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Abstract

Data processing is a challenging task in the realms of experimental physics. An

experimental physicist is poised with statistical and probabilistic techniques that

enable to cater uncertainties and find the unknown parameters. But in a teaching

laboratory today there are transducers, highly susceptible to noise due to sensi-

tivity. This is desirable in the context of exposing students to the realities of a

real world experiment and also creates a potential for them to learn about data

cleaning and finding the embedded unknowns.

In this regard, we propose the use of Kalman Filters to not only filter the system

but also estimate its unknown parameters. In the 1960s, the Kalman filter was

applied to navigation system of the Apollo Project. It was a pivotal invention that

enabled humans to reach moon. This application propelled Kalman filtering into

the dynamical linear and nonlinear research of that time. It was explored in signal

processing, navigational radar systems, robotics, GPS systems and in recent years

in image processing and machine learning.

This research work concentrates on deploying Kalman Filter and its two variants

in an experimental physics teaching laboratory. We explore the notions of filter-

ing linear and non-linear mechanics problems, simulate the applications and then

heuristically develop a sound understanding of the Kalman Filter and its facets in

experimental physics.
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Chapter 1

Introduction

In 1960, Rudolf E. Kalman, proposed a linear quadratic estimation (LQE) tech-

nique [1]. This technique involved a recursive algorithm that takes into account a

series of measurements on the state that are affected by varying statistical noise

over time and then outputs an estimation of the state that is more precise and

accurate. The technique was named as “Kalman Filter (KF)”. It transformed

the world of signal processing and empowered researchers to develop highly so-

phisticated navigation systems [2], robotic systems, enhanced image processing

and object tracking [3] as well as predictive economics [4] and stock forecasting

systems [5]. It is considered among the three most influential and revolutionary

algorithms, in the field of Bayesian State Estimation [6]. It is also one of the

very few algorithms that researchers can call “complete” [7] as it solves the state

estimation for linear Gaussian systems in an optimized manner.

The filter was originally developed for linear problems in the world of control

systems but over time, subsequent versions attempted to relax the requirements

for a linear Gaussian system and made it applicable to nonlinear systems making

it more versatile and robust. One such extension of the original filter is known as

the Extended Kalman Filter [8]. This filter linearizes a non-linear system using

approximation techniques in order to find the transit model of the state dynamics

to predict the future state.

Anyone who desires to build the mathematical and conceptual foundations of the

filter, is invited to read the several primers on the subject [9, 10]. Similarly, this

thesis not only exemplifies the use of Kalman Filters for nonlinear problems, but

1
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is also a compact primer on the subject and will hopefully become an entry level

spring board for experimenters especially in the domain of physics.

The detailed insight to filter’s theoretical background, derivation of equations, the

concept and design formulation, problem applications and performance gauging

can also be found in [10]. Similarly, when one would like to explore hands-on

applications, [11] is a great book to consult for programming the Kalman Filter and

its variants using MATLAB. Recently, Python has emerged as an easy and versatile

programming language. An outstanding book [12] provides vivid and dynamic

hands-on python codes with breakdown of the filter structure. It gradually builds

up from the concepts of Gaussian filters through hard coded examples and then

quickly moves on to Kalman Filter and its variants. Interestingly, the Kalman

Filter, can also be studied in the realms of finance and stock market predictions

[13, 14].

The most frequent use of Kalman Filters, however, has been for the application

of computer vision in object tracking [15]. It ranges from tracking projectile balls

to airplanes and missiles through radar systems. Last, we highly recommend [16]

which explores the conjunction of the Kalman filter and neural networks. Neural

networks and machine learning are techniques that also derive their existence from

Bayesian statistics coupled with prediction and estimation models.

This means that the Kalman Filter is a versatile algorithm that has been explored

in vast areas of engineering, computer science and even management but a liter-

ature review reveals that it is still largely unexplored in the community dealing

with physics laboratory instruction. Even though, the filter has shown its ability

to filter and estimate dynamical systems such as projectile motions [17] but in

the realms of the physics laboratory, it remains largely unexplored and not taught

to students in physics who could utilize it to explore various linear and nonlinear

problems. Therefore, in this research work we explore the applications of Kalman

Filter particularly inside an experimental physics laboratory.

This work is entirely carried out at the Centre for Experimental Physics Education

(CEPE) at the Physics Department of Lahore University of Management Sciences

(LUMS) 1. The centre arguably houses one of the most innovative experimental

physics facility in the country. With an in-house mechanical workshop and a group

of professional and highly skilled engineers and technicians, the laboratory builds

1http://www.physlab.org
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Application Dynamical System Type of sensor

Process control Chemical plant Pressure
Temperature
Flow Rate
Gas analyzer

Flood Prediction River system Water level
Rain gauge
Weather radar

Tracking Spacecraft Radar
Imaging system

Navigation Ships Sextant
Aircrafts, missiles Log
Smart bombs Gyroscope
Automobiles Accelerometer
Golf carts GPS Receiver

Table 1.1: Examples of estimation problems that are currently widely solved
using Kalman Filter.

its own experimental equipment using low-cost locally manufactured hardware and

software. Due to this capacity building a number of student driven experimental

projects have been carried out in the last decade. 2. The research and devel-

opment group at this lab has developed a number of home-grown experimental

equipment diversely ranging from applications in mechanics, waves and oscilla-

tions, eletromagnetism and other branches of physics. The lab also ingeniously

utilizes smart-phones and Inertial Meaurement Units (IMU)’s for physics experi-

ments. Various sensors and transducers are also employed to measure temperature,

pressure and strain and various other kinds of physical signals. In summary, ex-

pents the Physlab served as the playground to explore the applications of Kalman

Filter.

1.1 Problem statement

In any experiment, “Noise”, infests into signals and propagates through the ex-

perimental process to the end result, giving rise to imprecision and accuracy. In

a physics laboratory, precision and accuracy are important measures that deter-

mines the stochastic acceptance of the outcome of an experiment. Thus, anything

2https://www.physlab.org/
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that may contribute to disturbing the precision of an experiment needs to be ad-

dress and quantified. Currently, techniques such as least squares curve fitting are

the most widely used data processing algorithm that allows experimenters to fit

proposed mathematical models to their noisy experimental data. The method in-

volves minimizing the sum of the residuals between model and measured values.

By large, it not only helps physicists verify theoretical models of various linear and

non-linear physical phenomena but may also help predict future behavior of the

system through extrapolation. However, here we would like to propose the use of

Kalman Filtering as a modern technique for improving data integrity and reducing

noise. This idea is currently underemployed in the realms of instructional physics

laboratory. Students are generally taught only about the least squares curve fit-

ting as the most optimum method for gauging the experiment’s conformance to

the true model. However, the process is largely part of the post data acquisition

and analysis process where there could be an inclusion of an optimal estimator to

not only filter the data but to also estimate the parameters and dynamics of the

system over time.

1.2 Motivation

As a laboratory instructor at the Centre for Experimental Physics Education

(CEPE), Physlab, LUMS based in Lahore, Pakistan I have also heavily relied

on conventional data processing methods for data analysis. However, I took this

project of deploying Kalman Filter to our in-house manufactured experiments

as a challenge to contribute to the physics community of educators and experi-

menters to help them see how efficiently and elegantly the Kalman Filter can help

them improve data integrity, reduce noise, predict system dynamics and estimate

parameters. I hope this thesis not only helps a physics teacher gain a sound un-

derstanding of the basic application of Kalman Filter but also provides insight to

other researchers to explore the algorithm’s applications to more complex problems

in non-linear physics.

Furthermore, students in Pakistan’s physics programs, are not well versed with

data analysis, noise and uncertainties. Noise and uncertainties are generally con-

sidered an anathema to lab practice. The quest for a utopian certainty, and accu-

racy, hides away the peculiar statistical fluctuations embedded in an experimental
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endeavor. Kalman Filtering provides a unique, insightful and far-reaching tool to

bridge the gap between theoretical certitude and empirical openness.

1.3 Objectives of the study

Through this work we aim to achieve following objectives:

� introducing the basics of Kalman Filtering and its variants, the Extended

Kalman Filter and Unscented Kalman Filter,

� understanding the fundamentals of state space and application specific facets

of the Kalman Filter,

� exploring the diversity and robustness of Kalman Filter in the realms of

experimental physics laboratory,

� using Kalman Filter to filter noise from linear and nonlinear systems and

estimating the state in the presence of measurement and process noise,

� utilizing filter dynamics to estimate the sub-parameters of the system upon

which the dynamics of the system depend over time,

� applying Kalman Filter to home grown physics experimental setups, and

� providing an impetus to an experimental physicist to use Kalman Filter in

the physics laboratories at the undergraduate and post graduate levels.

1.4 Limitations of the study

Kalman Filters find application in various domains of electrical engineering and

computer science, such as, orientation and location signal processing. They are

also explored in financial forecasting and prediction systems finding applications

in stock market. However, the scope of this thesis is to explore the realms of

Kalman Filter applications in an experimental physics laboratory. We want to

investigate how the filter could prove to be useful for physics teachers who would

be interested in teaching their students the art of noise filtration through state

estimation and how it could also be used for parameter estimation.
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We have also not tried to cover the complex probabilistic mathematical derivations

of the filter’s underlying structure. Rather, we have focused on keeping the deriva-

tions simple and intuitive for the reader to easily understand and use the provided

MATLAB codes to build their own Kalman Filters through simple reading of the

sections according to their specific applications in linear or nonlinear regime.

Further, this thesis can be used to explore applications in an experimental physics

laboratory. The notions of coupled harmonics, linear and nonlinear pendulums,

projectile motions, damped and simple harmonic oscillators, thermodynamics,

fluid mechanics, nonlinear electronic circuits and experiments involving mechanical

explorations all offer huge opportunities for investigation and exploration.

1.5 History of the Kalman filter

The Kalman Filter is named after a Hungarian-born American electrical engi-

neer, mathematician, and inventor, Rudolf E. Kalman. He is believed to have

co-invented the filter with Richard S. Bucy from the University of Southern Cal-

ifornia. This is the reason why sometimes Kalman Filter is also referred to as

“Kalman-Bucy Filter”. Professor Bucy contributed to the further development of

the theoretical framework of the filter and since then, has written a number of

books on filtering and stochastic processes. Interestingly, Kalman being an elec-

trical engineer was unable to submit his phenomenal work in the community of

electrical engineers and so had to submit his first paper [1] to the Journal of Basic

Engineering by the American Society of Mechanical Engineers.

The first practical application of the Kalman’s ingenious algorithm was in the first

Apollo mission to moon. Stanley F. Schmdit, who was an Aerospace Engineer

at the NASA Ames Research Center, discovered Kalman’s ground breaking work

and found it to be useful for the applying to the navigation system. The only

problem he faced was that Kalman had developed the filter for linear problems

through linear quadratic estimation technique whereas for the Apollo mission non-

linear version of the filter was required. Stanley worked a nonlinear adaptation

which reduced the complexity of the filter and developed the first practical ap-

plication of the nonlinear verion of the Kalman Filter, for this reason the filter is

also referred to as Schmidt-Kalman filter [18]. However, in control engineering,
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Kalman-Bucy Filter has served as the most spectacular failure in one of its an-

other applications, the Kalman-Bucy Water Filter (KBWF) [19]. Despite gaining

an immediate patent (US314, 159), this product never found its market niche. The

KBWF was used for continuous water flows, while related inventions, such as the

Kalman water filter (KWF) and the extended Kalman water filter (EKWF), were

used for bottled water and for filtering nonclear liquids, respectively. The patent

abstract describes the operation of the filter: Tap water flows into the input hose

y, where it is compared to the filtered water ‘y’. The residual water goes through

the separation pump ‘L’, which feeds the water state estimate differential ‘x’, into

the water transition tank. The output ‘x’ of the water transition tank is extracted

with a combination pump ‘H’, to provide filtered water ‘y’. The separation pump

is adjusted through the solution of a Riccati equation. The resulting water is

optimally clean while the filter retains the residual sediment, which tends to be

white.

The Kalman Filter was then also implemented in the navigation systems of the

U.S. Navy and nuclear ballistic missile submarines [20]. The filter helped improve

the guidance and navigation of the cruise missiles such as the U.S. Navy’s Tom-

ahawk missile and the U.S. Air Force’s Air Launched Cruise Missile [20]. They

are also used in the guidance and navigation systems of reusable launch vehicles

and the attitude control and navigation systems of spacecraft which dock at the

International Space Station.

