can be understood as a superposition of spherical waves, it is
not surprising that it satisfies the scalar Helmholtz equation (10.5).

10.3 Fresnel Approximation

Although the Fresnel-Kirchhoff integral looks innocent enough, it is actually
quite difficult to evaluate analytically. Even the Huygens-Fresnel version (10.1)
where the obliquity factor (1+cos(r, ẑ))/2 is approximated as one (i.e. far forward
direction) is challenging. The integration can be challenging even if we choose a
field E

(
x ′, y ′,0

)
that is uniform across the aperture (i.e. a constant).

Fresnel introduced an approximation4 to his diffraction formula that makes
the integration somewhat easier to perform. The approximation is analogous to
the paraxial approximation made for rays in chapter 9.

Besides letting the obliquity factor be one, Fresnel approximated R by the
distance z in the denominator of (10.10) . Then the denominator can be brought
out in front of the integral since it no longer depends on x ′ and y ′. This is valid to
the extent that we restrict ourselves to small angles:

R ∼= z (denominator only; Fresnel approximation) (10.11)

The above approximation is wholly inappropriate in the exponent of (10.10) since
small changes in R can result in dramatic variations in the periodic function e i kR .

4J. W. Goodman, Introduction to Fourier Optics, Sect. 4-1 (New York: McGraw-Hill, 1968).



10.3 Fresnel Approximation 263

To approximate R in the exponent, we must proceed with caution. To this end
we expand (10.2) under the assumption z2 À (x − x ′)2 + (y − y ′)2. Again, this is
consistent with the idea of restricting ourselves to relatively small angles. The
expansion of (10.2) is written as

R = z

√
1+ (x −x ′)2 + (

y − y ′)2

z2
∼= z

[
1+

(
x −x ′)2 + (

y − y ′)2

2z2 +·· ·
]

(exponent; Fresnel approximation) (10.12)
Substitution of (10.11) and (10.12) into the Huygens-Fresnel diffraction formula
(10.1) yields

E
(
x, y, z

)∼=− i e i kz e i k
2z (x2+y2)

λz

Ï
aperture

E
(
x ′, y ′,0

)
e i k

2z (x ′2+y ′2)e−i k
z (xx ′+y y ′)d x ′d y ′

(Fresnel approximation) (10.13)
This approximation may look a bit messier than before, but in terms of being able
to make progress on integration our chances are somewhat improved.

Figure 10.8 Field amplitude fol-
lowing a rectangular aperture
computed in the Fresnel approxi-
mation.

Example 10.3

Compute the Fresnel diffraction field following a rectangular aperture (dimensions
∆x by ∆y) illuminated by a uniform plane wave.

Solution: According to (10.13), the field downstream is

E
(
x, y, z

)=−i E0

e i kz

λz
e i k

2z (x2+y2)
∆x/2∫

−∆x/2

d x ′e i k
2z x′2

e−i kx
z x′

∆y/2∫
−∆y/2

d y ′e i k
2z y ′2

e−i k y
z y ′

Unfortunately, the integration in the preceding example must be performed
numerically. This is often the case for diffraction integrals in the Fresnel approx-
imation, but at least numerical fast Fourier transforms can aid in the process.
Figure 10.8 shows the result of integration for a rectangular aperture with a height
twice its width.

Paraxial Wave Equation

If we assume that the light coming through the aperture is highly directional, such
that it propagates mainly in the z-direction, we are motivated to write the field
as E(x, y, z) = Ẽ(x, y, z)e i kz . Upon substitution of this into the scalar Helmholtz
equation (10.5), we arrive at

∂2Ẽ

∂x2 + ∂2Ẽ

∂y2 +2i k
∂Ẽ

∂z
+ ∂2Ẽ

∂z2 = 0 (10.14)

At this point we make the paraxial wave approximation,5 which is |2k ∂Ẽ
∂z |À | ∂2Ẽ

∂z2 |.
That is, we assume that the amplitude of the field varies slowly in the z-direction

5P. W. Milonni and J. H. Eberly, Laser, Sect. 14.4 (New York: Wiley, 1988).
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such that the wave looks much like a plane wave. We permit the amplitude to
change as the wave propagates in the z-direction as long as it does so on a scale
much longer than a wavelength. This leads to the paraxial wave equation:(

