

MATLAB^{*}

Introduction to MATLAB

Physlab | www.physlab.org

Instructor:

Azeem Iqbal

Lab Instructor

Centre for Experimental Physics Education (CEPE) Lahore University of Management Sciences (LUMS)

Lahore, Pakistan

Contents

- Introduction to MATLAB
- Layout
- Basic arithmetic operations
- Creating vectors and matrices
- Matrix arithmetic
- Data manipulation
 - Introduction to "for" Loops
- Graphs and plotting
 - Introduction to plotting
 - Multiple plots
 - Resolution of graph
- Curve fitting
 - Least square curve fitting of linear data

Introduction to MATLAB

- MATLAB stands for Matrix Laboratory.
- Developed by Cleve Moler from the University of New Mexico in the late 1970s.
- It is a high-performance language for technical computing and integrates computation, visualization, and programming environment.
- It has sophisticated data structures, contains built-in editing and debugging tools, and supports object-oriented programming.
- MATLAB was first adopted by researchers and practitioners in control engineering.
- It is now also used in education, in particular the teaching of linear algebra, numerical analysis, and is popular amongst scientists involved in image processing.

Introduction to MATLAB

Layout

 \Leftrightarrow - 0 X MATLAB R2015a 15 山 0 Q T APPS EDITOR PUBLISH VIEW Search Documentation HOME PLOTS Insert 🛃 fx 🖓 🗸 Find Files 00 R to Run Section Comment % 🗽 🏠 Go To 👻 Compare New Open Save Breakpoints Run Run and Advance Run and Toolbar Indent 🛐 📲 🚱 Print 💌 🔍 Find 💌 Advance Time NAVIGATE FILE BREAKPOINTS RUN - 2 4 🔶 🖬 🖾 D: Azeem Igbal > Personal > UMT > Thesis > initialkalman Current Folder 1 🚀 Editor - D:\Azeem Iqbal\Personal\UMT\Thesis\initialkalman\kalman.m Θ× Workspace 1 test1.m + Name kalman.m 32 X Value Name * functionfile.m O=0.5; %process variance z 1 -44.3426 . ۴ kalman.m H y -5.4123 **Editor** R=10; %measurement variance; 2 Kalman.pdf x 48.6725 test1.m P=10; %state variance R 10 3 -Window Q 0.5000 Kg=P/(P+R); %Kalman gain 4 P 2.0000 H Nk 5 40 Kg 0.2000 Working k 40 1 Command Window dx 1 Directory × New to MATLAB? See resources for Getting Started. dt dt 1 44.6245, 44.1125, 2.00000074 42.0646, data 40x4 double .m files 45.1125, 35.8018, 43.2504, 2.00000047 ans 5x5 double 3x7 double A 44.2504, 2.00000030 48.7989 45.1601, Ο 46.3657, 47.1884 46.1601, 2.00000019 Workspace 44.9784Window46.8883, 47.3657, 2.00000012 (Variables 47.8883, 52.2215, 48.7549, 2.00000008 49.7549. 44.3426, 48.6725, 2.00000005 List) $f_x >>$ Details ~ 1 111 111 1111 script Ln 3 Col 22

Introduction to MATLAB

Basic arithmetic operators

Basic Arithmetics

a = 5; b = 4;

sum	=	a + b;
diff	=	a – b;
prod	=	a * b;
div	=	a / b;
exp	=	a^2;
sqrt	=	sqrt(b)
	sum diff prod div exp sqrt	sum = diff = prod = div = exp = sqrt =

Basic Arithmetics

Concept of precedence:

PEMDAS

F

)	=	Parentheses
	=	Exponents
1	=	Multiplication
)	=	Division
1	=	Addition
)	=	Subtraction

Order of precedence 1 2 3 4 Which ever comes first in left 5 6 4

Basic Arithmetics

Solve:

6 ÷ 2 (2 + 1)

What is the answer 1 or 9? The correct answer is "9"

Introduction to MATLAB

Creating vectors and matrices

Vector and Matrices

Physlab | www.physlab.org

Vector

 $x = [1 \ 2 \ 5 \ 1]$ Row or Column matrix x = [1 2 3; 5 1 4; 3 2 -1]Matrix $\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 1 & 4 \\ 3 & 2 & -1 \end{bmatrix}$ Transpose y = x' $y = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$

Vector and Matrices

- evenlist = [2 4 6 8 10 12 14 16 18];
- evenlist2 = 2:2:18;
- evenlist3 = [2; 4; 6; 8; 10; 12; 14; 16; 18];

evenlist = evenlist3';