1.6 Diverse applications

In our extensive literature review, we were unable to find work related to appli-

cation of Kalman Filter in a teaching experimental physics laboratory. However,

there numerous examples in various domains of physical and engineering sciences

where it is already playing a pivotal role in advancing the data integrity, noise

elimination, dynamic state predictions and parameter estimation.
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1.6.1 Electrical and electronics engineering

An electronic device for three dimensional localization and inertial navigation

through vision has been patented in the US [21]. It comprises a processor config-

ured to apply an extended Kalman filter (EKF) as the electronic device traverses

the trajectory. The filter is configured to maintain an array of estimates for a

position of the electronic device within an environment along with estimates for

one or more features. Another study has explored the application of the Kalman

filter in dynamic X-ray tomography. [22]. With this method, the X-ray image

is reconstructed through a low-dimensional pool of parameters. This has shown

to optimize the computational speed of the overall process. These two examples

are distinct but surely exhibit the robustness of Kalman Filter. Another study

discusses the implementation of a Kalman variant called ”Ensemble Kalman Fil-

ter” [23] presents a new algorithms using Ensemble Kalman Filter for sequential

state and parameter estimation that combine the information about the param-

eters from data at different time points in a consistent probabilistic framework.

This is helpful when we have a large number of parameters under observation.

1.6.2 Physics

In physics, the modeling of the thermosphere-ionosphere system is largely asso-

ciated with uncertainty due to influences of external forces, e.g., high altitude

convection and particle precipitation. In order to gauge the system, real-time

measurements are acquired making the computation complex and extensive [24].

Therefore, through the implementation of the Kalman Filter reseachers have pro-

posed improvements in comparison to the experiments being performed.

The Kalman Filter is primarily a stochastic filter that uses a series of measure-

ments over time to produce estimates of unknown variables based on a dynamic

model. In a quantum system, such an algorithm is provided by a quantum filter.

For any linear quantum system that is dependent upon measurements and noise

that is a white Gaussian distribution, the quantum filter reduces to a Quantum

Kalman Filter (QKF). Using a commutative approximation and a time-varying

linearization to non-commutative quantum stochastic differential equations (QS-

DEs) show that there are conditions under which a filter similar to the classical
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Extended Kalman Filter can also be implemented for a quantum system. Interest-

ingly, they have demonstrated the effectiveness of the Quantum Extended Kalman

Filter by applying it to diverse quantum systems. Most of these systems typically

involve multiple modes, nonlinear Hamiltonians and simultaneous jump-diffusive

measurements [25].

The most recent and probably the most momentory implementation of Kalman

Filter in Physics is in the discovery of gravitational waves [26]. The highly sensitive

and peculiar Laser Interferometer Gravitational-Wave Observatory (LIGO) is a

large scale physics instrument housed at the Hanford Site, Livingston, USA. The

device is extremely sensitive and can detect a change in the 4 km mirror spacing

of less than a ten-thousandth of the charge diameter of a proton, equivalent to

measuring the distance from Earth to Proxima Centauri (4.244 ± 0.001) lyr [27]

with an accuracy smaller than the width of a human hair [28]. Correspondingly, the

system is sensitive to slightest change in the physical distance between the mirrors.

In ground based tests, suspended pendula serve as the test masses approximated

as “free” above the pendulum’s fundamental frequency. The Gravitational waves

caused a change in the distance between those pendulums. However, external

influences such as thermal excitation may impart a narrow-band noise into the

signal in turn hindering the detection of gravitational waves. Researchers design a

sophisticated Kalman Filter to filter and estimate the state of position of masses

from the detector’s output.

A more comprehensive and detailed article in this realm talks about testing quan-

tum mechanics itself using statistical approach [29]. The crux of the paper is

based upon the fact that exploration of quantum versus classical system is limit-

ing due to the increasing complexity in the dynamical systems. Also, the noisy

and uncertain nature of the experimental quantum systems make it difficult to be

sure about what quantum system is being observed. So, the paper highlights use

of advanced statistical and Bayesian estimation techniques coupled with Kalman

Filters employing an example from optomechanics.

A Markov diffusion process is characterized by a stochastic differential equation

in a continuous-time process. However, a new approach of its quantization using

Kalman Bucy linear filters is discussed in [30]. As KF is a self correcting algorithm,

it follows the automorphism of Heisenberg algebra giving rise to new formulas and

interpretations of the quantum mechanical systems [31].
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1.6.3 Computer science and robotics

The most evident use of Kalman Filter has been in the realms of robotics and

computer science. This is because the first application of Kalman Filter was in

fact for a large space ship that we had to steer to reach the Moon. The dynamical

control and noise free sensor feedback became the need of its immediate and vis-

ible application. Since then, Kalman Filters have extensively contributed to the

optimization of robotic movements, tracking, and localization.

The power of Kalman Filter in robotics application comes from its ability to fuse

multiple sensors, referred to as Sensor Fusion. The probabilistic combination

model of the filter empowers the robot designer to include the feedback and re-

sponse from multiple sensors, actuators and controls from the robotic system and

derive the system based upon the filtered output. The major application in this

realm is integration of GPS and IMU sensors to track the location of a robot [32].

1.6.4 Industrial engineering and management sciences

Industrial engineering deals with the optimization of systems and processes that

involve people, money, machine and sub-processes that govern the nature of the

overall system. In this context, Kalman Filters have been widely used for optimiz-

ing the mathematical models, manufacturing systems, supply chain management

and predictive maintenance.

State estimation is a major problem in industrial systems. The accurate estima-

tion of states leads to effective monitoring, fault diagnosis and good performance.

For example, a supply chain is a large inter-connected system of suppliers, man-

ufacturers, distributors and the end customers. This complex system is highly

prone to communication disparities due to the generation of big data that resides

in between the entities of the system. Kalman Filters work as an efficient state

estimators to optimize this supply chain network. The article [33] proposes a rig-

orous approach using an extended Kalman filter with a network approach that

models the supply chain as an abstraction. This approach is termed Augmented

Trans-Nets. It allows multiple participants in a supply chain to be modeled with-

out making the filter overly complex. Then states of the supply chain can be

observed and estimated for different considerations.
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In a manufacturing process Kalman Filter helps drastically improve the machine

control that improves the capability of the overall process. For example in [34], a

welding technique referred to as the Friction Stir Welding, improves the capability

of joining hard materials such as 2000 and 7000 series aluminum alloys. They

apply Kalman Filter to control the spindle speed and traversing speed optimizing

the plunged depth, improving the welding process.

A quality control chart for monitoring a short run process during the start-up

phase is presented in [35]. The chart uses a recursive Kalman Filter to stable a

process where the process variance is unknown prior to the start of the production

run. It is shown that the run length properties are independent of unknown pro-

cess variance and these properties are appropriate for monitoring a stable process

during start-up phase. An economic model for the optimal design of the control

scheme is presented and illustrated with a wet etching process used in semicon-

ductor manufacturing. Another example is the use of Unscented Kalman Filter

to estimate the parameters of a train that is coasting on a flat track. One such

important parameter is the resistance coefficient of the train, this is explored in

[36]. The resistance parameter empowers engineers to optimize and improve the

fuel efficiency of the train.



Chapter 2

Theoretical framework

This chapter covers the underlying concepts that are essential to understanding

the Kalman Filter’s structure and its applicability to solving practical problems.

We begin by developing an understanding of linear dynamical systems in the state

space commonly discussed in control systems theory [37]. We then explore the

notion of linear and nonlinear observability that defines the applicability of the

Kalman Filter to a specific linear or nonlinear problem respectively. We then

define the Kalman Filter equations and describe the algorithm. We also discuss

the tuning of the filter and higher ordered derivatives of the filter. Last, we share

the Kalman Filters for nonlinear systems, i.e. the Extended Kalman Filter and

the Unscented Kalman Filter. All versions of the filter are simulated or applied to

real problems in subsequent chapters.

2.1 State space representation of dynamical sys-

tems

A system in control theory is a mathematical model that forms a relationship

between the inputs and outputs based upon the differential equations that govern

the evolution of the system in time. If the output of a system depends just on the

current input it is referred to as a static system. For example,

yt = 9xt. (2.1)

12
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However, if the output of the system is dependent on current as well as values

from the previous iteration, it is called a dynamical system. For example,

yt = 9xt−1. (2.2)

Here, the output is dependent upon the input from the previous time step.

Dynamical systems are physical phenomena that can be modeled through differ-

ential equations. The mathematical description of such systems help in projecting

the system to any past or future time step. These differential equations incorpo-

rate the inputs and system dynamics and yielding the outputs of the system. As a

result , the temporal of the system can be described. The system is “represented”

by a differential equation.

However, as the system’s complexity grows, this representation becomes cumber-

some. This is truer for the systems that have multiple inputs and outputs. So,

the concept of state space is introduced which considerably simplifies this prob-

lem. The state space representation of a system replaces an n′th order differential

equation with a single first order differential equation. The gist of the state space

is captured by the following two equations:

ẋ(t) = Ax(t) + Bu(t) + w(t) (2.3)

y(t) = Cx(t) + Du(t) + v(t) (2.4)

The first Equation, (2.3) is called the state equation and the second Equation, (2.4)

is called the output equation. The dot atop a variable represents time derivative.

The variables used in these equations are now discussed.

2.1.1 State vector x

The variable x represents a column matrix that is a function of time and is called

the state vector. It contains the variables of our dynamical system. For example if

we are considering the position and velocity of a system under consideration then

x state vector will be,
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x =
[
x1 x2

]T
(2.5)

where, x1 and x2 represents position and velocity respectively. For an n th dimen-

sion system the size of the state vector x is n× 1.

2.1.2 System dynamic matrix A

In Equation (2.3), the A is an (n × n) system matrix that consists of constants

or parameters that govern the dyanmics of the state vector. This system matrix

is in fact the process model of our system in continuous form. It represents the

variation of the state vectors continuously with time.

d

dt
x(t) = Ax(t). (2.6)

For a physical system described by some mathematical equation, the system dy-

namics matrix A consists of the constant coefficients of the system equations.

In the next section, we derive a state transition matrix F which is the discretized

version of the state dynamic matrix and it propagates the state vector matrix x

through the time step ∆t.

2.1.3 Control input u and control matrix B

For a system that is driven by some external force, Equation (2.3) also includes a

B matrix. For an n dimensional system with r inputs, B is an (n× r) matrix and

contains generally constant parameters. It determines how the inputs or controls

variables in the u vector affect the state vector x.

2.1.4 Output equation

The output Equation (2.4) includes a column matrix y which is the output vector

and is a function of time. The output matrix C contains the constant parameters

which relates the state variables included in the state vector x to the output y.
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The matrix D is the direct transition (or feedthrough) matrix, generally, a constant

which relates the control input u to the output y.

2.1.5 System and measurement noise

In both state space equations noise is an integral part. In Equation (2.3), w

represents system noise, usually considered to be zero mean Gaussian white noise.

In Equation (2.4), v represents measurement noise, also considered to be zero

mean Gaussian white noise.

2.1.6 State transition matrix

The matrix A in Equation (2.3) is in continuous form and is referred to as the

system dynamics matrix. It models a set of differential equations that govern the

dynamics of the state variable x. However, we are not interested in the derivative

of the variables but the transition of the variables from a previous time step (t−∆t)

to the current time step (t). For notational convenience we represent the previous

time step with k − 1 and the current time with k.

xk = Fkxk−1 + Bkuk. (2.7)

Here, Fk is referred to as the state transition matrix that transits the system from

time (t − ∆t) in time step ∆t. The matrix B, as defined before, is an (n × r)

matrix that contains constant parameters and determines how the controls affect

the state and u is the input control which is a function of time. Thus, the state

transition matrix is a discretized matrix. It is found through the exponential of

A.

2.1.6.1 Matrix exponential

The matrix exponential is a function on a square matrix analogous to the ordinary

exponential function. We can derive the state transition matrix F by taking the

exponential of the state dynamic matrix A which is a square matrix.



Chapter 2 Theoretical framework 16

To understand this better let’s take an example of a differential equation with a

constant parameter k,

dx

dt
= kx. (2.8)

The Equation is solved as follows,

dx

x
= kdt∫

1

x
dx =

∫
k dt

logx = kt+ c

x = ekt+c

x = ecekt

x = c0e
kt (2.9)

Now we use this methodology to solve Equation (2.3). We have,

ẋ(t) = Ax(t) (2.10)

here, matrix A is constant and the overall equation is in differential form. We

are interested in finding the matrix F derived from A which is a transition matrix

containing the time step that transits our system between discrete time steps of

(t − ∆t) and t. By substituting F = eAt we can derive F matrix from Equation

(2.10). Following is an example showing how we can calculate F.