∂2

∂x2 + ∂2

∂y2 +2i k
∂

∂z

)
Ẽ(x, y, z) ∼= 0 (paraxial wave equation) (10.15)

It turns out that the Fresnel approximation (10.13) is an exact solution to the
paraxial wave equation (see P10.5). That is, (10.15) is satisfied by

Ẽ(x, y, z) ∼=− i

λz

∞Ï
−∞

Ẽ(x ′, y ′,0)e
i k

2z

[
(x−x′)2+(y−y ′)2

]
d x ′d y ′ (10.16)

When the factor e i kz is appended, this field is identical to (10.13).

Joseph von Fraunhofer (1787–1826,
German) was born in Straubing, Bavaria.
He was orphaned at age 11, whereupon
he was apprenticed to a glassmaker.
The workshop collapsed, trapping him
in the rubble. The Prince of Bavaria di-
rected the rescue efforts and thereafter
took an interest in Fraunhofer’s educa-
tion. The prince required the glassmaker
to allow young Joseph time to study, and
he naturally took an interest in optics.
Fraunhofer later worked at the Opti-
cal Institute at Benediktbeuern, where
he learned techniques for making the
finest optical glass in his day. Fraun-
hofer developed numerous glass recipes
and was expert at creating optical de-
vices. Fraunhofer was the inventor of
the spectroscope, making it possible to
do quantitative spectroscopy. Using his
spectroscope, Fraunhofer was the first
to observe and document hundreds of
absorption lines in the sun’s spectrum.
He also noticed that these varied for dif-
ferent stars, thus establishing the field of
stellar spectroscopy. He was also the in-
ventor of the diffraction grating. In 1822,
he was granted an honorary doctorate
from the University of Erlangen. Fraun-
hofer passed away at age 39, perhaps
due to heavy-metal poisoning from glass
blowing. (Wikipedia)

10.4 Fraunhofer Approximation

An additional approximation to the diffraction integral was made famous by
Joseph von Fraunhofer. The Fraunhofer approximation is the limiting case of
the Fresnel approximation when the field is observed at a distance far after the
aperture (called the far field).6 A diffraction pattern continuously evolves along
the z-direction, as described by the Fresnel approximation. Eventually it evolves
into a final diffraction pattern that maintains itself as it continues to propogate (al-
though it increases its size in proportion to distance). It is this far-away diffraction
pattern that is obtained from the Fraunhofer approximation. Since the Fresnel
approximation requires the angles to be small (i.e. the paraxial approximation),
so does the Fraunhofer approximation.

To obtain the diffraction pattern at a distance very far from the aperture, we
make the following approximation:7

e i k
2z (x ′2+y ′2) ∼= 1 (far field) (10.17)

The validity of this approximation depends on a comparison of the size of the
aperture to the distance z where the diffraction pattern is observed. We need

z À k

2

(
aperture radius

)2 (condition for far field) (10.18)

By removing the factor (10.17) from (10.13), we obtain the Fraunhofer diffrac-
tion formula:

E
(
x, y, z

)∼=− i e i kz e i k
2z (x2+y2)

λz

Ï
aperture

E
(
x ′, y ′,0

)
e−i k

z (xx ′+y y ′)d x ′d y ′(Fraunhofer approximation) (10.19)

6Since the Fraunhofer approximation is easier to use, many textbooks present it before the
Fresnel approximation.

7J. W. Goodman, Introduction to Fourier Optics, p. 61 (New York: McGraw-Hill, 1968).

http://en.wikipedia.org/wiki/Joseph_von_Fraunhofer
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Obviously, the removal of e i k
2z (x ′2+y ′2) from the integrand improves our chances

of being able to perform the integration analytically. In fact the integral can be
interpreted as a two-dimensional (inverse) Fourier transform on the aperture
field E

(
x ′, y ′,0

)
, where kx/z and k y/z can be thought of as ‘spatial frequencies’.

