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The purpose of this experiment is to get familiarized with rotational motion. We normally
deal with linear motion in our introductory physics class. Rotational motion is only glossed
over, leaving holes in our students’ understanding. This simple experiment looks at how a
torque produces angular acceleration. Moment of inertia determines how much an object can
accelerate in response to a torque. Angular acceleration is the change in angular velocity in
unit time. How could we measure these quantities? Finally, just as in linear motion, there is
the ubiquitous friction which results in loss of energy. What factors determine the amount
of friction?

In the experiment we will use a photogate to determine angular velocity and all quantities
will be derived from this basic signal. We will learn how this instrument works and how
data can be processed on a computer to extract desired quantities. Rotational motion is also
interlinked with linear motion through the relationship v = ωr. In this experiment, we will
see what is meant by this relationship. Furthermore, we will observe graphic depictions of
differentiation and integration of numerical data.
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1 Conceptual Objectives

In this experiment, we will,

1. observe that torque produces rotational acceleration α;

2. derive acceleration and angular displacement θ from angular velocity ω;

3. understand and use the relationship v = ωr which connects rotational with linear
motions;
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4. understand that there are frictional losses in rotational motion, and

5. motivate oneself that moment of inertia I plays the same role as mass in linear motion.

2 Experimental Objectives

The experiment employs one kind of a sensor—a photogate. The photogate looks for ob-
structions in a path of light between its two arms. In our experiment, this obstruction is
presented by a rotating disk. The rate of obstruction is measured and from it the rotational
speed, called the angular velocity of the object is deduced. All other quantities such as α
and θ can be subsequently inferred from differentiation and integration of the data. This
is achieved by a computer program. So in the process, you will also learn some numerical
techniques that are commonly used in experimental physics. Of course, at each stage, we
will ask you to interpret all graphs generated and take that extra leap by converting your
qualitative interpretation into quantitative inferences.

3 Theoretical Introduction

4 Apparatus

The apparatus for this experiment is quite simple and is shown in Figure 1. An axle is
vertically mounted on a bearing. The axle can rotate. Two horizontal shafts can be inserted
into the top of the axle through a connecting element. These identical shafts are on opposite
sides of the axle. The shafts swirl in a horizontal plane as the axle rotates. The shafts
have equidistant grooves spaced 1 cm apart and will be useful as positional markers in later
parts of the experiment. Different kinds of weights can be added to the shaft, thus changing
the rotor’s moment of inertia. Important dimensions of the various elements are enlisted in
Table 1.

Axle D = (12.75± 0.03) mm
Horizontal shaft L = (16.5± 0.1) cm; m = (57.4± 0.1) g
Aluminum mass L = (1.00± 0.05) cm; m = (30.50± 0.05) g
Small brass mass L = (1.50± 0.05) cm; m = (99± 1) g
Large brass mass L = (3.00± 0.05) cm; m = (200.0± 0.5) g

Table 1: Dimensions and specifications of the various elements used in the rotational appa-
ratus.

The axle can be set into rotation by turning with hand. In fact, in the first part of the
experiment, this is how you will set it into rotation. Alternatively, a vertically falling mass
M can apply a torque on the axle, thereby rotating the horizontal shafts. A set of weights
is connected to a hanger, and a thread which passes over a pulley and reaches the axle. As
the weight is released it descends under the action of gravity, pulling the thread along and
exerting a torque on the axle. As the descending weight accelerates in its downward linear
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Figure 1: Overview of the experimental arrangement demonstrating various facets of rota-
tional motion.

motion, it also boosts the angular velocity of the axle and the shafts attached to it. We have
provided weights of mass (100±1) g. You can add them successively on a mass hanger which
also weights (100± 1 )g.

In this experiment, we will measure the angular velocity ω of the assembly. This is achieved
through a disc that is coaxially attached to the axle and co-rotates with it. The circular disk
has a series of carefully carved equidistant and identical spokes. These spokes intervene the
sensitive area of a photogate. The photogate comprises an LED and a photosensor and can
detect when the beam of light is interrupted by an intervening obstacle, which in our case is
a particular spoke of the rotating disk. The signal is fed into the computer and analyzed.