Matrix arithmetic

a = [2 4 6; 1 3 5; 7 9 11];

\mathcal{C}		\sim
2	4	6
1	3	5
7	9	11

Type size(a) to check the size of matrix, in this case it is 3x3 matrix

 You may want to extract a few values using: a(2,2) a(2,:) a(:,2)

Dot and scalar product

a * b Matrix Multiplication

a .* b Element by Element Multiplication

Data manipulation using "for" Loops

Basic structure:

for (condition) statements end

Generate the first 15 Fibonacci numbers f=[1 1];

```
for k=1:15
f(k+2) = f(k+1) + f(k);
end
```

Let's practice! Solve the first exercise ...

Contents

- ✓Introduction to MATLAB
- ✓Layout
- ✓ Basic arithmetic operations
- Creating vectors and matrices
- ✓Matrix arithmetic
- ✓Extracting elements from matrices
- Data manipulation
 - Introduction to "for" Loops
- Graphs and plotting
 - Introduction to plotting
 - Multiple plots
 - Resolution of graph
- Curve fitting
 - Least square curve fitting of linear data
 - Fitting and plotting with error bars

Introduction to MATLAB

Graphs and plotting

Graphs and plotting

 They act as visual aids indicating how one quantity varies when the other quantity is changed, often revealing subtle relationships.

- 2. Determine slopes and intercepts
- 3. Compare theoretical predictions and experimentally observed data.

Graphs and plotting

Sr#	Time (s)	Mass (g)
1	0.34	121.4
2	0.74	121.4
3	1.13	121.3
4	1.52	121.2
5	1.92	121.2
6	2.31	121.1
7	2.70	121.1
8	3.10	121.0
9	3.49	121.0
• • •	•••	• • •
225	89.94	102.8
226	90.33	102.8

Introduction to plotting

Matlab can generate plots of a number of types

- e.g.
 - Linear plots
 - Line plots
 - Logarithmic plots
 - Bar graphs
 - Three-dimensional plots

In lab we will primarily work with two-dimensional plots by creating two "vectors" or an <u>independent</u> and <u>dependent</u> quantity.

It is customary to plot <u>independent</u> variable (the "cause") on horizontal axis and <u>dependent</u> variable (the "effect") on the vertical axis.

Typical models that fit typical Physlab | www.physlab.org experimental data

ml 75 d 60 VOLUME 45 C b 30 а 15 10 20 30 50 °C 40 Temperature mi 3 75 60 VOLUME 45 30 15 10 20 30 °C 40 50 Temperature

Linearization

Physlab | www.physlab.org

28

Superposing Graphs

Example

- Let's consider an example of a stretched string fixed at one end to a rigid support, is strung over a pulley and a weight of 1.2 kg is attached at the other end. The string can be set under vibrations using a mechanical oscillator (woofer) connected to the signal generator.
- The relation of angular velocity (w) with the wave vector (k) is called the dispersion relation and given by,

$$w(k) = n \sqrt{\frac{T}{\mu}} \times \frac{\pi}{L}$$

 $w(k) = n \sqrt{\frac{T}{\mu} \times \frac{\pi}{L}}$ $2\pi f = n \sqrt{\frac{T}{\mu} \times \frac{\pi}{L}}$ $f = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \times n$ $y = \underline{m} x + C$

Example

Plot the following experimental data:

Resonance mode (n)	1	2	3	4	5
Frequency (Hz)	20.82	41.82	61.32	82.32	104.1

Commands:

```
n=[1 2 3 4 5];
f=[20.82 41.82 61.32 82.32 104.1];
plot(n,f)
xlabel(`Resonance mode (n)')
ylabel(`Frequency (Hz))')
title('Dispersion relation for a bare string')
```


Possible Ways of Plotting (a) Not acceptable

(b) Barely acceptable

(c) Better

(d) Acceptable, good in all respects

(e) Unnecessary detail or embellishment

(f) Axes too long

(g) Axes tick marks are inconsistent and clumsy

Resolution of Graph

Physlab | www.physlab.org

Suppose we have a sine curve, sampled at interval of 1s for a duration of 10s, it means there are eleven data points contained within the sampled duration.

Resolution of Graph

 We know from experience that a plot of the sine function should be smooth.

Why is this discrepancy?

The reason is that we have not sampled enough points. So, we decrease the sampling interval to 0.1 s and hence, increasing the number of samples to 101, we recover a smooth sine curve.

