Conical Swing of a Pendulum and Centripetal Forces Muhammad Waseem Ashraf, Umar Hassan, Fakeha Asghar, Mohsina Asif, and Muhammad Sabieh Anwar* Syed Babar Ali School of Science and Engineering, LUMS January 25, 2021 Version 2021-2 This experiment uses a conical pendulum to familiarise us with dynamic equilibrium in rotational motion. In this investigation, we will identify the free body diagram of a horizontally whirling object and see how it lifts as its speed goes up. The lift apparently defies the downward pull of gravity but we will see how a delicate balance of forces allows the object to swirl at a certain lift angle. As the speed of the object changes, the forces adapt and preserve the delicate balance. This experiment eventually becomes a really nice demonstration of the interplay of geometry, vectors, forces, and equilibrium. This experiment recreates the mental problem in Paul Nahin's beautiful book [1], "In Praise of Simple Physics" and is one of the author's methods to determine the value of g. In this experiment, the angular speed of a pair of spheres moving in a horizontal plane is controlled by a stepper motor controller. The angular speed is monitored in real-time and displayed on a LCD screen. We then use an image processing software to find the geometric parameters of the system. This information is used to make quantitative assessments. In short, this experiment clears up concepts about rotational motion and also helps in visualising how a system keeps up with the laws of physics. #### **KEYWORDS** Dynamic equilibrium \cdot angular velocity \cdot centripetal force \cdot conical pendulum \cdot acceleration due to gravity. #### 1 Objectives In this experiment, we will, ^{*}This document is distributed under the CC-BY-SA license. Email sabieh@lums.edu.pk for reusing. - 1. learn how to draw a free body diagram of an object, - 2. observe the effect of angular velocity on geometric parameters of conical motion, - 3. learn how to use an image processing software to find angles, - 4. learn resolution of vectors and their use in equilibrium equations, and finally, - 5. learn how to calculate uncertainties when we take measurements from a video. #### 2 Theoretical Introduction Have you ever tried swinging a bucket filled with water over your shoulder? Why doesn't the water spill out when the bucket is upside down? Now replace the bucket with a stone. Why is there still tension in the string when stone reaches the top position? What is the minimum angular speed you need in these attempts to pass the critical top point? Retry with a shorter string length; do you need the same effort to reproduce the effect? These simple experiments that some of us have tried in our childhood have simple but deep explanations in basic physics. In this experiment, a small plastic ball is attached at one end of a light aluminium rod while the other end is attached to a circular disk. Two such rods and balls are available, see Fig. 1. The disk is mounted to the apparatus scaffolding via a stepper motor. When the stepper motor starts rotating, the disk also rotates and the plastic balls lift. As the plastic ball is moving in circular motion, it must be experiencing centripetal acceleration a_c which is given by: $$a_c = \frac{v^2}{r},\tag{1}$$ where v is the linear speed of the mass and r is the radius of the circular motion. The acceleration is directed along the radius of the dashed circle and towards the shaft. If we take T as time period of rotatory motion then velocity can also be expressed as: $$v = \frac{2\pi r}{T}. (2)$$ Now replace the expression of v from Eq. (2) into Eq. (1) obtaining: $$a_c = \frac{4\pi^2 r}{T^2}. (3)$$ The required centripetal force to keep the circulating mass in orbit is provided by the horizontal component of the string tension, F: Figure 1: Schematic diagram of the conical pendulum. The geometry and the variables used in the main text are identified. $$F\sin(\alpha) = m\frac{4\pi^2 r}{T^2}. (4)$$ Furthermore, as there is no vertical motion of mass so the vertical component of the string tension is equal to the weight of the mass: $$F\cos(\alpha) = mg. \tag{5}$$ This is how the delicate balance is achieved. Note from Eqs. (4) and (5) that if T changes, $F \sin(\alpha)$ and $F \cos(\alpha)$ must readjust. From these equations we can show that: $$F\sin(\alpha) = \frac{F}{g}\cos(\alpha)\frac{4\pi^2r}{T^2} \tag{6}$$ and from the geometry, we know that: $$\sin(\alpha) = \frac{r}{L_{eq}},\tag{7}$$ and $$\cos(\alpha) = \frac{h}{L_{eq}}$$, (8) we eventually arrive at the expression, $$g = \frac{4\pi^2 h}{T^2}. (9)$$ Note that L_{eq} is the distance of the ball from the apex of rotation and L is the physical length of the rod. We can also identify angular velocity squared term $4\pi^2/T^2$ and replace h with $L_{eq}cos(\alpha)$ leading to the expression: $$\omega^2 = \frac{g}{L_{eq} cos(\alpha)}. (10)$$ - **Q 1.** Does this equation impose any minimum threshold to the value of L_{eq} ? If yes, then calculate this threshold value for a conical pendulum rotating at 50 revolutions per minute (rpm)? What is the threshold at 10 rpm and 100 rpm? - **Q 2.