Once we are in the regime where the Fraunhofer approximation is valid, a
change in z is not very interesting since it appears within the integral only in the
combination x/z or y/z. At a larger distance z, the same diffraction pattern is
obtained with a proportionately larger values of x or y . The Fraunhofer diffraction
pattern thus preserves itself indefinitely as the field propagates. It grows in size as
the distance z increases, but the angular size defined by x/z or y/z remains the
same.

Figure 10.9 Fraunhofer diffraction
pattern (field amplitude) gener-
ated by a uniformly illuminated
rectangular aperture with a height
twice the width.

Example 10.4

Compute the Fraunhofer diffraction pattern following a rectangular aperture (di-
mensions ∆x by ∆y) illuminated by a uniform plane wave.

Solution: According to (10.19), the field downstream is

E
(
x, y, z

)=−i E0

e i kz

λz
e i k

2z (x2+y2)
∆x/2∫

−∆x/2

d x ′e−i kx
z x′

∆y/2∫
−∆y/2

d y ′e−i k y
z y ′

It is left as an exercise (see P10.6) to perform the integration and compute the
intensity. The result turns out to be

I
(
x, y, z

)= I0

∆x2∆y2

λ2z2 sinc2
(
π∆x

λz
x

)
sinc2

(
π∆y

λz
y

)
(10.20)

where sinc(ξ) ≡ sinξ/ξ. Note that lim
ξ→0

sinc(ξ) = 1.

10.5 Diffraction with Cylindrical Symmetry

Sometimes the field transmitted by an aperture is cylindrically symmetric. In this
case, the field at the aperture can be written as

E(x ′, y ′, z = 0) = E(ρ′, z = 0) (10.21)

where ρ ≡
√

x2 + y2. Under cylindrical symmetry, the two-dimensional integra-
tion over x ′ and y ′ in (10.13) or (10.19) can be reduced to a single-dimensional
integral over a cylindrical coordinate ρ′. With the coordinate transformation

x ≡ ρ cosφ y ≡ ρ sinφ x ′ ≡ ρ′ cosφ′ y ′ ≡ ρ′ sinφ′ (10.22)

the Fresnel diffraction integral (10.13) becomes

E
(
ρ, z

) =− i e i kz e i kρ2

2z

λz

2π∫
0

dφ′
∫

aperture

ρ′dρ′E
(
ρ′,0

)
e i kρ′2

2z e−i k
z (ρρ′ cosφcosφ′+ρρ′ sinφsinφ′)

(10.23)
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Notice that in the exponent of (10.23) we can write

ρ′ρ
(
cosφ′ cosφ+ sinφ′ sinφ

)= ρ′ρ cos
(
φ′−φ)

(10.24)

With this simplification, the diffraction formula (10.23) can be written as

E
(
ρ, z

)=− i e i kz e i kρ2

2z

λz

∫
aperture

ρ′dρ′E
(
ρ′,0

)
e i kρ′2

2z

2π∫
0

dφ′e−i kρρ′
z cos(φ−φ′) (10.25)

We are able to perform the integration over φ′ with the help of the formula (0.57):

2π∫
0

e−i kρρ′
z cos(φ−φ′)dφ′ = 2πJ0

(
kρρ′

z

)
(10.26)

J0 is called the zero-order Bessel function. Equation (10.25) then reduces to

E
(
ρ, z

)=−2πi e i kz e i kρ2

2z

λz

∫
aperture

ρ′dρ′E
(
ρ′,0

)
e i kρ′2

2z J0

(
kρρ′

z

)
(Fresnel approximation with cylindrical symmetry) (10.27)

The integral in (10.27) is called a Hankel transform on E
(
ρ′,0

)
e i kρ′2

2z .

z = 25/k

z = 75/k

z = 200/k

z = 1000/k

500/k

500/k

500/k

500/k

100/k

Figure 10.10 Field amplitude fol-
lowing a circular aperture com-
puted in the Fresnel approxima-
tion.

In the case of the Fraunhofer approximation, the diffraction integral becomes

a Hankel transform on just the field E
(
ρ′, z = 0

)
since exp

(
i kρ′2

2z

)
goes to one.