(xt + ∆t)− xt
∆t

≈ Axt

xt + ∆t ≈ xt + A∆txt

≈ (1 + A∆t)xt

xt + ∆t ≈ (1 + A∆t)xt, (2.11)

where, 1 + A∆t is just the lowest order term in
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F = eA∆t (2.12)

So,

xt+∆t = eA∆t

= Fxt (2.13)

Using k as a notation to represent the time steps,

xt+1 = Fxk (2.14)

From the first order Equation (2.8) the linear matrix form can be written as,

Let x1 = x and x2 = v,

x =

[
x1

x2

]
(2.15)

[
ẋ1

ẋ2

]
=

[
0 k

0 0

][
x1

x2

]
, (2.16)

where, A =

[
0 k

0 0

]
. The F matrix is the following expansion,

F = eA∆t = I + A∆t+
(A∆t)2

2!
+

(A∆t)3

3!
+ · · · (2.17)

Keeping only the lowest order terms, F ≈ 1 + A∆t Equation (2.12) becomes,[
x1

x2

]
k

=

[
1 k∆t

0 1

][
x1

x2

]
k−1

(2.18)
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Showing that the state transition matrix is

[
1 k∆t

0 1

]
. Hence, we find the state

transition matrix matrix F which is the discretized upgrade of the state dynamic

matrix A and serves as the transition function through a time step ∆t to project

the state variables x from previous time step k − 1 to current time step k.

We will be using the Matrix Exponential technique throughout this thesis to derive

the state transition matrix for all of our linear and nonlinear dynamical problems.

Our system equations will usually be of higher ordered, largely second ordered, and

we will reduce them to first ordered equations represented by the matrix A. Then,

their transition matrix F will be derived using the Matrix Exponential technique.

This matrix will serve as the process model in Equations of the Kalman Filter and

will project the state variables of our dynamical problems as well as the covariance

matrix P from previous time step to the current time step.

2.1.7 Observability

The concept of observability is distinctively related to state space methods. It was

introduced in the mid 1950′s by Kalman himself as a way of exploring whether

the internal states of a given dynamical system can be determined if the output

parameters of the system are measured. Before actually applying Kalman Filter

to our linear and nonlinear problems we would like to highlight the concept of

observability in both cases as it would help us pre-determine the possibility of

observing the states and parameters of our system based upon the knowledge of

only the available outputs.

2.1.7.1 Observability of linear systems

A linear system is represented by a mathematical model that uses a linear operator

to map the inputs of the system as a function of time t to the outputs of the

system in such a way that the outputs are directly proportional to the inputs.

Observability captures the ability to estimate the states of the system based upon

the knowledge of only the outputs.

For example, consider a mass attached to a spring. The system is two-dimensional

with position and velocity as the state variables. For this system, would it be
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possible to determine position and velocity of the system if we only have a single

sensor to measure position, or would it be possible to determine both position and

velocity if we only have a sensor to measure velocity, or would it be possible to

determine both if we only have an accelerometer etc. In all of these cases, it is

the rank of the observability matrix that helps finding whether the states of the

dynamical system can be observed or not given certain measurements.

Mathematically observability is determined by examining the observability matrix

O which is defined as:

O =



C

CA

CA2

...

CAn−1


, (2.19)

where C is the output matrix, A is the system dynamic matrix from Equation

(2.3) and n is the number of dimensions of the problem at hand.

The interpretation of this matrix is that only if the rank of the observability matrix

O is equal to the order of the system dynamic matrix A, it is observable. i.e.

rank(O) = n. If the order is less than the dimensions of the system then further

analysis to extract subsystems is carried out through the Kalman Decomposition

[38] to identify the reduced subsystem of the state that is observable.

For example, consider a dynamical system represented by the following state space

equations: [
ẋ1

ẋ2

]
=

[
1 2

3 4

][
x1

x2

]
(2.20)

yt =
[
1 0

] [x1

x2

]
. (2.21)

Where the system dynamic matrix A is

[
1 2

3 4

]
and the output matrix C is

[
1 0

]
.

The matrix C tells us that we have only one measurement i.e. x1.
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The observability matrix for this second-order differential equation is given by:

O =

[
C

CA

]
=

[
1 0

1 2

]
(2.22)

Since the rows of the matrix O are linearly independent, rank(O) = 2 = n.

This means that the system is observable i.e. we can estimate both x1 and x2

using one sensor. We can further exploit this technique by considering a second

sensor as well and retest for the observability.

However, if rank of the observability test matrix is not equal to the dimensions of

the system, then the system is said to be unobservable. For example, consider an-

other dynamical system that is represented by the following state space Equation.

The system also has an input represented by u.

[
ẋ1

ẋ2

]
=

[
−2 0

0 −1

][
x1

x2

]
+

[
1

0

]
u (2.23)

y =
[
1 0

] [x1

x2

]
. (2.24)

Where the system dynamic matrix A is

[
−2 0

0 −1

]
and the output matrix C is[

1 0
]
.

The matrix C tells us that we have only one measurement i.e. x1.

The observability matrix for this system is given by:

O =

[
C

CA

]
=

[
1 0

−2 0

]
(2.25)

Since the rows of the matrix O are not linearly independent and the rank(O) =

1 6= n, the system is unobservable.



Chapter 2 Theoretical framework 21

2.1.7.2 Observability of nonlinear systems

In linear regime, the observability test effectively evaluates the possibility of es-

timating the states using the ouputs. However, in the case of nonlinearity, for

example augmentation of the state variables with unknown sub-parameters, the

linear observability test is prone to fail. So, research was carried out in early 1970′s

to find the observability of nonlinear systems [39]. It was shown that the observ-

ability matrix for a nonlinear system could be expressed using the high ordered

Lie derivatives of the measurement function. This is now discussed.

Suppose we have a nonlinear system defined by the potentially nonlinear function,

ẋ = f(t,x) (2.26)

and the measurement equation

y = h(t,x). (2.27)

The multiple high ordered Lie derivatives of the measurement equation are given

by,

£0
f (y(x)) = y(x)

£1
f (y(x)) =

∂y(x)

∂x
· f(x)

£2
f (y(x)) =

∂

∂x

[
£1
f (y(x))

]
· f(x)

...

£n
f (y(x)) =

∂

∂x

[
£n−1
f (y(x))

]
· f(x),

(2.28)

where n is the dimensionality of the system and £f (y(x)) is the Lie Derivative

of y(x) along the vector field f(x). These terms are then composed to form the

mapping matrix φ,
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φ =



£0
f (y(x))

£1
f (y(x))

£2
f (y(x))

...

£n−1
f (y(x))


. (2.29)

Taking the Jacobian of the matrix φ with respect to the state variables finally

results in the observability test matrix for our nonlinear system.

O =
∂φ

∂x
=


∂£0

f (y(x))

∂xn
· · · ∂£0

f (y(x))

∂x1

...
. . .

...
∂£n−1

f (y(x))

∂x1
· · · ∂£n−1

f (y(x))

∂xn

 . (2.30)

If the rank of the observability test matrix (2.30) is equal to the dimensions of the

state, then this nonlinear system is observable.

For example, consider a nonlinear system with the following system of reduced

nonlinear equations,

ẋ1 =
1

2
x2

1 + ex2 + x2 (2.31)

ẋ2 = x2
1, (2.32)

with measurement equation,

y = x1. (2.33)

The Lie derivative of the measurement function y is given by,
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£0
f (y(x)) = y(x) = x1 (2.34)

£1
f (y(x)) =

∂y

∂x
· f(x)

=
(

1 0
)(1

2
x2

1 + ex2 + x2

x2

)

=
1

2
x2

1 + ex2 + x2 (2.35)

the observability mapping matrix φ here is given by,

φ =

[
x1

1
2
x2

1 + ex2 + x2

]
, (2.36)

the partial derivative of the mapping matrix J(φ) results in the observability test

matrix,

O =

[
1 0

x1 ex2+1

]
(2.37)

The rank of this matrix is 2 which means that it is equal to the dimensions of the

system so, this system is observable from the x1 at the output.

2.1.8 Controllability

Controllability is a similar property that was also posited by Kalman as a means to

identify the states of the system that are controllable using the inputs. This allows

us to determine, for example, whether we have the opportunity to control position

and velocity using acceleration as an input to the system. The controllability is an

extremely important metric for control engineers as it helps them design systems

with definite forms of controllable and uncontrollable states and parameters.

Mathematically, the controllability is verified by examining the controllability ma-

trix C.

C =
[
B AB A2B · · · An−1B

]
(2.38)
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If the rank of the controllability matrix is equal to the order of the system dynamic

matrix A, it is controllable rank(C) = n, if not then the system is uncontrollable.

Let us take an example of the following dynamical system represented by the state

space equations: [
x1

x2

]
=

[
1 2

5 0

][
x1

x2

]
+

[
0

2

]
u (2.39)

y =
[
1 0

] [x1

x2

]
, (2.40)

where the system dynamic matrix A is

[
1 2

5 0

]
and the control input matrix B is[

0

2

]
. The output matrix C is

[
1 0

]
.

The controllability matrix for this state system is given by:

C =
[
B AB

]
=

[
0 4

2 0

]
(2.41)

Since the rows of the matrix C are linearly independent, the rank(C) = 2 = n.

This means that the system is controllable.

2.2 The Kalman Filter

The Kalman Filter is a recursive algorithm that moves between a prediction step

and an estimation. These steps generate states and associated errors of the system

that are philosophically also referred to as a priori and a posteriori, which are Latin

phrases, meaning, “from the earlier” and “from the later” respectively. These

terms were popularized by Immanuel Kant’s Critique of Pure Reason, one of the

most influential works in the history of philosophy [40]. In much simpler terms, the

Kalman Filter has the ability to predict the state of a system using a mathematical

model of the dynamical system and then correct its prediction using real time

information from a transducer that may contain varying statistical noise.

The simplest form of a Kalman Filter is the Scalar Kalman Filter (SKF) which

consists of only one state variable. As the dimensions of the system grow the
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Figure 2.1: The block diagram of Kalman Filter

size of the vector space grows. This growth is augmented using matrices and the

resulting filter is a Multivariate Kalman Filter (MKF). These are used for linear

and nonlinear problems that have multiple inputs and outputs. In this thesis, we

have largely worked with multivariate linear and nonlinear problems and so, we

only discuss the mathematical models of the multivariate Kalman filter’s.

The crust of the Kalman Filter’s function is packed in the following equation.

x̂k = xk + K(zk −Hxk), (2.42)

here, xk is the current a priori prediction of the state, zk is the current noisy

measurement value,and x̂k is the current a posteriori estimation of the state by

the filter using the weight which is called the Kalman Gain K. This equation

briefly describes the internal working of the Kalman Filter. The most important

part of this equation is the parameter Kalman Gain at the current time step. We

will discuss it in detail in the subsequent sections. The goal here is to find the x̂k

for each consequent time step k such that the residual error between the last and

the current estimation E[(x̂k − x̂k−1)2] is minimized or the sum of the diagonal

elements of the error covariance matrix P is minimized. This recursive process is

the hallmark of Kalman Filter’s success as it eliminates the filter’s need to rely on

all historical data.
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2.2.1 The Kalman Filter Algorithm

The Kalman filter estimates a state value through a process using a feedback

control in the form of noisy measurements. The filter can also be referred to as

predictor-corrector algorithm. We highlight the flow of the algorithm in Figure

2.1 and describe it below.

2.2.1.1 Predicting the state

Consider the equation,

xk = Fx̂k−1. (2.43)

This is the Time Update equation or the Prediction equation. This equation

predicts the current states from the previous estimates. Here, F is the state

transition matrix, xk is the prediction at current time step and x̂k−1 is the state

estimate from the previous time step.

Similarly, the uncertainty associated with each state variable embedded in the

error covariance matrix P is also updated as given below,

Pk = FP̂k−1F
T + Q, (2.44)

where, Pk is the predicted error covariance matrix at current time step, P̂k−1 is the

estimated state covariance matrix from the previous and Q is the process noise

covariance matrix.

This prediction is entirely based upon our belief modeled as a Gaussian distribu-

tion. The process noise Q is added to the noise covariance P such that it accounts

for all the unrelated noise in the process model over time. This is the most im-

portant part of the filter as it also serves as a tuning parameter for the filter’s

performance. We will have more to say about these covariance matrices in the

subsequent sections.
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Figure 2.2: An alternative flow chart of the Kalman Filter algorithm.