The photogate’s response is a binary pulse with two states of 2.5 V and 0 V corresponding to
the light beam being interrupted and clear respectively. This signal is read through our data
logging device called Physlogger. The photosensor has four wires: two of them are labeled
as G, one is 5 and one is Photo. Either one of the G wire and the 5 wire is connected with
the identically named terminal on Physlogger while Photo is connected with the A+ terminal.
The pin configuration and other details of the Physlogger data logging system can be read
from our website [1]. The Physlogger box is connected to the PC using a USB cable.
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5 The Experiment

The experiment is divided into two phases and on top of it we have also included an optional
part which the brightest students will be motivated to conduct. However, before moving
on, we like to highlight a few noteworthy tips to get you started with Physlogger. Your
instructor will, hopefully, provide you with instruction and the user manual [1] if you are
stuck somewhere.

After the connecting wires between the photogate and Physlogger are in place, open the
Physlogger application. Click Connect to the Arduino Mega 2560 COM(XX). You should
immediately observe a waveform appear on Channel 1. Right click on the channel and
change the Channel Type to Analog IN RSI. You are now set up for the next step.

Twist the axle and you should see a series of pulses appear on the screen. A sample is shown
in Figure 2. In order to save data available in the current session, you simply click Export→
DataFile→ Raw and save your file with a .txt extension. Data will be saved as two columns,
one for time and the other with the voltage values. This file can then be loaded in a software
of your choice for subsequent analysis. We choose Matlab and this is how we will describe
the remainder of this experiment.

Figure 2: A sample waveform acquired from the photogate. The red line shows the setting
of the threshold. Values above the threshold will be read as high (light interrupted) and
below the red line will be interpreted as low (light passes through). The time between two
successive edges is calculated and from the geometry of the corrugated disk, the angular
velocity is computed. For higher angular velocities, the signal may appear rugged; in these
cases we generally keep a smaller value for the threshold, say 0.3 V.

5.1 Phase 1: Measuring angular velocity and observing how it
decays

Remove the string from the axle. Attach the set of four weights to the outer end of each
horizontal shaft. Keep the aluminum masses with screws on the outermost and innermost
sides (Fig. 3) and the brass masses sandwiched in between. The two sets should be symmetric
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across the two shafts. Tighten the weights strong enough that they do not fly off when the
axles rotates. Start the Physlogger app, make the necessary configuration and start a new
session. Give the axle a twist with your hand and observe the waveform develop on the
Physlogger’s desktop. Once the axle has slowed down and approached rest, save your data
and open Matlab.

(a) (b)

Figure 3: One technique for varying the moment of inertia of the rotational apparatus is to
change the position of the masses attached to the axles representing (a) larger and (b) smaller
moments of inertia.

In Matlab, move to the directory where you have saved the downloaded codes. On the Matlab
prompt, enter the name of the script findomega. This script will take your file comprising
the timing information and the photogate voltage signal and extract the angular velocity ω
for you. What is the maximum value of ω and how does it decay? Fit your data to an
exponential decay curve and quantify the rate of the decay? For curve fitting, we generally
use Matlab’s toolbox cftool. What could be the possible reasons for the decay of ω?

You can experiment on how the decay rate changes with the moment of inertia. A mass m at
a distance d from the axis of rotation possesses a moment of inertia md2. You can change the
moment of inertia by varying the masses attached to the shafts or changing their positions.
The grooves on the shafts serve as convenient markers for the distance. Change the moment
of inertia and see how the decay rate changes. Note down all your observations and discuss
these with your instructor.

Furthermore, if you would like to process and observe individual data sets, here is a list of
variables generated by the script.

time Time in seconds
photo Raw signal generated by the photogate
photo2 Binary form of the photogate signal
dsfilt Time intervals between successive edges
time avg Times at which ω is computed
omega The angular frequency ω

Table 2: Variables generated as a result of the script omegafind.m.
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5.2 Phase 2: Quantifying energy loss due to frictional torque

In this phase of the experiment, you will perform a quantitative measurement of how much
energy is lost in a single revolution of the axle and will correlate it with the angular speed. In
linear motion, the frictional force ffr may depend on the speed v of the object. A commonly
used model is the Stokes model:

ffr = −bv. (1)

Analogously in rotational motion, the motion is impeded by a frictional torque. I wonder if
this torque depends on the angular velocity ω,

τfr
?
= −bω. (2)

For this investigation, we apply a known torque to rotate the axle and the shafts. A weight
of approximately 500 g is connected with a length of string. One end is attached to the
wight bearing hanger, passes over the pulley and the other end is strung through the holes
in the axle and tied to the screw fastened on the axle. The length of the string is such that
when fully extended, the weight does not touch the ground. The weight can be ascended by
turning the axle by hand; this will wrap the thread around the axle and lift the weight. As
the weight descends, the thread unwraps.