Under cylindrical symmetry, the Fraunhofer approximation is

E
(
ρ, z

)=−2πi e i kz e i kρ2

2z

λz

∫
aperture

ρ′dρ′E
(
ρ′,0

)
J0

(
kρρ′

z

)
(Fraunhofer approximation with cylindrical symmetry) (10.28)

Just as fast Fourier transform algorithms aid in the numerical evaluation of diffrac-
tion integrals in Cartesian coordinates, fast Hankel transforms also exist and can
be used with cylindrically symmetric diffraction integrals.

Example 10.5

Compute the Fresnel and Fraunhofer diffraction patterns following a circular
aperture (diameter D) illuminated by a uniform plane wave.

Solution: According to (10.27), the field downstream is

E
(
ρ, z

)=−i E0

2πe i kz e i kρ2

2z

λz

D/2∫
0

ρ′dρ′e i kρ′2
2z J0

(
kρρ′

z

)

Unfortunately, this Fresnel integral must be performed numerically. The result
of the calculation for a uniform field illuminating a circular aperture is shown in
Fig. 10.10.



10.A Fresnel-Kirchhoff Diffraction Formula 267

On the other hand, the field in the Fraunhofer limit (10.28) is

E
(
ρ, z

)=−i E0

2πe i kz e i kρ2

2z

λz

D/2∫
0

ρ′dρ′ J0

(
kρρ′

z

)

which can be integrated analytically (with the aid of (0.58)). It is left as an exercise
to perform the integration and to show that the intensity of the Fraunhofer pattern
is

I
(
ρ, z

)= I0

(
πD2

4λz

)2 [
2

J1
(
kDρ/2z

)(
kDρ/2z

) ]2

(10.29)

The function 2J1(ξ)
ξ , which we will call the jinc function,8 looks similar to the sinc

function (see Example 10.4) except that its first zero is at ξ= 1.22π rather than at π.
Note that lim

ξ→0

2J1(ξ)
ξ = 1.



Figure 10.11 Fraunhofer diffrac-
tion pattern (field amplitude) gen-
erated for a uniformly illuminated
circular aperture.

Appendix 10.A Fresnel-Kirchhoff Diffraction Formula

To begin the derivation of the Fresnel-Kirchhoff diffraction formula,9 we employ
Green’s theorem (proven in appendix 10.B):∮

S

[
U
∂V

∂n
−V

∂U

∂n

]
d a =

∫
V

[
U∇2V −V ∇2U

]
d v (10.30)

The notation ∂/∂n implies a derivative in the direction normal to the surface. We
choose the following functions:

V ≡ e i kr /r

U ≡ E (r)
(10.31)

where E (r) is assumed to satisfy the scalar Helmholtz equation, (10.5). When
these functions are used in Green’s theorem (10.30), we obtain∮

S

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a =

∫
V

[
E∇2 e i kr

r
− e i kr

r
∇2E

]
d v (10.32)

The right-hand side of this equation vanishes10 since we have

E∇2 e i kr

r
− e i kr

r
∇2E =−k2E

e i kr

r
+ e i kr

r
k2E = 0 (10.33)

8Most authors define the jinc without the factor of 2, which gives the inconvenient normalization
lim
ξ→0

jincξ= 1/2.

9See J. W. Goodman, Introduction to Fourier Optics, Sect. 3-3 (New York: McGraw-Hill, 1968).
10We exclude the point r = 0; see P0.4 and P0.5.
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where we have taken advantage of the fact that E (r) and e i kr /r both satisfy (10.5).
This is exactly the reason for our judicious choices of the functions V and U since
with them we were able to make half of (10.30) disappear. We are left with∮

S

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a = 0 (10.34)

Now consider a volume between a small sphere of radius ε at the origin and an
outer surface of arbitrary shape. The total surface that encloses the volume is
comprised of two parts (i.e. S = S1 +S2 as depicted in Fig. 10.12).

Figure 10.12 A two-part surface
enclosing volume V .