2.2.1.2 Correcting the prediction

The measurement update equations, also referred to as the correction equations,

act as a feedback channel to the filter’s original prediction returned from the time

update step. Following set of equations perform the correction step for the filter

in every application.

yk = zk −Hxk (2.45)

Kk = PkH
T (HPkH

T + R)−1 (2.46)

x̂k = xk + Kkyk (2.47)

P̂k = (I−KkH)Pk (2.48)

We now describe the meaning of these equations. An alternative flow chart of this

entire process is also exhibited in Figure 2.2.

The measurement update step begins by calculating the difference (zk − xk), also

referred to as the innovation or residual between the measurement values and the

predicted state of the system. Next, the gain factor referred to as the Kalman

Gain using Equation (2.46) is computed. It acts as a weighing factor to correct

the state. This implies that if the a priori error covariance Pk is smaller than the

measurement noise R then the Kalman Gain would be smaller and the filter would

lean towards the values of the measurements, see Equation (2.47). Conversely, if

the measurement noise is smaller then the filter would lean towards the predicted

values. Last, the filter also updates the error covariance associated with the state

variables using Equation (2.48). As the residual gets minimized so is the belief on

the filter’s prediction improves.
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This recursive process is the hallmark of the Kalman filter and it makes it a highly

practical algorithm to apply in comparison to Weiner filters which apply to the

holistic collection of measurement data to generate each prediction and estimate

[41].

2.2.2 Process noise covariance matrix

The design of the process noise covariance matrix Q is considered to be the most

difficult and interesting part of designing the Kalman Filter. This is because in

realistic terms the process model is prone to be incomplete. Not everything from

the real-world is entirely packed in the mathematical model. So, the process noise

is designed to encompass those disturbances and compensate for the uncertainty

in one knowledge of the state. But even if we have a perfect Q matrix i.e. a

process noise with zero variance, the filter might completely ignore the valuable

influence of the noisy measurement data.

Following are two common methodologies to compute the process noise covriance

matrix for use in the filter’s computational algorithm.

2.2.2.1 Continuous white noise model

If we suppose a two dimensional system of position and velocity, represented by

the state vector x =

[
x1

x2

]
=

[
x

ẋ

]
, with state transition matrix F,

F =

[
1 ∆t

0 1

]
. (2.49)

We may like to assume the highest ordered term i.e. velocity is constant during

each time step ∆t. If this is the case, it means that the disturbance in the position

of the system on average is zero. To find the cumulative effect in every time step

we take an integral of the noise factor Qc over the complete time update step.

Q =

∆t∫
0

FtQcF
T
t dt. (2.50)
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Where, Qc is the continuous noise being added to our process model F over the

discrete time interval [0,∆t].

The continuous noise term Qc for zero error in position is,

Qc =

[
0 0

0 1

]
Φs (2.51)

where, Φs is the spectral density of the white noise. This spectral density effectively

increases or decreases the noise in the high ordered term in our process model and

can be used as a tuning parameter to improve the overall filter’s performance.

The designer has to choose φs and Qc to optimize the filter. Trial and error is a

convenient starting point.

2.2.2.2 Piecewise white noise model

It is also possible that noise is assumed to be constant, not varying during the time

step ∆t and only differs across the various time steps. In this case, the prediction

equation can be written as,

xk = Fxk−1 + Γwk (2.52)

where Γ is the noise gain in the time period and wk is the constant piecewise

noise within the time step. Thus, the change in velocity of the system in one time

period will be wk∆t, and the change in position will be wk∆t
2/2. This results in

the following matrix form for the noise gain,

Γ =

[
1
2
∆t2

∆t

]
(2.53)

The resulting piecewise error covariance matrix Q is subsequently derived as,

Q = E[Γw(t)w(t)ΓT ]

=

[
1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t2

]
(2.54)
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This can also be referred to as Γσ2
vΓ

T , where, σ2
v is a value that increases or

decreases the variance of the error between the two variables of the system. It

acts as a tuning parameter of which we will observe the effects on our performance

of the Kalman Filter in the simulated applications in the subsequent chapter,

whose selection is the designer’s purview.

2.2.3 Measurement noise

A real life phenomena is measured using a sensor. A sensor is an electronic trans-

ducer that converts a mechanical signal into an electrical signal that can be read by

a digital device. The sensors embody sensitivity and uncertainty in their measured

quantities. How much a particular sensor is infested with noise is usually supplied

by the sensor’s manufacturer in the provided specification sheet. This noise is

mathematically represented in the form of an error or uncertainty and is referred

to as the Measurement Noise R in the Kalman Filter algorithm. The primary

role of the measurement noise is played in the computation of the Kalman Gain

in the Correction step of the filter’s algorithm as shown in Equation (2.46). If the

noise from the transducer is larger than the uncertainty in the state variables then

the Kalman filter gives more weightage to the system’s process for the a priori

prediction of the state x, whereas, if the sensor noise is less then the filter gives

more weightage to the measurements for the a posteriori estimation of the state

variable x̂k.

2.2.4 Parameter estimation

The system dynamical matrix A in the state-space Equation (2.3) describes the

process model of the system under observation. This process model may or may

not be entirely known. We may also be ignorant or only partially cognizant of

the system parameters themselves. For example, we may know the position and

velocity of a mass oscillator, we may not even know the spring constant or damp-

ing coefficient on which the evolution of the states depend. Thus, an important

application of the Kalman Filter lies in the estimation of system parameters them-

selves.
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Figure 2.3: The Dual State and Parameter Estimation block diagram with
parallel application of Kalman Filters.

In literature, parameter estimation using Kalman Filters is divided into two types.

One is referred to as the Dual State Parameter Estimation (DSPE) and the second

is referred to as the Joint State Parameter Estimation (JSPE).

2.2.4.1 Dual State Parameter Estimation

In order to estimate the parameters of a system we can use the Dual State Pa-

rameter Estimation (DSPE) technique that uses two Kalman Filters in parallel to

estimate the values of the parameteres [42]. The advantage of using dual filters

for this problem is the reduced computational complexity as the number of ma-

trix operations is conditioned to be happening in the two filter blocks separately.

Figure 2.3 illustrates the block diagram of the dual state and parameter estima-

tion working. Both the filters work in parallel and exchange information between

themselves.

2.2.4.2 Joint State Parameter Estimation

Another technique to estimate the parameters of a system along with its states

is the joint state and parameter estimation. In this technique the states and

parameters are augmented into the single state space vector, expanding the di-

mensionality of the state space. This joint state space model of the system with
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unknown parameters θ in discrete state space form can be stated as:

xk = F(θ)xk−1 + B(θ)uk−1 + wk

yk = H(θ)xk + vk,
(2.55)

where θ is a vector of unknown parameters to be estimated and is augmented to

include an estimate of the unknown parameters. The overall state space model for

the joint state and parameter estimation Kalman Filter problem is as follows:[
xk

θk

]
=

[
F(θk)xk−1 + B(θk)uk

θk

]
+

[
wk

vk

]
(2.56)

where vk is a white Gaussian noise of appropriate strength allowing the exploration

of the parameter space [43].

This augmented state space may in most cases become non-linear due to the

existence of unknown terms in the state dynamic matrix. In order to solve this

nonlinear joint state and parameter estimation problem the Extended Kalman

Filter (EKF) or the Unscented Kalman Filter (UKF) can be used. A non-linear

parameter augmented model can be seen in Equation (2.56). The next instance

of states are dependent on a product of the states in the linear state space system

and the estimated parameter, which is also a state in the augmented system. We

will demonstrate examples of the joint state parameter estimation in the next

chapters.

2.3 Extended Kalman Filter

The simplest example of handling non-linearities is by linearizing the system

around a certain point. This technique is used in the Extended Kalman Filter

(EKF) which is known to be sub-optimal, but has stood the test of time as a well

proven method in practice.

A general non-linear system can be formulated as:

xk = f(xk−1,uk−1,wk−1) (2.57)

yk = h(xk,vk),
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where xk is a vector of state variables, u is a vector of inputs, w is the added

noise, y is the measurements vector and v is the noise in the measurements space.

In Extended Kalman Filter the linearized system matrices are found by calculating

the partial derivative (Jacobian) of the nonlinear funcion f with respect to the

state variables x or the process noise w (both computed at the time step k).

Φk =
∂f(x,u,w)

∂x

∣∣∣∣
k

(2.58)

Γk =
∂f(x,u,w)

∂w

∣∣∣∣
k

. (2.59)

The partial derivatives result in the formulation of Φk, which is the linearized

state dynamic matrix, and Γk which is the linearized process noise matrix. The

prediction step is performed using Equation (2.57), using the actual nonlinear

model function f ,

xk = f(x̂k−1,uk,w)

Pk = ΦkP̂k−1ΦT
k + ΓkQkΓ

T
k

(2.60)

Notice that the state estimate is made on the non-linear propagation function f ,

while the covariance matrix estimate is made on the basis of linearized system

matrix Φk. The rest of the partial derivatives are found based on the a priori xk.

Σk =
∂h(x,v)

∂x

∣∣∣∣
xk

(2.61)

Λk =
∂h(x,v)

∂w

∣∣∣∣
wk

(2.62)

where Σk is the linearized output matrix, Λk is the linearized measurement noise

matrix.

If non-linearity does not exist in a system matrix the partial derivative equals the

system matrix, for example: if there is no non-linear formulation in h(x,v) then

we simplify,
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Σk =
∂h(x,v)

∂x
= Hk (2.63)

Λk =
∂h(x,v)

∂w
= Rk (2.64)

For a system with a nonlinear function and a nonlinear transfer function, the

update step of the Kalman filtering algorithm is applied,

yk = zk − Σkxk (2.65)

Kk = PkΣ
T
k (ΣkPkΣ

T
k + Λk)

−1 (2.66)

x̂k = xk + Kkyk (2.67)

P̂k = (I−KkΣk)Pk (2.68)

It is important to note that while Kalman filtering is optimal in the case of a linear

system, the EKF is sub-optimal in the case of a non-linear system. This can still

give adequate performance in the case when the nonlinearities are small, but when

the system is highly nonlinear the performance is degraded. Furthermore, since

the partial derivatives are to be calculated for every time step, computational load

is increased compared to the linear counterpart.

Other methods for nonlinear system exist such as the Unscented Kalman Filter

(UKF). While the UKF has a computational burden similar to the EKF [44], our

investigation of UKF for the experimental physics problems discussed in thesis has

proven to be more robust, easy and accurate in comparison to the performance of

EKF.

In general, to avoid EKF divergence, one should be careful about following:

1. Properly specify system dynamics and measurement equations, e.g. not to

describe a pendulum by a first order model.

2. Ensure that your system is observable, e.g. construct the observability test

matrix and check its rank.

3. Properly specify process and measurement noise covariance matrices, e.g.

not to be too optimistic regarding the accuracy of your model and sensors.
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4. If your system is nonlinear, seed the EKF with the initial state estimate

which is likely to be close to the true value.

The EKF works on the principle that a linearized transformation of means and

covariances is approximately equal to the true nonlinear transformation. However,

this approximation could be unsatisfactory in practice.

2.4 Unscented Kalman Filter

When the complexity of the dynamical system grows, the Extended Kalman Filter

tends to diverge and becomes harder to implement. Furthermore, the linearization

step involves calculation of partial derivatives for every iteration step of the filter.

This makes the Extended Kalman Filter a computationally expensive algorithm.

With its practically proven performance, Unscented Kalman Filter is considered

to be an efficient alternative.

2.4.1 The Unscented Transform

The base of the Unscented Kalman Filter is in a process known as The Unscented

Transform. In this process, a set of points referred to as the sigma points are

passed through the nonlinear function of the system to estimate the mean and

covariance of the new state distribution.

yσ = f(χ). (2.69)

Here, yσ is a function of the sigma points matrix χ. This creates another matrix

containing the transformed sigma points that have been passed through the non-

linear function. This approximates the resulting Gaussian state distribution of the

estimated state. This overall process is referred to as the Unscented Transform.

A graphical representation can be visualized in Figure 2.4.

Following are the steps to perform the Unscented Transformation:

1. Calculate the set of sigma points,
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Figure 2.4: The Gaussian approximation of the state distribution before and
after Unscented Transform.

2. Assign weights to each sigma point,

3. Transform these sigma points through the nonlinear function,

4. Compute the new state Gaussian distribution and associated weights,

5. Find mean and variance of the new Gaussian.

2.4.2 The sigma points

For the Unscented Transform, a set of scaled sample points referred to as the Sigma

Points are calculated. These are a minimal set of carefully chosen points that

approximately model the Gaussian distribution of the nonlinear system. When

passed through the nonlinear function, they have the propensity to model the

state and error propagation, in time, more accurately, than the approximation

used in the Extended Kalman Filter.

