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Magnetic control of Leidenfrost drops
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We show how a magnetic field can influence the motion of a paramagnetic drop made of liquid oxygen in a
Leidenfrost state on solids at room temperature. It is demonstrated that the trajectory can be modified in both
direction and velocity and that the results can be interpreted in terms of classical mechanics as long as the drop
does not get too close to the magnet. We study the deviation and report that it can easily overcome 180◦ and even
diverge under certain conditions, leading to situations where a drop gets captured. In the vicinity of the magnet,
another type of trapping is observed, due to the deformation of the drop in this region, which leads to a strong
energy dissipation. Conversely, drops can be accelerated by moving magnets (slingshot effect).
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A drop placed on a very hot solid levitates on its own vapor
(Leidenfrost effect) [1–3]. Since there is no contact between
the liquid and its substrate, friction is dramatically reduced:
several meters are needed to observe the deceleration of
millimetric Leidenfrost drops thrown on a horizontal surface at
a few tens of cm/s [4]. This extreme mobility makes levitating
drops difficult to manipulate and to immobilize. Recent
works have shown that it is possible to control the direction
and velocity of Leidenfrost drops with asymmetric textured
surfaces (ratchets) [5–8]. More generally, drop manipulation
using external fields, such as mechanical vibrations [9],
temperature [10], and electric [11,12] or magnetic fields,
[13–15] has been the subject of numerous studies, but none of
them involve Leidenfrost drops to our knowledge.

We propose to use magnetic fields to control the high
mobility of Leidenfrost drops. For that purpose, we work
with liquid oxygen, which is known to be paramagnetic
[16]. Oxygen boils at −183 ◦C (at atmospheric pressure) and
therefore undergoes the Leidenfrost effect on a substrate at
room temperature, so we do not have to heat the substrate. We
can imagine the same experiment with other magnetic fluids
(such as ferrofluids or paramagnetic salt solutions) provided
the substrate temperature is high compared to the boiling point
of the liquid, and that the magnetic properties are not affected
by heat, or by using a mechanism other than the Leidenfrost
effect to reduce friction (with superhydrophobic surfaces, for
example). In this article, we study how the motion of oxygen
drops is influenced by the presence of a magnet. As we shall
see, trajectories can be modified in direction and velocity,
inducing situations where the drop can be captured by the
magnet.

Liquid oxygen is obtained by distillation of air using liquid
nitrogen, which boils at −196 ◦C. A copper sheet of millimetric
thickness is folded and welded to form a cone of about 10 cm
in height and width. It is then filled with liquid nitrogen: the
cone temperature reaches −196 ◦C, that is to say, 13 ◦C below
the boiling point of oxygen present in the air, which therefore
liquefies on the external surface of the cone. A film of liquid
oxygen drains along this surface and drips at the tip, where it
is recovered and directly used.
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To quantify how trajectories of liquid oxygen are modified
by a magnetic field, the following experiment is made: an
oxygen drop of typical radius R = 1 mm is thrown tangentially
at a velocity V on a horizontal glass plate of 10 cm of width and
length, and 2 mm thick, below which we place a cylindrical
neodymium magnet (grey circle in Fig. 1), 1 cm in diameter
and height. The magnetic field is on the order of 0.5 T at the
magnet and decreases on a distance comparable to its size. The
drop is initially placed in an inclined gutter leading to the glass
plate, which allows us, by changing the inclination, to vary V

between 20 and 60 cm/s. This velocity does not decrease by
more than 10% when the drop crosses the glass plate.

With a magnet, as seen in the top views of Fig. 1, the
trajectory of oxygen drops is deflected by an angle α relative
to the incoming direction [α = 30◦ in Fig. 1(a)]. The overall
aspect of the trajectory evokes a hyperbola, as observed in
central force systems. Trajectories can become more complex
than conic curves: the deflection α is higher than 180◦ in
Fig. 1(b) and it exceeds 360◦ in Figs. 1(c), and 1(d): drops
can make more than a complete revolution around the magnet
before escaping from its influence [Fig. 1(c)], showing that
the liquid may be redirected in all possible directions. Similar
trajectories are observed in basketball or golf, when a ball
interacts with a hole [17,18], which is due to the shape of the
potential energy, as shown later. In addition, some drops are not
able to escape and get trapped in an orbiting motion [Fig. 1(d)].
See the Supplementary Material [19] for illustrations of a
variety of observed phenomena.