When we apply (10.34) to the surface in Fig. 10.12, we have∮
S2

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a =−

∮
S1

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a (10.35)

This geometry with multiple surfaces is motivated by the hope of finding the field
at the origin (inside the little sphere) from knowledge of the field on the outside
surface. To this end, we assume that ε is so small that E (r) is approximately the
same everywhere on the surface S1. Then the integral over S1 becomes

∮
S1

[
E
∂

∂n

ei kr

r
− ei kr

r

∂E

∂n

]
d a = lim

r=ε→0

2π∫
0

dφ

π∫
0

[
E

(
∂

∂r

ei kr

r

)
∂r

∂n
− ei kr

r

(
∂E

∂r

)
∂r

∂n

]
r 2 sinθdθ

(10.36)

where we have used spherical coordinates. Notice that we have employed the
chain rule to execute the normal derivative ∂/∂n. Since r always points opposite
to the direction of the surface normal n̂, the normal derivative ∂r /∂n is always
equal to −1.11 We can perform the angular integration in (10.36) as well as take
the limit ε→ 0:

lim
ε→0

∮
S1

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a =−4π lim

ε→0

[
r 2

(
−e i kr

r 2 + i k
e i kr

r

)
E − r 2 e i kr

r

(
∂E

∂r

)]
r=ε

=−4π lim
ε→0

[(
−e i kε+ i kεe i kε

)
E −e i kεε

(
∂E

∂r

)
r=ε

]
= 4πE (0)

(10.37)

With the aid of (10.37), Green’s theorem applied to our specific geometry
reduces to

E (0) = 1

4π

∮
S2

[
e i kr

r

∂E

∂n
−E

∂

∂n

e i kr

r

]
d a (10.38)

11From the definition of the normal derivative we have ∂r /∂n ≡∇r · n̂ =−n̂ · n̂ =−1.
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If we know E everywhere on the outer surface S2, this equation allows us to predict
the field E (0) at the origin.

Now let us choose a specific surface S2. Consider an infinite mask with a
finite aperture connected to a hemisphere of infinite radius R →∞. In the end,
we will suppose that light enters through the mask and propagates to our origin
(among other points). In our present coordinate system, the vectors r and n̂ point
opposite to the incoming light.

origin

mask

aperture

Figure 10.13 Surface S2 depicted
as a mask and a large hemisphere.

We must evaluate (10.38) on the surface depicted in the figure. For the portion
of S2 that is on the hemisphere, the integrand tends to zero as R becomes large.
To argue this, it is necessary to recognize the fact that at large distances the field
takes on a form proportional to e i kr /r so that the two terms in the integrand
cancel. On the mask, we assume, as did Kirchhoff, that both ∂E/∂n and E are
zero.12 Thus, we are left with only the integration over the open aperture:

E (0) = 1

4π

Ï
aperture

[
e i kr

r

∂E

∂n
−E

∂

∂n

e i kr

r

]
d a (10.39)

We have essentially arrived at the result that we are seeking. The field coming
through the aperture is integrated to find the field at the origin, which is located
beyond the aperture. Let us manipulate the formula a little further. The second
term in the integral of (10.39) can be rewritten as follows:

∂

∂n

e i kr

r
=

(
∂

∂r

e i kr

r

)
∂r

∂n
=

(
i k

r
− 1

r 2

)
e i kr cos(r, n̂) →

rÀλ

i ke i kr

r
cos(r, n̂) (10.40)

where ∂r /∂n = cos(r, n̂) indicates the cosine of the angle between r and n̂. We
have also assumed that the distance r is much larger than a wavelength in order
to drop a term. Next, we assume that the field illuminating the aperture can be
written as E ∼= Ẽ

(
x, y

)
e i kz . This represents a plane-wave field traveling through

the aperture from left to right. Then, we have

∂E

∂n
= ∂E

∂z

∂z

∂n
= i kẼ

(
x, y

)
e i kz (−1) =−i kE (10.41)

Substituting (10.40) and (10.41) into (10.39) yields

E (0) =− i

λ

Ï
aperture

E
e i kr

r

[
1+cos(r, n̂)

2

]
d a (10.42)

Finally, we wish to rearrange our coordinate system to that depicted in Fig. 10.2.
In our derivation, it was less cumbersome to place the origin at a point of interest

