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1 Abstract

This experiment demonstrates diffraction of light from a one-dimensional trans-
mission diffraction grating. The Huygens-Fresnel Principle is used to write Fres-
nel’s diffraction integral formula which after making two approximations, namely
Fresnel approximation and Fraunhofer approximation, yields an expression for the
intensity of the diffraction pattern; this expression also elucidates the reciprocal
relation between the shape of the diffraction pattern and that of the grating that
creates it. Using this formula we found the slit separation of the grating to be
h = (3.31± 0.04)× 10−6 m with 0.5% error.

2 Introduction

Christian Huygens’ principle that asserts a wave front to be made of many wavelets
that propagate and interfere with each other to form new wave fronts models light
as a wave, but this was overlooked for almost two centuries while Newton’s corpus-
cular theory of light prevailed. Until 1807 when Thomas Young demonstrated the
interference of light in his famous double-slit experiment: a phenomenon character-
istic of waves. Even then, Young’s conclusions received acceptance only gradually,
with the exception of Augustin Fresnel.

Fresnel’s mathematical prowess allowed him to combine physical insight with math-
ematical rigor. He adapted Huygens’ principle into a formula now called Fresnel’s
diffraction integral. In light of this, diffraction can be understood as the spilling
of wavelets around obstructions in the path of light.

Fresnel’s diffraction integral formula is hard to solve analytically, so Fresnel made
an approximation to his own formula called the Fresnel approximation. It allows us
to describe the electric field of light along its propagation direction after passing
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through an aperture. The diffraction pattern changes as the distance from an
aperture increases: but at far enough distances, it stops changing, other than to
grow in proportion to distance. We can simply the Fresnel integral even further in
this far-field limit; this is called the Fraunhofer approximation.

A transmission diffraction grating is an array of equally spaced identical slits. A
Reflection diffraction grating is an array of equally spaced identical, rectangular
mirrors. We study diffraction from a one-dimensional transmission grating Fig-
ure (1a).

This experiment can be used either to find the slit separation of the grating knowing
wavelength of the light or to measure the wavelength of the light producing the
diffraction pattern while knowing the slit separation of the grating: this is the
basis of a diffraction grating spectrometer. Although, a spectrometer has poor
resolution compared to a Fabry-Perot interferometer, nevertheless, it can measure
a wide range of wavelengths simultaneously.

3 Theoretical background [1]

We motivate the Fresnel’s diffraction integral and after applying the Fresnel ap-
proximation and the Fraunhofer approximation we arrive at an integral that we can
easily evaluate. We find this integral for a rectangular aperture and then use the
array theorem to find the intensity profile after passing through a 1D transmission
grating.

(a) (b)

Figure 1: (a) A transmission grating and (b) the field at an aperture.

3.1 Fresnel diffraction integral

Each wavelet is the source of a spherical wave proportional to eikR/R. Consider
an aperture in a screen at z = 0, Figure (1b). Let it be illuminated with a light
having E(x′, y′, z = 0) within the aperture. For a point (x, y, z) to the right of
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the aperture the net field is given by adding together spherical wavelets emitted
from each point in the aperture. These spherical wavelets must all have the same
strength and phase as the original field. This summation becomes

E(x, y, z) = − i

λ

∫∫
aperture

E(x′, y′, 0)
eikR

R
dx′dy′, (1)

where

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, (2)

is the radius of each wavelet as it crosses the point (x, y, z). The factor −i/λ
ensures the right phase and field strength as well as units. Equation (1) is the
Fresnel diffraction integral.

3.2 Fresnel approximation

Fresnel made an approximation to his formula that requires considering only small
angle rays with respect to the z-axis emerging from the aperture. This allows the
R to be replaced by z in the denominator of (1) which means we can pull it out
of the integral since it no longer depends on x′ and y′. Note that we cannot make
the same approximation in the numerator of (1) since eikR is dramatically sensitive
to small variations in R. To approximate R in the exponent we expand (3) under
the assumption z2 ≫ (x− x′)2 + (y− y′)2 which is consistent with the small-angle
approximation. This gives

R = z

√
1 +

(x− x′)2 + (y − y′)2

z2
∼= z

[
1 +

(x− x′)2 + (y − y′)2

2z2
+ ...

]
, (3)

Making these two approximations in (1) yield

E(x, y, z) ∼= −ieikzei
k
2z

(x2+y2)

λz

∫∫
aperture

E(x′, y′, 0)ei
k
2z

(x′2+y′2)e−i k
z
(xx′+yy′)dx′dy′ (4)

3.3 Fraunhofer approximation

As (4) shows that the field evolves as it propagates along the z-direction, eventu-
ally it stops changing and only scales in size (we’ll see this in a moment). We are
interested in this so called far-field limit. This is called the Fraunhofer approxi-
mation.