The sigma points can be calculated using the Van der Merwe Scaled Sigma Point

Algorithm [45]. Using just three parameters α, β and κ this algorithm computes

a scaled weighted distributed set of sigma points that approximates the state

distribution. Using this algorithm we generate a matrix of the sigma points χ

with 2n+1 columns, where n is the number of dimensions of the system. The first

point χ0 is the mean value of the input while the others are computed as below.

χ0 = µ (2.70)
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χi =

µ+ [
√

(n+ λ)Σ]i for i = 1 · · ·n

µ− [
√

(n+ λ)Σ]i−n for i = (n+ 1) · · · 2n
(2.71)

where,
√

(n+ λ)Σ is a matrix. The subscript i represents the column vector of this

matrix. The λ = α2(n+ κ)− n, α, and κ are the scaling parameters of the sigma

points distribution and n is the dimensions of the state. Furthermore, we compute

the square root of the covariance matrix Σ, scaled by factor γ, maintaining the

symmetry by both adding and subtracting it from the mean.

This generates the following sigma points matrix.

χ =



χ0,0 χ0,1 χ0,2 · · · χ0,2n+1

χ1,0 χ1,1 χ1,2 · · · χ1,2n+1

χ2,0 χ2,1 χ2,2 · · · χ2,2n+1

...
...

...
. . .

...

χn−1,0 χn−1,1 χn−1,2 · · · χn−1,2n+1


, (2.72)

where, n represents the dimensions of our system.

2.4.3 Computing the weights

The sigma points are also weighted using λ as a scaling factor. The associated

weight for the first mean wm0 value is calculated using the following Equation,

wm0 =
λ

n+ λ
, (2.73)

where, n is the dimensions of the system and λ = α2(n+ κ)− n.

The weights for the rest of the sigma points χ1 · · · χ2n+1 are calculated using,

wmi =
1

2(n+ λ)
i = 1 · · · 2n, (2.74)

Next, we see how these sigma points and weights work together to predict and

estimate the states of the nonlinear system in subsequent sections.
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2.4.4 Prediction step

These transformed sigma points along with the weights are used to predict the

a priori state and the Gaussian distribution of the error covariance using the

following equations,

xk =
2n∑
i=0

wmi yσ (2.75)

Pk =
2n∑
i=0

wci (yσ − xk)(yσ − xk)
T + Q (2.76)

where, wm are the weights associated with the mean values and wc are the weights

of the error covariance P.

2.4.5 Update step

We create a measurement function that converts the sigma points into the mea-

surements space for the update step of the filter,

Z = h(yσ) (2.77)

Again, using the Unscented Transform we pass the sigma points and their as-

sociated weights through the measurement function to compute the state and

covariance in the measurement space as follows,

µZk
=

2n∑
i=0

wmi Z (2.78)

PZk
=

2n∑
i=0

wci (Z− µzk)(Z− µzk)T + R (2.79)

then we compute the residual of the predicted state and true measurement value,
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y = z− µzk , (2.80)

here, z represents the measurement values from the sensor and µZk
represents the

weighted mean of the transformed sigma points.

2.4.5.1 Kalman Gain

The Kalman Gain is computed using the cross covariance matrix between the

state and the measurements. The cross covariance matrix is calculated as follows,

PxZ =
∑

wci (yσ − x)(Z− µz)T (2.81)

using in the calculation of Kalman Gain,

K = PxZP
−1
Z (2.82)

Last, we calculate the weighted residual to compute the a posteriori estimate of

the state x̂k and the corrected error covariance P as,

x̂k = xk + Ky (2.83)

P̂k = Pk −KPZK
T (2.84)

Where, x̂ is the corrected estimate of the state x, and P̂ is the corrected error

covariance.



Chapter 2 Theoretical framework 40

L
in

ea
r

K
al

m
an

F
il
te

r
E

x
te

n
d
ed

K
al

m
an

F
il
te

r
U

n
sc

en
te

d
K

al
m

an
F

il
te

r

F
=

∂
f

(x
,u

))
∂
x

y σ
=
f

(χ
)

x
k

=
F
x̂
k
−

1
+
B
u
k
−

1
x
k

=
f

(x̂
k
−

1
,u

)
x
k

=
Σ
w
m
y σ

P
k

=
F
P̂
k
−

1
F
T

+
Q

P
k

=
F
P̂
k
−

1
F
T

+
Q

P
k

=
∑ w

c
(y
σ
−

x
k
)(
y σ
−
x
k
)T

+
Q

H
=

∂
h

(x
k
)

∂
x

y
=

z
−

H
x

y
=

z
−
h

(x
)

y
=

z
−
µ
z

S
=

H
P
k
H
T

+
R

S
=

H
P
k
H
T

+
R

P
Z k

=
∑ w

c
(Z
−
µ
z k

)(
Z
−
µ
z k

)T
+
R

K
k

=
P
k
H
T
S
−

1
K
k

=
P
k
H
T
S
−

1
K

=
[∑ w

c i
(y
σ
−

x
)(
Z
−
µ
z
)T

]P
−

1
Z

x̂
k

=
x
k

+
K
k
y

x̂
k

=
x
k

+
K
k
y

x̂
k

=
x
k

+
K
k
y

P̂
k

=
(I
−

K
H

)P
k

P̂
k

=
(I
−

K
H

)P
k

P̂
k

=
P
k
−

K
P

Z k
K
T

T
a
b
l
e
2
.1
:

T
h

e
m

at
h

em
at

ic
al

co
m

p
ar

is
on

of
th

e
L

in
ea

r,
E

x
te

n
d

ed
an

d
th

e
U

n
sc

en
te

d
K

a
lm

a
n

F
il

te
r.



Chapter 3

Simulating Kalman Filters

This chapter covers the simulated application of Kalman Filtering to three vivid

examples from mechanics (a) damped harmonic oscillator, (b) Duffing oscillator,

and (c) Wilberforce pendulum. For each of these problems we derive the equations

of motion using Euler-Lagrangian formulation and build their respective state

space models amenable for Kalman Filtering. We explore the effects of increasing

and decreasing the process and measurement noise on the performance of the filter

and also evaluate how our problems are explained by the observability test.

3.1 Damped harmonic oscillator

We take example of a simple mass oscillator because harmonic oscillator is the

underlying theory which form the bases for high ordered coupled complex prob-

lems such as vibrations. The fundamental role of pendulums and oscillations in

describing myriad natural phenomena is the reason why we select it as our first

example of the application of a Linear Kalman Filter in this chapter. We will then

explore experimental realizations in Chapter 4.

3.1.1 Deriving the equation of motion using Lagrangian

Though the simple harmonic oscillator can be derived using the Newtonian me-

chanical system of equations, but, here we derive it from the system Lagrangian,

41
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L = T − V (3.1)

where L is called the Lagrangian, T is the kinetic energy and V is the potential

energy. In a one dimensional horizontally placed mass-spring system Equation

(3.1) takes the form:

L =
1

2
mẋ2 − 1

2
kx2, (3.2)

where x is the deviation from equilibrium.

For this system, we obtain ∂L/∂ẋ = mẋ and ∂L/∂x = −kx. This can be substi-

tuted into the Euler-Lagrange equation:

d

dt

(∂L
∂ẋ

)
=

∂L

∂x
(3.3)

yielding the equation of motion,

ẍ+
k

m
x = 0. (3.4)

If there existed a damping effect to the simple harmonic oscillator then Equation

(3.4) will also include a damping coefficient b:

ẍ+
b

m
ẋ+

k

m
x = 0. (3.5)

However, if the potential energy due to gravity is considered on a vertically oscil-

lating system then:

V =
1

2
kx2 +mg(h+ x), (3.6)

where, h is the height of the oscillator from the ground and x is the vertical

displacement from equilibrium.

The Lagrangian with the inclusion of gravity takes the form,

L = K − V

=
1

2
mẋ2 − 1

2
kx2 −mg(h+ x)

(3.7)
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It is also possible to incorporate the damping term b right at the level of Euler-

Lagrange equations. We define the energy lost in overcoming diction as,

P =
1

2
bẋ2. (3.8)

With the generalized coordinate x and generalized applied force f , we can write

the constrained Euler-Lagrange (E-L) equation:

f =
d

dt

(∂L
∂ẋ

)
− ∂L

∂x
+
∂P

∂ẋ

=
d

dt

( ∂
∂ẋ

(1

2
mẋ2 − 1

2
kx2 −mg(h+ x)

))
− ∂

∂x

( ∂
∂ẋ

(1

2
mẋ2 − 1

2
kx2 −mg(h+ x)

))
+

∂

∂ẋ

(1

2
bẋ2
)

=
d

dt

(
xẋ2
)
− (−kx−mg) + (bẋ

= mẍ+ bẋ+ kx+mg. (3.9)

where, k is an elastic constant that determines the restoring force when the oscil-

lator is displaced from equilibrium, m is the mass, f is the driving force and b is

the damping coefficient that results in the decaying behavior of the system over

time.

The motion of the harmonic oscillator is periodic, repeating itself in a sinusoidal

fashion with amplitude A. In addition to its amplitude, the motion of a simple

harmonic oscillator is also characterized by its period T , the time for a single

oscillation or its frequency i.e. f = 1/T and ω = 2πf respectively. The position

at a given time t also depends on the phase φ, which determines the starting point

of the sine wave. The period and frequency are determined by the size of the mass

m and the force constant k, while the amplitude and phase are determined by the

starting position and velocity. When the motion of the oscillator reduces due to an

external force it is referred to as damping. The amplitude in this case periodically

decreasing, gradually bringing the system to rest. In this case, the energy of

the oscillator dissipates continuously but for small damping the oscillations are

approximately periodic.
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The velocity and acceleration of a simple harmonic oscillator oscillates with the

same frequency as the position, but with shifted phases. The velocity is maxi-

mal for zero displacement, while the acceleration is in the direction opposite to

the displacement. These are basic results that are included by any textbook on

mechanics [46].

3.1.2 State space model for the mass-spring system

In order to recast model of the vertically oscillating mass-spring damper system

for Kalman Filtering we first convert the second order dynamic system (3.9) to

a first ordered system in the state space. We define a column matrix for state

variables x(t) where coordinates are:

x1 = x (3.10)

x2 = ẋ = ẋ1 (3.11)

which also gives us,

ẋ2 = ẍ1 = ẍ (3.12)

Using these substitutions into Equation (3.9) we can write:

mẋ2 + bx2 + kx1 = mg. (3.13)

Here, we assume that, f = 0 (i.e. the system is oscillating freely).

From Equation (3.11), we know that,

ẋ1 = x2, (3.14)

whereas from Equation (3.13) we deduce,

ẋ2 = − b

m
x2 −

k

m
x1 +

1

m
u, (3.15)
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where, u = g is treated as a control variable. The variables b, k, and m will later

be treated as parameters. For the time being these are constants related to the

physical states.

Equations (3.11) and (3.15) transform into matrix form, which is indeed the state

space model, [
ẋ1

ẋ2

]
=

[
0 1

−k/m −b/m

][
x1

x2

]
+

[
0

1/m

]
u. (3.16)

This is a first order equation. The matrices A and B are in accordance to Equation

(2.3). The matrix A is referred to as the system dynamic matrix (3.17) and the

matrix B is referred to as the control matrix (3.18).

A =

[
0 1

−k/m −b/m

]
(3.17)

B =

[
0

1/m

]
. (3.18)

Equation (3.16) is the continuous state space model for a simple one dimensional

mass-spring damper system with one degree of freedom. Now, we proceed by

converting this continuous state space model into a discrete time based state

space model. This is because we are applying the Kalman Filter in a discrete

state space. Through discretization as shown in Equation (2.17) we find the state

transition matrix F. For simplification we also define ω2 = k/m and γ = b/m.

Upto first order in t we can write the following equation,

F =

[
1 ∆t

−ω2∆t 1− γ∆t

]
. (3.19)

Equation (3.19) is called the process model for mass-spring damper sysem that we

will use in the Kalman Filter.

3.1.3 Simulating the mass-oscillator

For this virtual experiment, we first run a simulation to exhibit the actual behavior

of a simple harmonic oscillator and obtain the true values of position and velocity
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given certain initial conditions and a fixed set of known parameters (k, m and

b). This is done by solving the ordinary differential equation that governs this

phenomenon (3.9) through numerical integration.