Resolution of Graph

Physlab | www.physlab.org

44

Multiple plotting

Let's define input vectors:

x=0:0.1:4*pi; y=2*cos(x); y1=2*sin(x);

figure; plot(x,y,`r-d') hold on plot(x,y1,`b-*')

Physlab | www.physlab.org

Let's practice! Solve the second exercise ...

Physlab | www.physlab.org

Introduction to MATLAB

Curve Fitting

Contents

- ✓Introduction to MATLAB
- ✓Layout
- ✓ Basic arithmetic operations
- Creating vectors and matrices
- ✓Matrix arithmetic
- ✓Extracting elements from matrices
- Data manipulation
 - Introduction to "for" Loops
- Graphs and plotting
 - Introduction to plotting
 - Multiple plots
 - Resolution of graph
- Curve fitting
 - Least square curve fitting of data
 - Fitting and plotting with error bars

Example

 A student wants to check the resistance of a resistor by measuring voltage (V) across it and the resulting current (I) through it and then calculating the resistance through Ohm's Law.

•Using slope of the relation

Curve Fitting Example

Plot the following experimental data:

Voltage (V)	11.2	13.4	15.1	17.7	19.3
Current (A)	4.67	5.46	6.28	7.22	8.30

Commands:

v=[11.2 13.4 15.1 17.7 19.3]; a=[4.67 5.46 6.28 7.22 8.30]; plot(a,v,'o') xlabel(`Current (A)') ylabel(`Voltage (V))') title('Finding the value of a resistance through Ohm's Law')

Physlab | www.physlab.org

Curve Fitting

via Isqcurvefit command

1. Create a function file

2. Call the function via lsqcurvefit

	e	xperiment_1.m × +
1		<pre>[] function fout = experiment_1(p,fin)</pre>
2	-	fout = p(1) *fin+p(2)
3	-	^L end
4		

Command Window

New to MATLAB? See resources for Getting Started.

>> lsqcurvefit(@experiment_1, [1 1], I,V)

Physlab | www.physlab.org

3. The function outputs the optimized values of parameters

Local minimum found.

Optimization completed because the <u>size of the gradient</u> is less than the default value of the <u>function tolerance</u>.

<stopping criteria details>

ans =

2.2605 0.9042

Uncertainties in Voltage and Current

Physlab | www.physlab.org

Voltage (V)	Uncertainty due to resolution (U _s)	Uncertainty due to rating (U _r)	Total Uncertainty in Voltage (U _v)
11.2	0.03	0.11	0.12
13.4	0.03	0.13	0.14
15.1	0.03	0.15	0.15
17.7	0.03	0.18	0.18
19.3	0.03	0.19	0.20
Current (A)	Uncertainty due to resolution (U _s)	Uncertainty due to rating (U _r)	Total Uncertainty in Voltage (I _v)
Current (A) 4.67	Uncertainty due to resolution (U _s) 0.003	Uncertainty due to rating (U _r) 0.047	Total Uncertainty in Voltage (I _v) 0.047
Current (A) 4.67 5.46	Uncertainty due to resolution (U _s) 0.003 0.003	Uncertainty due to rating (U _r) 0.047 0.055	Total Uncertainty in Voltage (I _v) 0.047 0.055
Current (A) 4.67 5.46 6.28	Uncertainty due to resolution (U _s) 0.003 0.003 0.003	Uncertainty due to rating (U _r) 0.047 0.055 0.063	Total Uncertainty in Voltage (I _v) 0.047 0.055 0.063
Current (A) 4.67 5.46 6.28 7.22	Uncertainty due to resolution (U s) 0.003 0.003 0.003 0.003 0.003 0.003 0.003	Uncertainty due to rating (U _r) 0.047 0.055 0.063 0.072	Total Uncertainty in Voltage (l _v) 0.047 0.055 0.063 0.072

What if we want to plot uncertainties for both axis?

We'll use the "XYErrorbar" function file available on Physlab website.

Syntax:

xyerrorbar(x_vector, y_vector, u_x, u_y, 'o')

Linearizing Plots: Cooling Objects

Light Bulb (Power Law)

$$P_{\text{elec}} = \sigma A R^{4\gamma} = C R^{4\gamma}$$
$$\log(P) = \log(C) + 4\gamma \log(R)$$

When does a model breakdown?