If we look at the ei
k
2z

(x′2+y′2) factor in (4) we see that if

z ≫ k

2
(aperture radius)2 (5)

then we can set
ei

k
2z

(x′2+y′2) ≈ 1 (6)
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in (4) and get

E(x, y, z) ∼= −ieikzei
k
2z

(x2+y2)

λz

∫∫
aperture

E(x′, y′, 0)e−i k
z
(xx′+yy′)dx′dy′ (7)

Since z appears only in the combinations x/z and y/z inside the integral we see
that the field can only scale in size and not change its shape as it travels in the
z-direction.
Note that this integral can be interpreted as a two-dimensional Fourier transform
of E(x′, y′, 0) which explains the reciprocal relation of the diffraction pattern that
we will later see and the grating shape that produces it.

3.4 The Array Theorem

The array theorem helps us to find the Fraunhofer diffraction from an array of N
identical apertures.

For N apertures in a mask (Figure 2) assume identical field distribution E(x′, y′, 0)
for each of them and that this field is zero outside the apertures: this allows us not
to worry about the limits of integration in (7) as we can integrate over the entire
mask. The mask is considered to be in the xy-plane so that the nth aperture’s
position is (x′

n, y
′
n).

Figure 2: Array of identical apertures

The array theorem states that the electric field of light after passing through an
array of N identical apertures (of any shape) is

E(x, y, z) =

[
N∑

n=1

e−i k
z
(xx′

n+yy′n)

]

×

−i
eikzei

k
2z

(x2+y2)

λz

∞∫
−∞

dx′

∞∫
−∞

dy′Eaperture(x
′, y′, 0)e−i k

z
(xx′+yy′)

 (8)

The first factor in brackets contains information about the positions of the identical
apertures. The second factor in brackets is the Fraunhofer diffraction pattern from
a single aperture centered on x′ = 0 and y′ = 0.
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3.5 Diffraction Grating

The array theorem can be used to find the field, and hence intensity, of light
after it passes through a one-dimensional transmission grating (Figure 1a) with
rectangular slits.

The Fraunhofer diffraction pattern from a single rectangular aperture is

Eaperture(x, y, z) = −iE0
∆x∆yeikz

λz
ei

k
2z

(x2+y2) sinc

(
π∆x

λz
x

)
sinc

(
π∆y

λz
y

)
(9)

This is the second factor in (8). For the first factor, let the apertures be positioned
at

x′
n =

(
n− N + 1

2

)
h, y′n = 0 (10)

where N is the total number of slits. The summation in the array theorem (8)
becomes

N∑
n=1

e−i k
z
(xx′

n+yy′n) = ei
khx
z (N+1

2 )
N∑

n=1

e−i khx
z

n (11)

This is a geometric sum so we get

N∑
n=1

e−i k
z
(xx′

n+yy′n) = ei
khx
z (N+1

2 )e−i khx
z
e−i khx

z
N − 1

e−i khx
z − 1

(12)

=
e−i khx

2z
N − ei

khx
2z

N

e−i khx
2z − ei

khx
2z

=
sin

(
N khx

2z

)
sin

(
khx
2z

) (13)

Substituting (9) and (13) in (8) gives the Fraunhofer diffraction pattern for a
diffraction grating:

E(x, y, z) =
sin

(
N khx

2z

)
sin

(
khx
2z

) [
−iE0

∆x∆yeikz

λz
ei

k
2z

(x2+y2) sinc

(
π∆x

λz
x

)
sinc

(
π∆y

λz
y

)]
(14)

Now we suppose that the slits are tall enough to satisfy ∆y ≫ λ and if the slits are
infinitely tall, the final sinc function in (14) becomes one. The intensity pattern
(Figure 3) in the horizontal direction becomes

I(x) = Ipeak sinc
2

(
π∆x

λz
x

)
sin2

(
N πhx

λz

)
N2 sin2

(
πhx
λz

) (15)

Since lim
α→0

sinNα
sinα

= N we have introduced N2 in the denominator so that the defi-

nition of Ipeak is independent of N and is the intensity at x = 0. The diffraction
peaks occur when

πhx

λz
= mπ m = 0,±1,±2, ... (16)

xm =
mλz

h
(17)

This means that we can find h if we know λ and vice versa.
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Figure 3: Normalized Intensity profile for a grating with N = 3810, h = 10−5/3
m, ∆x = h/4 m, λ = 633 nm at z = 0.23 m.