12Later Sommerfeld noticed that these two assumptions actually contradict each other, and he
revised Kirchhoff’s work to be more accurate. In practice this revision makes only a tiny difference
as light spills onto the back of the aperture, over a length scale of a wavelength. We will ignore
this effect and go with Kirchhoff’s (slightly flawed) assumption. For further discussion see J. W.
Goodman, Introduction to Fourier Optics, Sect. 3-4 (New York: McGraw-Hill, 1968).
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after the aperture. Now that we have completed our mathematics, we can switch
around the coordinate system and place the origin in the plane of the aperture as
in Fig. 10.2:

E
(
x, y, z

)=− i

λ

Ï
aperture

E
(
x ′, y ′,0

) e i kR

R

[
1+cos(r, ẑ)

2

]
d x ′d y ′ (10.43)

where

R =
√

(x −x ′)2 + (
y − y ′)2 + z2 (10.44)

which brings us to the Fresnel-Kirchhoff diffraction formula (10.10).

Appendix 10.B Green’s Theorem

To derive Green’s theorem, we begin with the divergence theorem (see (0.11)):∮
S

f · n̂ d a =
∫
V

∇· f d v (10.45)

The unit vector n̂ always points normal to the surface of volume V over which
the integral is taken. Let the vector function f be U∇V , where U and V are both
analytical functions of the position coordinate r. Then (10.45) becomes∮

S

(U∇V ) · n̂ d a =
∫
V

∇· (U∇V ) d v (10.46)

We recognize ∇V · n̂ as the directional derivative of V , directed along the surface
normal n̂. This is often represented in shorthand notation as

∇V · n̂ ≡ ∂V

∂n
(10.47)

The integrand on the right-hand side of (10.46) can be expanded with the product
rule:

∇· (U∇V ) =∇U ·∇V +U∇2V (10.48)

With these substitutions, (10.46) becomes∮
S

U
∂V

∂n
d a =

∫
V

[∇U ·∇V +U∇2V
]

d v (10.49)

So far we haven’t done much. Equation (10.49) is nothing more than the diver-
gence theorem applied to the vector function U∇V . We can also write an equation
similar to (10.49) where U and V are interchanged:∮

S

V
∂U

∂n
d a =

∫
V

[∇V ·∇U +V ∇2U
]

d v (10.50)

We subtract (10.50) from (10.49), which leads to (10.30) known as Green’s theorem.
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Exercises

Exercises for 10.1 Huygens’ Principle as Formulated by Fresnel

Figure 10.14

P10.1 Huygens’ principle can be used to describe refraction. Use a draw-
ing program or a ruler and compass to produce a picture similar to
Fig. 10.14, which shows that the graphical prediction of refracted angle
from the Huygens’ principle. Verify that the Huygens picture matches
the numerical prediction from Snell’s Law for an incident angle of your
choice. Use ni = 1 and nt = 2.

HINT: Draw the wavefronts hitting the interface at an angle and treat
each point where the wavefronts strike the interface as the source of
circular waves propagating into the n = 2 material. The wavelength of
the circular waves must be exactly half the wavelength of the incident
light since λ=λvac/n. Use at least four point sources and connect the
matching wavefronts by drawing tangent lines as in the figure.

L10.2 (a) Why does the on-axis intensity behind a circular opening fluctuate
(see Example 10.1) whereas the on-axis intensity behind a circular
obstruction remains constant (see Example 10.2)?

(b) Create a collimated laser beam several centimeters wide. Observe
the on-axis intensity on a movable screen (e.g. a hand-held card) be-
hind a small circular aperture and behind a small circular obstruction
placed in the beam. (video)

(c) In the case of the circular aperture, measure the distance to several
on-axis minima and check that it agrees with (10.3).

Laser

Figure 10.15

Exercises for 10.2 Scalar Diffraction Theory

P10.3 Show that E (r ) = E0r0e i kr /r is a solution to the scalar Helmholtz equa-
tion (10.5).

http://optics.byu.edu/video/possions.mov
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HINT: In spherical coordinates

∇2ψ= 1

r

∂2

∂r 2

(
rψ

)+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+ 1

r 2sin2θ

∂2ψ

∂φ2

P10.4 (a) A vector field is needed to satisfy Maxwell’s equations instead of the
scalar field in P10.3, whose real part after appending e−iωt is

E(r ) = A

r
cos(kr −ωt )

Let’s attempt to create a vector field from this scalar field in the simplest
way possible. From experience, we expect a transverse wave, which we
take to oscillate in the φ̂ direction:

E(r ) = A

r
cos(kr −ωt ) φ̂

(i) Show that E satisfies Gauss’s Law (1.1). (ii) Compute the curl of E in
Faraday’s Law (1.3) to deduce B. (iii) Show that this B satisfies Gauss’
Law for magnetism (1.2). (iv) Finally, show that the above E and B do
not satisfy Ampere’s law (1.4).