Sample Work from Students of PHY100/200


```
clc:
clear all;
close all
v=[90:5:1301;
r= [8.379,8.555,8.908,9.408,10.525,11.554,13.3476,13.5534, 13.818];
r^2 = r^{2}
plot(v,r2,'.')
dr = [0.382,0.0882,0.1323,0.441,0.3381,0.4263,0.5630,0.20433,0.26019]; *uncertainities*
in r
a = v.*0.01;
                                      %Um ratings of v
p = sgrt((0.3), 2 + (a), 2);
                                      suncertainities in v
                              Nuncertainities in r square by formula deltag = 2rdeltar
q= (2.*r).*dr;
Utrans = 0.32.*p;
                              %Utrans 0.32 is slope from graph
Utotal = sqrt({q}.^2+(Utrans).*2); *Uncertainities of rsquare after transformation
w = 1./(Utota1.^{2})
                                 %weight of uncertainities
Scalculation of final slope fm
                 ty square
V2 = V.*27
sumw = sum(w);
                 %sum of weights
pr vr2 = v.*r2; %product of xy i.e v and r square
pr w vr2 = w.*pr vr2; %product of weight and product of xy i.e v and r square
sumpr w vr2 = sum(pr w vr2); \sum of product of above two
                         % product of weight and voltage
pr wv = w.*v ;
sumpr wv = sum (pr wv); % sum of product of weight and voltage
                  > product of weight and r square
pr wr2 = w.*r2 ;
sumpr wr2 = sum(pr wr2); % sum of p[roduct of weight and r square
                     % product of weight and v square
pr wv2 = w.*v2;
sumpr wv 2 = (sumpr wv). 2; % square of sum of product of weight and voltage
nume=((sum(w)).*(sum(w.*(v.*r2))))-((sum(w.*v)).*sum(w.*r2))
denom=((sum(w)),*(sum(w,*(v,^2))))-((sum(w,*v)),~2)
um=sqrt(sum(w)./denom)
final m = nume/denom
& calculating c
nume c = {((sum(w.*(v.*2))).*sum(w.*r2))-((sum(w.*v)).*(sum(w.*(v.*r2))))}
final c = nume c/denom
uc = sgrt((sum(w.*(v.^2)))/denom)
y = ((final m).*(y)) + final c;
```

hold on

CALCUL ATTONS

cycle	Height (m)	Delta h (m)	N	Delta E (Joules)	W avg = (rad/sec^2)
1	0.61420	0	7.797	0	5.065
2	0.57090	0.04300	7.247	0.04250	4.815
3	0.53480	0.03610	6.789	0.03540	4.646
4	0.50840	0.02640	6.454	0.02590	4.676
5	0.47060	0.03780	5.974	0.03710	4.267
5	0.45560	0.01500	5.784	0.01470	4.148
7	0.42510	0.03050	5.396	0.02990	1.904
9	0.41010	0.01500	5.205	0.01470	4.148
0	0.39180	0.01830	4.974	0.01800	3.569
10	0.37480	0.01700	4.758	0.01670	3.220

Uncertainty in height= 0.00005/(6)^0.5

Uncertainty in radius= 0.005/(6)^0.5=0.002

(Analog instrument) (Analog instrument)

height loss of the mass hanger with time 0.8 0.7 Ð 0.4 0.4 0.4 0.4 height(m) 888000000008888 09 99800000 90 00 0.3 00 Ð D 00 8 0.2

Monday 10th Nov. 2014.
Experiment # 1.2A
Q1. Moment of Inertia of tenn's ball
J= 25 N/Ke - Ki
$(ke^{-}-ke^{-})$
First are find respective quantities nucled to measure
The moment of greatia of a holiow sphere and a computer
cliste cylinder
For compute without
R1= 4.31 mm = 0.431cm Re = 32.07 nm = 3.207m
R2 = 14.96 mm = 1,496 cm . Ri = 26.38 mm = 2.636 cm
h, 5.78 mm = 6.578 cm N= 62.959
h2 = 16.90 mm = 1.690 am
Ton = 26.10/20 = 1.305 secs / 100 = 3.871 Res
I for tall section
7 1 - 1 - 24
Int - T ghi KT
$I_{\text{that}} = \frac{1}{2} \left(\frac{1}{k} \right) \left(2.7 \times 10^{-8} \text{ g/mm}^3 \right) \left(5.78 \right) \left(4.59 \right)^4$
Ital = 8.697 g fmm2 0.087 g am2