For the purpose of this thesis work we consider a two dimensional system of posi-

tion and velocity. We assume that we have one position sensor with an absolute

error of 0.1 m. We also assume that there is no driving force f = 0. Using the

Matlab’s ODE45 solver we solve the system to obtain the true values of the po-

sition and velocity of the oscillating system. The system simulation is shown in

Figure 3.1.
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Figure 3.1: The simulation of mass-spring damper system, (a) represents
the position of oscillator in meters with spring constant k = 5 N/m, damping
coefficient b = 3 Ns/m and mass m = 10 kg. (b) is the simulated velocity of the

oscillator in meters per second.
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3.1.4 Observability test for the mass oscillator

Before applying Kalman Filter we test for the observability of the system, Using

Equation (2.19), we solve for the observability test for our example of the mass-

oscillator system for two cases, (a) one with only a position sensor and (b) with

only a velocity sensor.

(a) Position sensor only: From Equation (3.17) the state dynamic matrix A in

the damped mass-oscillator problem can be written as,

A =

[
0 1

−ω2 −γ

]
, (3.20)

where we have defined ω2 = k/m and γ = b/m.

We are only using a position sensor as the measurement input so the measurement

matrix is:

C =
[
1 0

]
, (3.21)

In order to apply the observability test, we need to assign some values to these

parameters. The value of the square of the frequency ω2 is taken to be equal to

0.5 rad2s−2 and the value of the damping factor γ is equal to 0.3 s−1. Using only

a position sensor the observability is as follows:

O =

[
C

CA

]
=

[
1 0

0 1

]
(3.22)

The rank of this observability matrix is obviously 2, which is equal to the dimen-

sions of the system. This means that our system is observable and we can infer

both the position and velocity of the system using merely the position sensor.

(b) Velocity sensor only: Now let’s test for the observability if we only have a

velocity sensor. The only change is in the measurement matrix C =
(

0 1
)

. The

observability test yields.
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O =

[
C

CA

]
=

[
0 1

−0.5 −0.3

]
(3.23)

The rank of the observability matrix is 2, which is equal to the dimensions of the

system, so this system is also observable using merely a velocity sensor.

Hence, for this two dimensional system we could use either a position or velocity

sensor to filter out noise from the noisy oscillatory system and extract both the

position and the velocity, thereby applying the Kalman Filter in both dimensions

(position and velocity). We proceed to this step.

3.1.5 Applying the Kalman Filter

Using only a noisy position sensor, we now use the Kalman Filter to filter estimates

of position and velocity as our first application of state estimation for a linear

system.

We begin by initializing our state x0 containing initial guess of position and ve-

locity. We also specify the associated initial error covariance matrix P0 as follows,

x0 =

[
0

1

]
, (3.24)

P0 =

[
0.1 0

0 0.1

]
, (3.25)

where, P0 contains the covariance of our initial position and velocity state vari-

ables. The selection of this variance is arbitrary but it has to be non-zero. This

is because an initial error covariance of zero would mean that the initialization

values are already true and thus the filter would not go through the test of its

recursive belief prediction-correction algorithm.

In accordance with the filter equations described in Chapter 3 our time update

equations are:

xk = Fx̂k−1, (3.26)
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Equation (3.26) is the primary state prediction equation that projects the previous

state vector estimation x̂k−1 forward in time. Equation (3.19) is the state transition

matrix F for our damped mass spring system. Placing this into Equation (3.26),

we obtain:

[
x1

x2

]
k

=

[
1 t

−ω2∆t 1− γ∆t

][
x̂1

x̂2

]
k−1

. (3.27)

Furthermore, the associated error covariance Pk of the states is also predicted to

the current time step k from the corrected covariance P̂k−1 in the last iteration.

Here, in the first iteration we have initialized it with some non-zero covariance

elements in P0.

Pk = FP̂k−1F
T + Q, (3.28)

The process noise Q is added to the system to account for the consistent uncer-

tainty in the state variables. In this case, we use the piecewise noise covariance

matrix from Equation (2.54) as follows.

Q = E[Γσ2ΓT ]

=

[
1
2
∆t2

∆t

] [
1
2
∆t2 ∆t

]
σ2

=

[
1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t2

]
σ2 (3.29)

The current predicted error covariance Pk takes the following form:

Pk =

[
1 ∆t

−ω2∆t 1− γ∆t

][
0.1 0

0 0.1

][
1 −ω2∆t

t 1− γ∆t

]
+

[
1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t2

]
(3.30)

After the prediction or the time update, the measurement update equations are as

follows:

yk = zk −Hxk, (3.31)
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We simulated our damped harmonic oscillator using Equation (3.15). The MAT-

LAB’s ODE45 solver returned us the values of the true position of the oscillator.

We infested the true position with an error of 0.1 m. This constituted our noisy

measurement data in variable zk that is accessed by the filter’s measurement up-

date Equation (3.31) and compared with the predicted state at current time step

to calculate the residual yk of the system. The transfer function matrix H is used

to bring the state being measured into the measurement space. In our case, as we

measure the position directly H =
[
1 0

]
and Equation (3.31) takes the form

yk = zk −
[
1 0

] [x1

x2

]
k

(3.32)

= zk − (x1)k (3.33)

Next, the Kalman Gain K is calculated using Equation (2.46). The gain decides

relative priority to impart to the measurement values zk or to use the predicted

position values xk. The gain is reproduced here for convenience.

Kk = PkH
T (HPkH

T + R)−1, (3.34)

Here, Pk is again the error covariance matrix, H is the transfer function matrix

and R is the measurement noise that we infested into our simulated system, which

represents that noisy sensor.

After incorporating the Kalman gain, the a priori prediction is corrected and we

estimate the a posteriori value of the state.

x̂k = xk + Kkyk, (3.35)

We represent this estimated state vector x̂k with a hat and refer to it as the

estimated state, or corrected state or the a posterori estimate.

Last, the filter rectifies the current predicted error covariance Pk using the error

covariance estimate Equation (3.36). This updates the current belief which is used

as input for the next iteration.
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Figure 3.2: Simulated application of the Kalman Filter on the noisy mass-
spring damper system. Figure (a) shows the simulated noisy position values
infested with 0.1 m white noise being filtered in the form of estimates. Figure (b)
shows the estimated output of the filter along with the true simulated velocity

of the system.

P̂k = (I−KkH)Pk. (3.36)

The results of the Kalman Filter applied to the mass-spring damper system are

shown in Figure 3.2. In Figure (a) we see the true and the noisy trajectory of

the position of the damped harmonic oscillator simulated using Equation (3.15).

The dots represent the artificial noise with a variance of 0.1 m we infested into

our position sensor. The KF Estimate is the trajectory of the a posteriori state

estimates from Equation (3.35). The shaded region is two times the standard

deviation of the estimated states highlighting the 95% confidence interval of the

filter’s estimates. It is computed using the diagonal elements of P which represent

the variance of state variable in x. As the filter converges, the spread of the
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Figure 3.3: A stack of plots exhibiting the effect of tuning the process noise
covariance matrix Q. The Figure (a) and (b) depicts the effect of a large value
of process noise variance σ2 = 5.22 . The Figure (c) and (d) show the effect
of high initial covaraince matrix P0 = 100 with high uncertainty in the process
noise and Figure (e) and (f) show the response of the filter only due to a high
initial error covariance. The measurement noise R remains constant at 0.1 m.

estimates reduce, building the confidence on the estimates over time as shown by

the shaded region in the plot.

We did not have a velocity sensor in this case, so, there is no noisy velocity

trajectory seen in Figure (b). The simulated true trajectory of the velocity and

the estimated velocity component of state is shown in the Figure (b).

3.1.6 Using process noise to tune the filter

The simulation discussed so far is an introductory example of applying Kalman

Filter to a linear problem. We also explore the variation effects of varying the

process noise covariance matrix on the performance of the filter. The filter operates

on the weighted belief system between the sensor data and the modeled process.



Chapter 3 Simulating Kalman Filters 53

In Figure 3.3, we can see the effect of varying the process noise covariance Q as

a tuning parameter to adjust the filter’s response to the noisy sensor data. If the

value of Q is high as compared to the measurement error R, the filter considers the

sensor data to be more trustworthy and starts to base its state estimates according

to the sensor data, as shown in Figures (a) and (b).

If the provided initial error covariance P0 has a large value, then the filter takes

some time to converge to the optimum values of the state. This is shown in Fig-

ure (c) and (d) where we keep the diagonal values of the initial error covariance

P0 = 100. The process noise is kept high at σ2 = 5.22, thus, the plots show how

the filter still keeps following the noisy measurement values even after convergence.

However, if the process noise Q is set to a value of zero, the filter assumes the pro-

cess model to be completely accurate and completely ignores the true measurement

values. In Figure (e) and (f) we keep the diagonal values of the initial covariance

high i.e. P0 = 100 and the variance of the process noise σ2 = 0. This makes the

initial convergence of the filter difficult and we see a delay in the state adapting

to the true values of the system. However, since the process noise is completely

zero, the filter completely ignores the measurement values and follows the ideal

path of the underlying process model. These results show that the process noise

covariance matrix Q is a primary tuning factor in determining the performance of

the filter.

3.1.7 Kalman Gain

We have seen the effects of tuning the process noise covariance matrix Q and

varying P in the previous section. This tuning also impacts how the Kalman

Filter weighs its a priori prediction in comparison to the residual to make an a

posteriori estimation. Figure 3.4 highlights the effects of incremental increase in

the variance of the process noise covariance matrices Q on the Kalman Gain of

the filter. From Equation (3.34), we can see that the Kalman Gain is a weighing

factor that decides whether the Kalman Filter should prioritize the values of the

noisy measurements obtained from the sensor or the uncertainty of the process

model to make the a posteriori estimation of the state.

Kk = PkH
T (HPkH

T + R)−1, (3.37)
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In Figure 3.4 we can see that for the highest value of the process noise variance at

σ = 502 the filter completely ignores the process model and considers the value of

the measurement input zk coming from the transfer function to be the estimated

output value of the filter. As we decrease the value of the variance σ2 from 502 to

0.012 the Kalman gain decreases to the value around 0.01. This implies that the

state estimates now reside more towards the process model rather than the noisy

measurement values.
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Figure 3.4: The effects of tuning the process noise covariance matrix Q on the
Kalman Gain. We keep a high initial error covariance P0 = 10

We keep the diagonal values of the initial covariance matrix to be P0 = 102.

This implies that the we want the filter to avoid trusting the process model in

the beginning and later converge to the values according to the process noise

covariance matrix. Otherwise, for a lower value, the filter would always consider

the initial values of the state variable matrix x to be accurate and hence avoid

measurement values as already discussed before.
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3.1.8 Parameter Estimation

One of the physicist’s motivations behind using the Kalman Filter is the fact that

it empowers not only the estimation of complex dynamical states but also helps

in estimating the many underlying sub-parameters which govern the properties of

the system. For example, in our mass-spring damper system, the square of the

natural frequency ω2 and the damping factor γ are important parameters which

determine the system kinematics. The Kalman Filter can also be used to estimate

these parameters. The utility of this approach becomes evident when we compare

it with the need to independently infer these quantities from independent, and

sometimes elaborate experiments. For example, determining ω2 = k/m requires

knowledge of k which may require one to displace the oscillator by varying the mass

and determining k through curve fit on a series of measurements. The Kalman

Filter through state space approach with augmented parameters enables us to

directly estimate these parameters by measurements of the time dynamics. The

power of this technique is all the more conspicuous when dealing with complex,

nonlinear systems. However, as a curtain raiser we implant this technique on a

linear damped oscillator.

The parameter estimation by augmenting the parameters into the state space

vector x, makes the problem and the state update equations nonlinear. This

means that now we need to resort to nonlinear observability tests and nonlinear

incarnations of the Kalman Filter, such as the Extended Kalman Filter and the

Unscented Kalman Filter. We explore the application of both to our simulated

mass spring damper system and compare their performance.

3.1.8.1 Estimating the frequency and damping coefficient

For our damped mass oscillator, the frequency is dependent upon the spring con-

stant and mass of the hanging object. During oscillation the oscillator is subjected

to a damping force which is linearly dependent upon the velocity. In this process,

the oscillations of the system experience an exponential decay which depends upon

the damping coefficient γ.

Conventionally, the frequency and damping coefficient for a dynamical system

are estimated using the time period of one oscillation and the gradient of the

log decrements of the amplitudes. We use Extended Kalman Filter, described in
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Section 2.3 to estimate these parameters. Due to unknowns in our state equations

that system becomes nonlinear.