HINT: In spherical coordinates

∇·E = 1

r 2

∂

∂r

(
r 2Er

)+ 1

r sinθ

∂

∂θ
(sinθEθ)+ 1

r sinθ

∂Eφ
∂φ

∇×E = r̂
1

r sinθ

[
∂

∂θ

(
sinθEφ

)− ∂Eθ
∂φ

]
+ θ̂ 1

r

[
1

sinθ

∂Er

∂φ
− ∂

∂r

(
r Eφ

)]
+φ̂1

r

[
∂

∂r
(r Eθ)− ∂Er

∂θ

]
(b) The following somewhat more complicated ‘spherical’ wave

E(r,θ) = A sinθ

r

[
cos(kr −ωt )− 1

kr
sin(kr −ωt )

]
φ̂

(i.e. the real part of (10.9) with time dependence appended) does satisfy
Maxwell’s equations. Describe how this wave behaves as a function of
r and θ. What conditions need to be satisfied for this equation to be
well approximated by the spherical wave in part (a)?

Exercises for 10.3 Fresnel Approximation

P10.5 By direct substitution, show that (10.16) satisfies the paraxial wave
equation (10.15).
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Exercises for 10.4 Fraunhofer Approximation

Figure 10.16 “The Fraunhofer Ap-
proximation” by Sterling Cornaby

P10.6 Calculate the Fraunhofer diffraction field and intensity patterns for a
rectangular aperture (dimensions ∆x by ∆y) illuminated by a plane
wave E0. In other words, derive (10.20).

P10.7 A single narrow slit has a mask placed over it so the aperture function
is not a square profile but rather a cosine: E(x ′, y ′,0) = E0 cos(πx ′/L)
for −L/2 < x ′ < L/2 and E (x ′, y ′,0) = 0 otherwise. Calculate the far-field
(Fraunhofer) diffraction pattern. Make a plot of intensity as a function
of kLx/2z; qualitatively compare the pattern to that of a regular single
slit. Do not perform any integration in the y dimension. Write the
intensity as being proportional to an x-dependent expression.

Exercises for 10.5 Diffraction with Cylindrical Symmetry

P10.8 (a) Repeat Example 10.1 to find the on-axis intensity (i.e. ρ = 0) after
a circular aperture in both the Fresnel approximation (10.27) and the
Fraunhofer approximation (10.28).

(b) Make suitable approximations directly to (10.3) to obtain the same
answers as in part (a).

(c) Check how well the Fresnel and Fraunhofer approximations work by
graphing the Fresnel- and Fraunhofer-approximation results together
with (10.3) on a single plot as a function of z. Take D = 10 µm and
λ= 500 nm. To see the result better, use a log scale on the z-axis.
Answer:

z (mm)
10

-3
10

-2
10

-1
10

0
0

1

2

3

4

Fraunhofer 
Approximation

Fresnel
Approx.

Huygens-Fresnel

Figure 10.17 On-axis intensity behind a circular aperture calculated using
the Fresnel diffraction formula (10.1), the Fresnel approximation (10.27),
and the Fraunhofer approximation (10.28).

P10.9 Calculate the Fraunhofer diffraction intensity pattern (10.29) for a cir-
cular aperture (diameter D) illuminated by a plane wave E0. That is,
repeat example 10.5 while filling in the integration step. For added
benefit, try to do it without peeking.



274 Chapter 10 Diffraction

Exercises for 10.A Fresnel-Kirchhoff Diffraction Formula

P10.10 Learn by heart the derivation of the Fresnel-Kirchhoff diffraction for-
mula (outlined in Appendix 10.A). Indicate the percentage of how well
you understand the derivation. If you write 100% percent, it means
that you can reproduce the derivation without peeking.