I fir sheat section 1= 1 xph, (R1-R1) Tabr = 0.5 x K x 2.7 × 15- 1.69 (1.98" - 0.934 +) Ishut = 35.646 g cm2 Itatal = Ital + Ishort = 35.733 g cm2 Tuylinder = 35.733 gam2 We know That T= 2T I/K or $K = 4K^2 I$ T^2 K = 828.3397 gcm2/s2 Now I corres = K Tennie 452

Theoretical value of moment Itennis = (828.559) (3.871)2 of inertia of toxals ball 912 $I_{\text{control. The section l}} = \frac{2}{5} \left(\frac{62.95}{(32.07 - 36.00)} \right)$ Itomis = 314.409 gcm2 I termin theoretical = 364.087 gcm2 Uncertainities * Uncertainities in measurements done with verpice calliper. (Ar) $\Delta r = 0.02 = 4.08 \times 10^{-3} \text{ mm} = 4.08 \times 10^{-1} \text{ cm}$ * Uncertainities in measurements done with stopwatch (ST) DT = 0.01 = 2.887 × 10-3 secs. * Decent ainities in quantities measured with weighing balance (AM) $\Delta M = 0.01 = 2.887 \times 10^{-3} \text{ grand.}$ Rating of digital devices not included in uncertainfier

Uncertainity in Itall $\Delta I_{\text{tall}} = \sqrt{\left(\frac{\delta I_{\text{tall}}}{\delta h_1}\right)^2 + \left(\frac{\delta I_{\text{tall}}}{\delta R_1}\right)^2}{\delta R_1} \times \Delta R_1^2$ $\Delta T_{\text{MA}} = \left(\frac{1}{2} \pi g \kappa_{i}^{2} \right)^{2} + \left(4\kappa_{1}^{2} \pi g h_{i} \kappa_{i}^{3} \times \Delta \kappa_{i} \right)^{2}$ (0.5(x) (2.7) (0.754) (7.60x10-1)) + (2.x(x) (2.7) (0.572) (0.434) (7.00x0-1) SI tall 2 AL = 3.77 ×10-9 + 1.07 ×10-7 D I tall = 3.33 × 10-4 gcm2 Orcentainity in Ishert $\Delta \Xi_{max} = \int \left(\frac{1}{2} \pi g \left(R_2^* - R_1^*\right)\right)^2 + \left(\frac{1}{2} \pi g h_2 R_2^* \times 4 \times \Delta R_2\right)^2 + \left(\frac{1}{2} \pi g h_2 R_1^* \times 4 \times \Delta R_1\right)^2$ AI + 9.1 × 10-7 DIshert = 0.04 geme

D Ecylinder = (3.33×10" + 0.04) gcm2 Slybrider = 0.04 gcm⁴ Uncertainity in I terms theoretical $\frac{\mathbf{S}_{tr}^{2}}{6R_{e}} = \frac{2}{5}M\left[\frac{-5R_{e}^{2} + 5R_{e}^{2}R_{i}^{3} - 3R_{e}^{2} + 3R_{e}^{2}R_{i}^{2}}{(R_{e}^{3} - R_{i}^{3})^{2}}\right]$ = -2075.99 $\frac{6 I_{tt}}{6 R_{t}} = \frac{2}{5} M \int \frac{(R_{e}^{3} - R_{i}^{3})(-5 R_{i}^{4}) - (R_{e}^{5} - R_{i}^{5})(-3 R_{i}^{4})}{(R_{e}^{3} - R_{i}^{3})^{2}}$ = 102,83 6 Irt z $\frac{2}{5} \left[\frac{R_e^5 - R_i^5}{R_e^3 - R_i^3} \right] = 5.78$ 6M $\frac{\left(\frac{617}{6R_{c}} \Delta R_{c}\right)^{2} + \left(\frac{61_{tt}}{6R_{c}} \times \Delta R_{i}\right)^{2} + \left(\frac{61_{tt}}{6M} \times \Delta M\right)^{2}$ OIet =

QH4 Ans 1:-I termis throne = (364.09 I 0.85) g cm2 New $\Delta K =$ AT2 × DIcylinder) AR = IT- 'x-2 KAT) 6.5 gem 1/52 SK = 늂 Ans 21- Testinal constant (K) = (828+ 6) g cm=/s2 Now KT2 1 alma 472 1.2.1 AT TX XAT 1. BK oxperimentel AItennis .48 gcm2 And SI I Emnis exprimental = (314.12 2.5) gcm2

Physlab | www.physlab.org

Let's practice! Solve last exercise of this session...

Introduction to MATLAB

End of session!