We measured the deflection α and the distance rp to the
pericenter of the trajectory (where the radial velocity is equal
to zero), as a function of b for two fixed velocities: V = 22 ±
2 cm/s and V = 40 ± 2 cm/s. As seen in Fig. 2(a), α is equal
to zero for b → ∞ and b = 0, where a straight trajectory is
indeed expected, and it has a maximum between these two
limits. This maximum is high and sharp for V = 22 cm/s:
trajectories around b = 10 mm are highly deflected (α >

180◦). At larger V , the maximum is smaller and smoother,
suggesting that deflection results from a competition between
kinetic and magnetic energies. In the same vein, Fig. 2(b)
shows that rp approaches b for V = 40 cm/s whereas it can
be twice smaller than b for V = 22 cm/s and b = 10 mm,
corresponding to situations where the deflection α is large.
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FIG. 1. Top views of oxygen drop trajectories on a horizontal
glass plate below which a magnet (grey circle) of radius 5 mm
is placed. (a) V = 25 cm/s and b = 11 mm. The trajectory bends
by an angle α = 30◦. (b) V = 25 cm/s and b = 9 mm, we get a
deflection α = 245◦. (c) V = 24 cm/s and b = 9.5 mm, α = 410◦:
the drop makes more than a full revolution around the magnet. (d) V =
22 cm/s and b = 10 mm, the drop is trapped in an orbiting motion
around the magnet.

The magnet exerts an attractive force on liquid oxygen,
which derives from the magnetic energy per unit volume:

Emag = − χ

2μo

B2, (1)

where χ is the magnetic susceptibility of liquid oxygen (χ =
0.0035 at −183 ◦C), μo the magnetic permeability in vacuum
(4π × 10−7 H/m) and B the magnetic field. Measuring B in
the horizontal plane with a teslameter gives the value of Emag

as a function of the radial coordinate r (inset of Fig. 3). Right
above the magnet, the magnetic energy is ten times higher
than gravity (ρgR ∼ 10 J/m3 and |Emag| ∼ 100 J/m3). Far
from the magnet, B is classically found to vary as 1/r3, so
that |Emag| falls off as 1/r6. The whole magnetic potential can
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FIG. 2. (a) Angle of deflection α as a function of b for two given
velocities: V = 22 ± 2 cm/s (•) and V = 40 ± 2 cm/s (◦). Solid
and dashed lines are calculations of α(b) with Eq. (4). (b) Distance rp

between the magnet and the pericenter of the trajectory, as a function
of b, for the same sets of data. The lines represent the model (see text)
for V = 22 cm/s (solid line) and V = 40 cm/s (dashed line).
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FIG. 3. Effective magnetic energy Eeff per unit volume [defined
after Eq. (3)] as a function of the drop-magnet distance r , for V =
22 cm/s and different impact parameters b. The dotted line represents
the initial kinetic energy of the drop. The inset shows the measured
magnetic energy around the magnet and its fit (grey line) by Eq. (2)
used to calculate Eeff (r).

eventually be written:

Emag = − Eo

q + (r/ro)6
, (2)

with Eo = 9.41J/m3, q = 0.08 and ro = 8.5 mm (grey line in
the inset of Fig. 3).

Knowing the magnetic energy at each point, we can
calculate the trajectory of a drop and compare it to our
measurements. We use polar coordinates (r ,θ ) to locate the
drop relatively to the magnet center. We consider the drop as
a point of density ρ, moving in a magnetic potential Emag(r).
Friction being extremely weak, we assume conservation of
energy along the trajectory. Since the system is invariant
by rotation, we can also write the conservation of angular
momentum (r2θ̇ = bV ). Hence the equation of motion:

ρṙ2

2
+ Eeff(r) = ρV 2

2
(3)

where Eeff(r) = ρb2V 2/2r2 + Emag(r) is the effective poten-
tial represented in Fig. 3 for a fixed velocity and different
values of b. When b is large, the magnetic energy is negligible
and Eeff monotonically decreases as 1/r2. For small values of
b, the presence of a magnetic term induces a local minimum
and maximum in Eeff(r). However, Emag is always negligible
compared to the orthoradial kinetic energy when r → 0 and
r → ∞. Besides, since Emag varies on a typical length-scale
|Emag(r)/E′

mag(r)| � 1.5 mm larger than the drop radius, the
drop is assimilated to a point mass.

A first result obtained from Eeff(r) is the position rp of the
pericenter of the trajectory, given in Fig. 3 by the intersection
of Eeff(r) with the dotted line representing the total energy
of the system ρV 2/2. If there are several intersections, the
pericenter is the farthest from the magnet. When the magnetic
energy is negligible, the trajectory is straight (rp = b). In the
opposite limit, the drop is attracted by the magnet (rp < b).
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The calculation of rp(b) is in good agreement with the
measurements made for each experiment, as seen in Fig. 2(b).

The deflection α can also be calculated by integrating θ̇

along the trajectory:

α = 2b

∫ +∞

rp

dr

r2
√

1 − 2Eeff (r)
ρV 2

− π. (4)

This equation is integrated numerically and the results,
reported in Fig. 2(a), are in quantitative agreement with
experiments without any adjustable parameter.