We first augment the state dynamic matrix with unknown parameters. The aug-

mented state vector for the damped mass oscillator problem takes the following

form:

ẋ =
[
x1 x2 x3 x4,

]T
(3.38)

Here, x1 is position, x2 is velocity, x3 is square of the frequency ω2 and x4 is

the damping coefficient γ of the system. The system dynamical equation can be

rewritten state space as follows:

ẋ = f(x1,x2,x3,x4) (3.39)

where the nonlinear function f is defined as,

f(x) =


x2

−x4x2 − x3x1

0

0

 (3.40)

If only the position is being measured, the measurement matrix is

H =
[
1 0 0 0

]
. (3.41)

Now, due to state augmentation, the system becomes a nonlinear function of the

parameters. Precisely, state propagation from time step k−1 to k is nonlinear while

the measurement to state space conversion is linear. So, we linearize by taking the

partial derivatives of the state equations with respect to the state variables. The

resulting matrix is as follows:
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Φ =
∂f(x)

∂x

=


0 1 0 0

−x3 −x4 −x1 −x2

0 0 0 0

0 0 0 0


(3.42)

From Φ we derive the discretized state transfer matrix in accordance with Equation

(2.17):

F = eΦ∆t ≈ I + Φ∆t

=


1 ∆t 0 0

−x3∆t 1− x4∆t −x1∆t −x2∆t

0 0 1 0

0 0 0 1


(3.43)

Equation (3.43) is the discrete linear state transition matrix for parameter estima-

tion in the mass spring damper system. This matrix is not used for the transition

of state from previous time step to the current time step, rather, it is used in

updating the belief or the error covariance from the a posteriori to the current a

priori prediction. For state propagation we use the nonlinear function f , given in

Equation (3.40) instead.

Before we apply the Extended Kalman Filter to estimate the parameters of this

system we test for the observability of the system using only the position sensor.

3.1.8.2 Nonlinear observability test for parameter estimation in har-

monic oscillator

The augmented state equations are nonlinear due to the presence of the sub-

parameters. As discussed before the observability test is an important tool to

know if it would be possible to estimate the state using a particular set of sensors

at the output. In linear regime, an observability test is performed using Equation

(2.19). However, in the case of a nonlinear system, the linear observability test
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fails due to the nonlinearity of the state equations. For this, the observability test

for a nonlinear system is performed using the derivation outlined around Equation

(2.30).

From Equation (3.40), we know that:

f(x) =


x2

−x3x1 − x4x2

0

0

 (3.44)

and the (linear) observation equation is given by:

y(x) = Hx = x1 (3.45)

The nonlinear observability is represented by the measurement function and its

high ordered Lie derivatives with respect to the state. The basic idea is to compose

the mapping matrix φ given in Equation (2.29).

Taking Lie derivatives of the measurement function yields

£0
f (y(x)) = y(x) = x1 (3.46)

£1
f (y(x)) =

∂y

∂x
· f(x)

=
(
∂x1

∂x1

∂x1

∂x2

∂x1

∂x3

∂x1

∂x3

)


x2

−x3x1 − x4x2

0

0



=
(

1 0 0 0
)


x2

−x3x1 − x4x2

0

0

 = x2 (3.47)

£2
f (y(x)) =

∂£1
f

∂x
· f(x)
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=
(
∂x2

∂x1

∂x2

∂x2

∂x2

∂x3

∂x2

∂x3

)


x2

−x3x1 − x4x2

0

0



=
(

0 1 0 0
)


x2

−x3x1 − x4x2

0

0

 = x3x1 − x4x2

£3
f (y(x)) =

∂£2
f

∂x
· f(x)

=
(
∂−x3x1−x4x2

∂x1

∂−x3x1−x4x2

∂x2

∂−x3x1−x4x2

∂x3

∂−x3x1−x4x2

∂x3

)


x2

−x3x1 − x4x2

0

0



=
(
−x3 −x4 −x1 −x2

)


x2

−x3x1 − x4x2

0

0


= − x2x3 + x4x3x1 + x2

4x2 (3.48)

Therefore, the resulting mapping matrix φ is:

φ =


£0
f

£1
f

£2
f

£3
f

 =


x1

x2

−x3x1 − x4x2

−x2x3 + x4x3x1 + x2
4x2

 (3.49)

Next, we take the Jacobian of the mapping matrix φ with respect to the state

variables,

O =
∂φ

∂x
=


∂£0

f

∂x1

∂£0
f

∂x2

∂£0
f

∂x3

∂£0
f

∂x4
∂£1

f

∂x1

∂£1
f

∂x2

∂£1
f

∂x3

∂£1
f

∂x4
∂£2

f

∂x1

∂£2
f

∂x2

∂£2
f

∂x3

∂£2
f

∂x4
∂£3

f

∂x1

∂£3
f

∂x2

∂£3
f

∂x3

∂£3
f

∂x4

 (3.50)
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This results in the following nonlinear observability test matrix for the augmented

parameter estimation of the damped harmonic oscillator model using only a posi-

tion sensor.

O =


1 0 0 0

0 1 0 0

−x3 −x4 −x1 −x2

(x4x3) (−x3 + x2
4) (−x2 + x4x1) (x3x1 + 2x4x2)

 , (3.51)

The rank of this observability matrix is equal to the dimensions of the system i.e.

n = 4. This means that this is observable.

3.1.8.3 Applying the Extended Kalman Filter to estimate parameters

We now apply an Extended Kalman Filter to estimate the unknown parameters.

So far, we have derived the state transition matrix (3.43) and tested for the ob-

servability of this nonlinear system in (3.51) using one noisy position sensor (3.41).

Using simple Euler integration of our nonlinear state equation,

ẋ = f(x, u) (3.52)

to propagate the state from time k−1 to k. The result of Euler integration of this

function is:

(x1)k = (x̂1)k−1 + (ẋ2)k∆t (3.53)

(ẋ2)k =
(x2)k − (x̂2)k−1

∆t

(x2)k = (x̂2)k−1 + (ẋ2)k∆t

(x2)k = (x̂2)k−1 + (−(x̂4)k−1(x̂1)k−1 − (x̂3)k−1(x̂2)k−1) ∆t (3.54)

(x3)k = (x̂3)k−1 (3.55)

(x4)k = (x̂4)k−1 (3.56)
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where x1 is the position, x2 is the velocity, x3 is the square of the frequency, x4

is the damping coefficient and ∆t is the time step used for integration. Equation

(3.52) is used to predict the position, velocity and parameters of the oscillator at

the current time step. The system at every current time step will depend upon

the estimated state variable x̂k−1 from the previous time step.

The error covariance matrix Pk is also propagated using Equation (3.28). We

use the linearized discrete state transition matrix F given in Equation (3.43) in

the propagation of the error covariance matrix. We initialize the error covariance

matrix P̂0 as

P̂0 =


0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 (3.57)

We use “hat” atop P to represent this initialization to be the initial a posteriori

estimation of the error covariance of the state variables. We proceed by computing

the a priori error covariance as follows,

Pk = FP̂k−1F
T + Q, (3.58)

Pk

=


1 ∆t 0 0

−x3∆t −x4∆t −x1∆t −x2∆t

0 0 1 0

0 0 0 1




0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1




1 −x3∆t 0 0

∆t −x4∆t 0 0

0 −x1∆t 1 0

0 −x2∆t 0 1


+ Q (3.59)

The process noise Q is computed using Equation (2.54) giving

Q =


1
4
∆t4 1

2
∆t3 1

2
∆t2 1

2
∆t2

1
2
∆t3 ∆t2 ∆t ∆t

1
2
∆t2 ∆t 1 1

1
2
∆t2 ∆t 1 1

σ2
v . (3.60)
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Figure 3.5: The simulation of the joint state and parameter estimation of a
damped mass spring system using Extended Kalman Filter. Figure (a) shows
the simulated noisy position with the output of the filter’s estimates KF Esti-
mate. Figure (b) shows the true simulated and estimated velocity of the system
through the process model of the filter. Figure (c) shows the estimated value of
the spring constant, the true value was 5 N/m. Figure (d) shows the estimated

value of the damping coefficient with true value 3 Ns/m.

We inflate the process noise by altering the value of variance σ2
v to tune the per-

formance of our Kalman Filter. In our simulated application we set this value to

0.012.

For our damped harmonic oscillator system we already have the simulated noisy

position data that was previously used in the residual equation for the application

of Kalman Filter. This step remains the same in parameter estimation as well.

There is no change in rest of the algorithm and it is applied in the same fashion.

Kalman Gain is dependent upon the linearized error covariance matrix which is

dependent upon the linearized state transition matrix. So, our state augmented

nonlinear system for parameter estimation evolves with consideration of the uncer-

tainties in the states and parameters to give us optimum estimated state outputs
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from the filter. The Figure 3.5 shows the application of Extended Kalman Filter

to the simulated damped harmonic oscillator with unknown parameters. The fil-

ter successfully estimates the spring constant and the damping coefficient of the

system.

Spring constant (N/m) Damping coefficient (Ns/m)

True values 5 3

EKF estimate 4.921 3.471

RMSE 0.581 0.277

Table 3.1: The Root Mean Square Error (RMSE) values of true values and
estimated values of spring constant and damping coefficient respectively.

3.1.9 Applying the Unscented Kalman Filter

Our difference equations of the system, already formulated in the previous appli-

cation of the Extended Kalman Filter, are as follows,

(x1)k = (x̂1)k−1 + (x̂2)k−1Ts (3.61)

(x2)k = (x̂2)k−1 + (x̂2)k−1Ts

= (x̂2)k−1 +

(
−(x̂4)k−1

m
(x̂1)k−1 −

(x̂3)k−1

m
(x̂2)k−1

)
Ts (3.62)

(x3)k = (x̂3)k−1Ts (3.63)

(x4)k = (x̂4)k−1Ts (3.64)

We begin by calculating the scaled sigma points using the Van der Merwe algo-

rithm. As we our system is now of n = 4 dimensions we have to create a matrix

χ with size 2n+ 1 = 9.

χ =


χ0,0 χ0,1 χ0,2 · · · χ0,9

χ1,0 χ1,1 χ1,2 · · · χ1,9

χ2,0 χ2,1 χ2,2 · · · χ2,9

χ3,0 χ3,1 χ3,2 · · · χ3,9

 , (3.65)

The associated weights of these sigma points is,
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wm =
[
w0 w1 w2 · · · w9

]T
(3.66)

wc =
[
w0 w1 w2 · · · w9

]T
(3.67)

where, wm is the matrix of the associated weights in mean and wc is the matrix

of associated weights of the error covariance.

After we have generated sigma points and their associated weights, we pass them

through the nonlinear function of the system.

yσ = f(χ) (3.68)

This creates another matrix containing the transformed sigma points that have

been passed through our nonlinear function. These transformed sigma points along

with the weights are used to predict a priori state and the Gaussian distribution

of the error covariance using the following equations,

xk =
8∑
i=0

wmyσ (3.69)

Pk =
8∑
i=0

wc(yσ − xk)(yσ − xk)
T + Q (3.70)

where, wm are the weights associated with the mean values and wc are the weights

of the error covariance Pk from the first and respective subsequent columns of the

sigma points matrix.

Next, we create a measurement function that converts the sigma points into the

measurements space for the update step of the filter,

Z = h(yσ) (3.71)

Again, using the Unscented Transform we pass the sigma points and associated

weights to the measurement function to compute the state and covariance in the

measurement space as follows,
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µzk =
8∑
i=0

wmZ (3.72)

Pk =
8∑
i=0

wc(Z− µzk)(Z− µzk)T + R (3.73)

then we compute the residual of the predicted state and true measurement value,

y = z− µzk (3.74)

Next, the Kalman Gain is computed using the cross covariance matrix between

the state and the measurements. The cross covariance matrix is calculated as

follows,

PxZ =
8∑
i=0

wc
i(yσ − x)(Z− µz))T (3.75)

using in the calculation of Kalman Gain,

Kk = PxZP
−1
Z (3.76)

Last, we calculate the weighted residual to compute the a posteriori state estimate

x̂ and the new error covariance as,

x̂k = xk + Ky (3.77)

P̂k = Pk −KPZK
T (3.78)

The Figure 3.6 shows the simulated application of the Unscented Kalman Filter to

our damped nonlinear harmonic oscillator problem for joint state and parameter

estimation.