4 Experimental procedure [2]

A 633 nm laser beam from a He-Ne laser is incident on a diffraction grating which
has 300 grooves/mm. A paper screen is placed at ≈ 23 cm from the grating and is
used to observe the resulting diffraction pattern. Pictures of the diffraction pattern
are taken for further analysis.

The setup is arranged as shown in Figure (4). Turning on the laser and making
sure that the laser beam travels straight through the grating and falls on the paper
screen we should see a diffraction pattern as shown in Figure (5a).

Figure 4: Schematic of the experimental setup. The red line represents the con-
ceived path of the laser beam. The arrow shows orientation of the grating.

The camera is connected to a computer and its accompanying software uc480

Viewer is used for operating it. The image viewed by the camera can be displayed
live on the computer by navigating to Live video → Open camera. Note that in
Figure (3) we have symmetric peaks about the central most intense peak: we see
similar symmetry in the peaks viewed by the camera. We can visually determine
the central peak since it is the brightest one, and then we position the camera to
view the central peak and two other peaks to its right as can be seen in Figure (5a).
The two knobs on the camera can be used to adjust its intensity and focus to
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get a clear image. If the background of the image is not completely black then
adjusting the exposure time by navigating to uc480 → Properties → Camera →
Exposure time can darken it: setting it to a low value (like 5 ms) can blacken the
background. An image of the diffraction pattern is saved in .jpeg format.

(a) Diffraction pattern with 5 ms
exposure time.

(b) Diffraction pattern with 34 ms exposure
time and the pixel-to-cm conversion window.

Figure 5

The conversion of this .jpeg image into an intensity graph is done using ImageJ.
Opening this image in ImageJ and using two known points in the image (e.g.
grid lines on the paper screen) can give us the pixel-to-cm conversion factor (e.g.
241 pixels/cm), see Figure (5b). To obtain the intensity plot we need to select
the area containing the diffraction peaks and then click on Analyze and choose
Plot Profile. This will produce an intensity plot with x-axis in cm and y-axis
in greyscale magnitude. We then save this data from ImageJ in csv format for
further analysis in a software of our choice (the below are done in Mathematica).

5 Results

The purpose of this experiment is to determine the slit separation of the diffraction
grating by measuring the positions of the diffraction peaks.

5.1 Slit Separation (Analytical)

The grating used in this experiment has 300 grooves/mm which means that the
slit separation is

h =
1

n
=

1

300
mm =

10−5

3
m (18)
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5.2 Slit Separation (Experimental)

The experimentally obtained intensity grayscale data from ImageJ is plotted in
Figure (6a).
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(a) Experimentally obtained intensity pro-
file.
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(b) Experimentally obtained intensity pro-
file fitted with the analytical formula with
∆x = h/4.

Figure 6

We need to fit the analytical expression (15) to this experimental data: the only
parameter is the slit-width ∆x. Choosing this to be ∆x = h/4 gives the best fit,
Figure (6b).

We can find the position of the first peak from the csv file obtained from ImageJ.
It turns out to be x1 = 0.0439103 m. We use this to find the slit separation from
(16)

h =
λz

x1

=
633× 10−9 × 0.23

0.0439103
(19)

h = 3.31562× 10−6m (20)

Looking at the expression for h we see that it has an uncertainty only due to the
uncertainties of z and x1 both of which were measured with a ruler with 1 mm
least count making their uncertainties to be ±0.5 mm. So the uncertainty in h is

∆h = |h|

√(
∆z

z

)2

+

(
∆x

x

)2

(21)

∆h = (3.31562× 10−6)

√(
0.0005

0.23

)2

+

(
0.0005

0.043

)2

(22)

∆h = 3.92217× 10−8 (23)

So the value of h is
h = (3.31± 0.04)× 10−6m (24)

This has a percentage relative error of 0.53%.
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6 Conclusions and discussion

As was mentioned earlier, we can use this experiment in two ways: knowing the
wavelength of the laser we can find the slit separation of the grating or the other
way around. We have found the slit separation using the wavelength, now let us
calculate the wavelength of the laser using the exact value of the slit separation.

λ =
hx1

z
(25)

λ =
0.0439103× 10−5

3× 0.23
(26)

λ = 636.4× 10−9 (27)

This too has a relative error of 0.5%. Such accurate measurement of the wavelength
of light makes (a variant of) this experiment viable to be used as a diffraction
spectrometer.

This also justifies the assumptions we had made in deriving the diffraction intensity
equation, (15):

� Each point in a wavelet acts as a source of a spherical wave proportional to
eikr/r.

� The screen is far enough for us to consider only the rays making small angles
with the z-axis.

� The field eventually stops evolving and acquires a shape that only scales in
size as it travels along the z-axis.

� The slits are significantly larger than the wavelength of the light so that we
can take ∆y → ∞.
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