A singular behavior appears for V ≈ 22 cm/s and b ≈
10 mm, where rp is discontinuous and deflection seems to
diverge. A close look at the shape of the effective energy
Eeff(r) for these values of V and b (curve b = 9.5 mm in
Fig. 3) reveals that the pericenter is located on top of the local
maximum of Eeff(r). This is an unstable equilibrium: radial
velocity is equal to zero, as is radial acceleration since Eeff(r)
is flat at this point. Such drops will “orbit” around the magnet,
keeping a fixed radial distance and a constant angular velocity.
This capture situation was indeed observed for those values
of V and b [Fig. 1(d)]. This surprising trajectory is directly
related to the presence of a local maximum in Eeff(r), which
can only exist if the potential decays faster than 1/r2 as r → ∞
(which is the case for a golf hole but not for a gravitational
potential). For each value of V lower than roughly 25 cm/s,
there is an impact parameter b for which the energy at the local
maximum of Eeff is equal to the initial energy, leading to a
capture. For V > 25 cm/s, the kinetic energy is always higher
than the maximum of Eeff : capture becomes impossible. We
thus obtain an ensemble of points V (b) (dashed line in Fig. 4)
for which orbital capture is predicted.

Figure 4 is a phase diagram reporting all observed capture
situations (�). For rp larger than the magnet size Rmag, capture
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FIG. 4. Capture diagram. Each point represents an experiment:
triangles (�) indicate drops that are captured above the magnet and
circles (◦) drops that escaped from its influence. The dashed line
represents the values of b and V for which a capture is expected (see
text). The dotted line represents critical velocity V ∗ below which a
drop passing above the magnet is trapped. The grey area indicates
trajectories that pass above the magnet (rp < Rmag).

indeed occurs close to the dashed line corresponding to our
model. At smaller distances (rp < Rmag), drops pass above
the magnet and get captured below a critical velocity V ∗ ≈
15 cm/s (dotted line in Fig. 4), without orbiting motion. In
these situations, drops are deformed by the magnet that acts as
an enhanced gravity field, and energy conservation becomes
questionable, as it is in impact phenomena where similar large-
scale deformations occur. Indeed, the energy needed to deform
a drop of radius R by an amount δR 	 R is on the order
of 8πγRδR. As the drop moves away from the magnet, the
deformation relaxes into vibrations that are eventually damped,
resulting in an energy dissipation. This gives a critical velocity
for which the drop loses all its kinetic energy:

V ∗ ∼
√

6γ δR

ρR2
. (5)

In our experiments, we measure a typical deformation δR ≈
0.3 mm, which gives V ∗ ∼ 15 cm/s, consistent with our
observations.

Magnets can finally be used to accelerate oxygen drops. The
mechanism is inspired by the so-called gravity assist technique
(or gravitational slingshot), exploiting the movement of planets
to modify the speed of spacecrafts [20]. In the reference
frame of the planet, a spacecraft coming at a velocity VP

will leave at the same speed, but this is not true in another
frame of reference, as shown in Figs. 5(a) and 5(b) by a simple
composition of velocities.

To achieve a similar experiment, a thread is attached to the
magnet and drawn at constant speed with a motor. Figures 5(c)
and 5(d) show drops approaching a moving magnet, interacting
with it and leaving in a direction influenced by that of the
magnet. In both cases, the drop is accelerated. In the case of a

(a) (b)

(c) (d)

FIG. 5. (a) Elastic interaction between a planet and a light object
in the reference frame of the planet. (b) Same collision in a reference
frame where the planet moves at a velocity U . Here the light object
leaves faster than it came. (c) Chronophotographs of drops moving at
V = 12 cm/s and passing above to a magnet traveling at a velocity
U = 7 cm/s. Frontal approach: the drop is deflected by 125◦ and
leaves with a velocity V ′ = 22 cm/s. (d) Lateral approach: the drop
passes in front of the magnet, turns around it by 260◦ and leaves at
V ′ = 18 cm/s. Time interval between photos: 20 ms in both figures.
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frontal approach [Fig. 5(c)], the final velocity V ′ of the drop
is deduced by composition of velocities and conservation of
energy during the interaction:

V ′ = −U cos α +
√

(U + V )2 + U 2(cos2 α − 1), (6)

where U is the velocity of the magnet. V ′ is always greater
than V and is maximal for α = 180◦. For the experiment in
Fig. 5(c) (U = 7 cm/s, V = 12 cm/s, and α = 125◦), Eq. (6)
predicts V ′ = 22 cm/s, in agreement with the velocity of
21 cm/s measured in this experiment. The same thing can
be done for the lateral approach, for which we obtain

V ′ = −U sin α +
√

V 2 + U 2 sin2 α. (7)

Here, V ′ = V if α = 180◦ since V ′ and V are both orthogonal
to U in that case. If α > 180◦, the drop leaves in a direction
similar to that of the magnet and it is accelerated (V ′ > V ).
For the situation of Fig. 5(d) (U = 7 cm/s, V = 12 cm/s, and
α = 260◦), Eq. (7) predicts V ′ = 20 cm/s, in agreement with
the measurement of 18 cm/s. Finally, Eq. (7) predicts that V ′
should be less than V for α < 180◦, giving another mechanism
to slow down drops, and showing once again the versatility
of this tool to manipulate, capture, slow down, or accelerate
frictionless drops. In the same vein, it might be interesting to
look at the effect of rotation, which can deform and even split
a drop, and for which our system provides new possibilities
for controlled experiments either by making a liquid orbit or
by revolving the underlying magnet.
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