Therefore, if the weight is lifted to its maximum height and released, it will descend while the
axle starts rotating. When the weight reaches its lowermost position, it bounces up again,
this time wrapping the thread in the opposite direction. In this manner, several wrapping-
unwrapping cycles are observed and the weight bounces up and down before finally coming to
rest at its lowest position. We will measure this bouncing and determine the energy lost per
bounce and energy lost per single revolution of the axle. Later we will correlate the energy
lost with the angular speed.

The weight of mass M tied to the end of the string in fact applies a torque τ = Mgr where
r is the radius of the axle (See Table 1). This torque accelerates the system according to
Newton’s second law,

τ = I
dω

dt
= Iα (3)

hence changing the angular velocity. We will measure the changing angular velocity (called
the angular acceleration α).

Lift the weight to its maximum height, start the Physlogger app, configure the channel and
start the session. Release the weight. The app will display the signal from the photogate.
Physically observe the multiple bounces of the weight and the angular speed of the axle go
up and down. Save your data. Note down all your observations.

In order to process data, you will need to run the Matlab script bouncer. This will generate
all the required data, whose variable names are listed in Table 3 (in addition to the variable
names defined in Table 2).

Here is a brief outline of what the script bouncer achieves. The angular acceleration is
computed by numerically differentiating the angular velocity (α = dω/dt). The linear dis-
placement of the weight is correlated with the angular motion and determined in the following
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omegafilt Filtered angular velocity
omegadiff Angular acceleration
omegadifffilt Filtered angular acceleration
rev Number of revolutions of the axle
height height of the bouncing weight

Table 3: Variables generated as a result of the script bouncer.m.

Bounce Start time End time Before h After h ωavg Before rev. After rev. ∆h Nrev ∆E/Nrev

(s) (s) (cm) (cm) (s−1) (cm) (J)
1 19.02 31.04 −17.36 −25.66 6.23 19.7 32.36 . . . . . . . . .

Table 4: Sample data table for calculating frictional loss.

way. We know that v = ωr where v is the peripheral speed of the axle. Since the thread is
attached to the axle, this variable also represents the speed of the thread and the speed of
the weight. The displacement is computed from the integral,

x(t) =

∫ t

0

v(t′) dt′ = r

∫ t

0

ω(t′) dt′. (4)

Hence numerical integration of the angular velocity yields the angular displacement. Mul-
tiplying the displacement with the axial radius r gives the linear displacement (height) and
dividing by 2π gives the number of revolutions. So we have all the desired variables.

Plot these signals, draw a sketch of the signal in your notebook (or print) and explain why the
signals looks the way they are. Discuss your interpretations with the instructor. Recognize
the points of maximum and minimum angular velocity, angular acceleration and the turning
points of the bouncing weight.

You can plot a signal in Matlab using the following command:

figure; plot(time avg, variable name);

We would now like you to calculate the energy losses. If you observe the data for the height,
you will notice that in successive bounces, the maximum height to which the weight rises
keeps on dropping. Suppose the drop in each bounce is ∆h. This will lead to a drop in
energy ∆E = Mg∆h. Determine the number of revolutions in each bounce. Hence compute
the average energy lost per revolution. Furthermore, calculate the average angular velocity
per bounce. This can be approximated by ωmax/2.

We have found it useful to make a table of our observations; something similar to the following
will help.

After you’ve populated the table, plot the average energy lost per bounce as a function of the
angular speed. What does your relation look like? Fit your data to a suitable model. Change
the position of the masses on the shafts and observe the changes in the angular velocity and
angular acceleration.
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Figure 4: Two bounce cycles of the data are shown. On the top, there is the angular velocity
and on the bottom, the corresponding linear height. Compare the points of maximum ω and
minimum height and vice versa. The loss in height across the bounce cycle is also labeled as
∆h in this diagram.

5.3 The optional part!

Take a longer thread so that the hanging weight will touch the ground in its downward fall.
As it touches the ground, the thread becomes lax. At this point compute the angular velocity.
Let’s call it ωo. What is your estimate of the total energy lost during the descent of the weight
through an overall height H? Using the energy conservation equation:

MgH = {Total energy lost}+ Iω2
o (5)

can you estimate the moment of inertia of the shaft with its attached masses?
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