** Derive an equation to calculate L_{eq} using the parameters defined in Fig(1). Show that in our setup the threshold value of L_{eq} also depends on the radius of top disk. #### 3 Apparatus The apparatus for this experiment includes the binary conical pendulum connected with a stepper motor, the Qosain stepper motor controller (the olive-green housing with LCD), and a 12 V DC power adaptor. Fig. 2 shows the complete experimental setup requirements. The pendulum is connected to the top via a NEMA17 stepper motor. A Qosain Scientific Stepper Motor Controller (SMC) controls the motor's rotation. The stepper motor and SMC are powered by a DC power adaptor with an input voltage range of 12 VDC – 24 VDC and current supply of 2 A. Figure 2: The complete experimental setup. #### 4 Experimental Procedure Let's start the experiment by energising the stepper motor and SMC using the 12 VDC power supply. To perturb this system, we will select the A. RPM (Analogue Revolutions per Minute) Mode of SMC and change the angular velocity of conical motion by means of a variable resistor which is connected to the analogue control knob on the side of the controller housing. Refer to the Appendix for detailed instructions of operating the motor controller. While changing angular velocity, the track of its value in real-time is kept using the SMC LCD screen. Once we have the provision to change angular velocity, we would be interested in knowing how our system maintains dynamic equilibrium at different values and why the balls rise at higher speeds. To quantify these parameters, we will acquire a video of the rotating conical pendulum. Set camera such that your computer screen shares the frame and start the video. Then gradually start increasing speed from analogue knob of the motor controller. Do not obstruct the camera view and keep increasing the speed up to a maximum 100 RPM. This obtained video actually contains a large sequence of images but we need one suitable image per rpm value. For the image processing, open this video in VLC media player. Here you can navigate through cursor or move frame to frame by pressing e on the keyboard. Once you get to your required frame, press Shift + S to take a snapshot. Then load these images (one by one) into a popular software named ImageJ which can be downloaded free of cost [2]. Then, the following steps are performed to individually analyse each image. - 1. Open ImageJ software, go to File and, import the image of interest. - 2. Select Angle tool and trace both arms of the conical pendulum. - 3. Now go to Analyze tab and select Measure from the dropdown list. 4. Populate all your data along with uncertainties in a neat table on your notebook. For example Fig. 3 shows sample images obtained at different RPMs. Figure 3: Sample images at different RPM values. - Q 3. Calculate the gravitational acceleration with the help of obtained data? - **Q 4.** Find the percentage error in the calculated value of g and explain the possible reasons for this error. ### 5 Bonus Part: uncertainties in the lift angle When we take measurements through images or videos, the perspective angle of the camera plays an important role in how the objects will appear, consequently affecting our measurement. Thus, the positioning of camera plays a vital role in the accuracy of our measurements. - **Q 5.** Draw a diagram showing the most suitable location of camera with respect to the conical pendulum. - **Q 6.** Does the frames per second (FPS) rate of the captured video affect the measurement of α ? If yes, can you evaluate the uncertainty arising from this? #### References - Paul J. Nahin, In Praise of Simple Physics, Princeton University Press, (2016), pp. 203-207. - [2] https://imagej.net/Downloads. #### **Appendix** # Controlling the rpm value with the Qosain Scientific Stepper Motor Controller (SMC) Once you energise the stepper motor and the motor controller by connecting the DC power adaptor to a power supply then follow the steps below. - Once switched on, you will be prompted to select a mode. The modes are: Digital RPM (D. RPM), Analog RPM (A. RPM), Syringe Pump, and Displacement Mode. - 2. To select a mode (A. RPM in this application), scroll the modes using > and < buttons on the SMC and select the mode using + or −. - 3. Once you have entered a mode, + and can be used to increment and decrement the operational parameters, respectively. - 4. > and < can be used to move to the next or previous screen, respectively, or switch between different configurable parameters. - 5. Scroll and select rpm as the preferred measurement unit and proceed to the next screen. - Define the range of rotational speed and the sensitivity of each turn of knob by setting the Maximum and Minimum values of the range. The maximum range limits are -450 rpm to 450 rpm. - Once the rotation of the motor is started, the LCD screen will display the real-time rotational speed of motor. - 8. During rotation, the speed of rotation can be changed using the analog control knob. - During actuation, pressing < once would pause the process, whereas pressing < again will abort the process.