The performance of both, the Extended Kalman Filter and the Unscented Kalman

Filter is compared by calculating the respective Root Mean Square Error (RMSE)



Chapter 3 Simulating Kalman Filters 66

Time (s)

0 5 10 15 20 25 30

P
o

s
it
io

n
 (

m
)

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

Measured displacement

Filtered displacement

Time (s)

0 5 10 15 20 25 30

V
e

lo
c
it
y
 (

m
/s

)

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

True speed

Filtered speed

Time (s)

0 10 20 30 40 50

S
p

ri
n

g
 C

o
n

s
ta

n
t 

(N
/m

)

-1

0

1

2

3

4

5

6

Time (s)

0 10 20 30 40 50

D
a

m
p

in
g

 C
o

e
ff

ic
ie

n
t 

(N
s
/m

)

-1

0

1

2

3

4

5

X: 37.81

Y: 3.069X: 33.62

Y: 5.001

Figure 3.6: The simulation of the joint state and parameter estimation of
a damped mass spring system using Unscented Kalman Filter. (a) shows the
simulated noisy position with the output of the filter’s estimate. (b) shows the
true simulated and estimated velocity of the system. (c) shows the estimated
value of the spring constant, the true value is 5 N/m. (d) shows the estimated

value of the damping coefficient with true value 3 Ns/m.

of the estimated states and parameters of the system. It measures how much error

is there between the estimated and actual values of the system.

The results are summarized in Table 3.1.9.

Spring constant (N/m) Damping coefficient (Ns/m)

EKF UKF EKF UKF

True values 5 3

Estimated 4.921 5.001 3.471 3.069

RMSE 0.619 0.686 0.629 0.379

Table 3.2: The performance comparison of Extended Kalman Filter and Un-
scented Kalman Filter using the Root Mean Square Error (RMSE) values for

damped mass oscillator problem.



Chapter 3 Simulating Kalman Filters 67

3.2 Duffing oscillator

In the previous section we covered the fundamental dynamical system of simple

harmonic oscillator and observed how its linearity helps us in developing the foun-

dation of Kalman Filter application for linear system problems. In this section we

move a step further by observing an inherently nonlinear dynamical system and

see how the Kalman Filter can help us in estimating the state in the presence of

noise and also in estimating the system parameters.

3.2.1 Deriving the system equations

So far we have derived and observed the damped simple harmonic oscillator gov-

erned by the following equation:

mẍ = f(t)− bẋ− kx (3.79)

Equation (3.79) is a linear differential system, we were able to apply the simple

Linear Kalman Filter (LKF) and understand its performance. However, this equa-

tion stems from an important approximation of the potential energy of the system

U = 1
2
kx2. From F = −dU

dx
, the restoring force on the spring is −k. We wonder

how high order terms in the potential energy would affect the behavior of system.

For example, introducing the next order term in the potential energy expression

gives,

U(x) =
1

2
kx2 +

1

4
βx3 (3.80)

which results in the so-called Duffing equation of motion.

ẍ+ ω2x+ βx3 = 0, (3.81)

where we have assumed the absence of damping, b = 0, ω2 = k
m

and f(t) = 0. This

is a non-linear differential equation and such an oscillator is sometimes referred to

as an anharmonic oscillator. Reintroducing a periodic forcing f(t) = a cos ρt and

damping gives us,



Chapter 3 Simulating Kalman Filters 68

ẍ+ γẋ+ ω2x+ βx3 = a cos ρt, (3.82)

where γ, ω2 = k
m

, β, a and ρ are the damping coefficient, square of the natural

frequency, nonlinear cubic parameter and the excitation amplitude and frequency

respectively.

3.2.2 Simulating the Actual Dynamics

We start by building the simulation model of the Duffing oscillator. We use the

ODE45 solver to solve the Duffing Equation (3.82) for predefined parameters and

then perform Kalman Filter on the measurement data. We will be able to estimate

the state variables (position and velocity) as well as the system parameters γ, ω

and β.

Working with pendulums, as we will explore in the next chapter dealing with

experimental evaluations, we replace x, ẋ with θ and θ̇, replacing all forces f(t)

with torques. In such a case Equation (3.82) takes the form,

θ̈ + γθ̇ + ω2θ + βθ3 = a cos ρt, (3.83)

where, ẍ, ẋ, and k/m are replaced respectively by θ̈, θ̇, and τ/I, τ and I being

torsional constant (in place of spring constant) and moment of inertia (in place of

mass).

We create a simulation model that exhibits the behavior of our non-linear oscilla-

tory system. The system is excited by a known amplitude and frequency. We also

create the recurrence Poincare map to track the periodicity of the oscillator and

observe the dynamical pattern of the system in a phase space.

Using Equation (3.83) we can see how θ exhibits a strange behavior shown in

Figure 3.7. In the phase space plot it becomes evident that the system is trapped

in a strange attractor and keeps oscillating between them. The response of our

system model is under purely deterministic parameters γ = 0.3 s−1, ω = −1 rad/s,

β = 1, ρ = 1.25 rad/s, and a = 0.5 rad.
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Figure 3.7: The simulation of a Duffing oscillator. Figure (a) shows the chaotic
position of the oscillator in time-domain. Figure (b) is a Poincare portrait of
the phase space of the oscillator that captures a point in the phase after every
2π period. Figure (c) is the Phase Space plot that shows the double well strange

attractor Duffing oscillator.

3.2.3 Applying the Extended Kalman Filter

We use the Extended Kalman Filter to filter the nonlinear and noisy angular data

of the duffing oscillator and then use it to estimate the nonlinear angular velocity

θ̇ state of the system. Thus, our state-space again remains in only two dimensions.

3.2.3.1 State space model

In order to simulate the model for our nonlinear Duffing oscillator we first reduce

the second order differential Equation (3.82) into state space as follows:
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x1 = x

x2 = ẋ

ẋ1 = x2 (3.84)

ẋ2 = −γx2 − ω2x1 − βx3
1 + a cos ρt (3.85)

Using these substitutions we derive the state space model for our Duffing oscillator

system. As ẋ = f(x, u), the linearized form of the systems dynamic matrix A is

modeled as follows,

Φ =

∂ẋ1

∂x
∂ẋ1

∂x

∂ẋ2

∂x
∂ẋ2

∂x

 (3.86)

the resulting linearized system dynamic matrix is,

Φ =

[
0 1

−ω2 − 3βx2
1 −γ

]
, (3.87)

This matrix is discretized using Equation (2.17),

F ≈ 1 + Φ∆t (3.88)

=

[
1 ∆t

(−ω2 − 3βx2
1)∆t 1− γ∆t

]
, (3.89)

The resulting matrix F is the state transition matrix which is the discrete step

process model for our Duffing system.



Chapter 3 Simulating Kalman Filters 71

3.2.4 Applying Extended Kalman Filter for Duffing state

estimation

3.2.4.1 Predicting the state

Using simple Euler integration of ẋ = f(x, u), we propagate the state of the Duffing

oscillator from the previous time step k−1 to the current time step k. For this we

convert the first order differential equations of the system to first order difference

equations as follows:

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 +
(
−γ(x̂2)k−1 − ω2(x̂1)k−1 − β(x̂1)3

k−1 + a cos ρt
)

∆t
(3.90)

In this nonlinear propagation step, ∆t is the time step which is chosen by the user

and the instantaneous time t = ∆t.

3.2.4.2 Predicting the error covariance

Even though the state is propagated using the compatible nonlinear function,

propagation of error covariance matrix P requires use of the state transition matrix

F which is already derived in Equation (3.89). The error covariance Equation

(3.28) takes the following form,

Pk =

[
1 ∆t

(−ω2 − 3βx2
1)∆t 1− γ∆t

]
k

P̂k−1

[
1 (−ω2 − 3βx2

1)∆t

∆t 1− γ∆t

]
k

+ Q

(3.91)

In this case, we also have a Control Input function that is exciting the Duffing

Oscillator through a known frequency ρ and an amplitude a as seen on the right

hand side of Equation (3.82).

u =

[
0

cos ρt

]
(3.92)
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In this case, the noise in the system is also infused in the control space so we must

incorporate this control noise into the propagation of error covariance.

We first create a matrix Qv that contains the noise variance in the control input.

Qv =

[
0 0

0 σ2
v

]
(3.93)

where, σv is the noise associated with the input variable cos ρt. Since, the system

is nonlinear so we take partial derivative (Jacobian) of u to create a matrix Γ.

Γ =
∂f(x, u)

∂u

[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

]
(3.94)

The resulting linearized control matrix is,

Γk =

[
0 0

0 −a sin ρt

]
(3.95)

This is incorporated into Equation (3.91) to model the noise infestation to our

nonlinear system as follows,

Pk = FkP̂k−1F
T
k + ΓkQvΓ

T
k , (3.96)

which shows the temporal propagation of the matrix P.

3.2.4.3 Correcting the state and error covariance

The measurement update equations will remain as before. As we are only simulat-

ing a noisy measurement of position so our measurement space is h(x) = H(x) = x1

and

yk = zk − h(x)

= zk − x1

(3.97)
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The Kalman gain is calculated using (2.46).

Kk = PkH
T (HPkH

T + R)−1 (3.98)

The residual y is weighted with K gain and added to the current state prediction

xk to compute the corrected state estimation at the current step x. The same

process is repeated to correct the error associated with the state in Pk at current

time step k.

x̂k = xk + Kkyk (3.99)

P̂k = (I−KkH)Pk (3.100)

Figure 3.8 exhibits our application of the Extended Kalman Filter to filter out the

noisy angular position of the Duffing oscillator along with giving an estimate of

the angular velocity.

3.2.4.4 Root Mean Square Error (RMSE)

The performance of our filter is gauged by computing the Root Mean Square Error

(RMSE), which is also referred to as the standard deviation of the residuals. It

measures how much error is there between two sets of data. Simply, in the case of

Kalman filtering it compares the true values of the state with the estimated values

output by the filter.

The RMSE is calculated by

RMSE =

√
Σn
i=1(x̂i − zi)2

n
, (3.101)

where, x̂ is the state estimate from the filter and z is the current measurement

value from the sensor.

The following table highlights the RMSE values of our estimated states compared

with the true values. We will further compare these results with the application of

the Unscented Kalman Filter as well as in Joint State and Parameter estimation

regime.
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Figure 3.8: The simulation of Extended Kalman Filter application to the
Duffing Oscillator showing (a) shows the filtered angular position overlying the
noisy trajectory of and θ rad (b) shows the estimated angular velocity over the

true trajectory.

Angular position θ (rad) Angular velocity θ̇ rad/s

RMSE 0.3889 0.4789

Table 3.3: The performance of the Extended Kalman Filter to filter a noisy
Duffing oscillator

3.2.5 Estimating the cubic nonlinear parameter

The Duffing oscillator is a nonlinear system due to the cubic term in Equation

(3.81). For parameter estimation the state space is augmented to include the

unknown term which further increases the dimension and complexity of our system.

So, before applying the filter to estimate the nonlinear parameter, we perform the

observability test to see whether it would be possible for us to estimate β using

merely an angular position sensor.
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3.2.5.1 Nonlinear observability test for Duffing parameter estimation

We supplement the state vector x given in Equation (3.81) and (3.85) by x3 = β,

ẋ3 = 0, allowing us to write the nonlinear propagation function as

f(x) =


x2

−γx2 − ω2x1 − x3x
3
1

0

 (3.102)

and the measurement equation, which exhibits our use of an angle sensor for

measuring the position in state x1, is as follows,

y(x) = H(x) = x1. (3.103)

Taking Lie derivatives of this measurement function with the nonlinear function

in Equation (3.102),

£0
f (y(x)) = y(x) = x1 (3.104)

£1
f (y(x)) =

∂y

∂x
· f(x)

=
(
∂x1

∂x1

∂x1

∂x2

∂x1

∂x3

)
x2

−γx2 − ω2x1 − x3x
3
1

0



=
(

1 0 0
)

x2

−γx2 − ω2x1 − x3x
3
1

0

 = x2 (3.105)

£2
f (y(x)) =

∂£1
f

∂x
· f(x)

=
(
∂x2

∂x1

∂x2

∂x2

∂x2

∂x3

)
x2

−γx2 − ω2x1 − x3x
3
1

0


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=
(

0 1 0
)

x2

−γx2 − ω2x1 − x3x
3
1

0


= − γx2 − ω2x1 − x3x

3
1 (3.106)

The resulting mapping matrix φ is,

φ =


£0
f

£1
f

£2
f

 =


x1

x2

−γx2 − ω2x1 − x3x
3
1

 (3.107)

Taking partial derivatives of the mapping matrix φ with respect to the state vari-

ables x as shown in Equation (3.50), results in the following observability test

matrix,

O =


1 0 0

0 1 0

−ω2 − 3x2
1x3 −γ −x3

1

 , (3.108)

The rank of this observability matrix is equal to the dimensions of the system

i.e. n = 3. This means that this nonlinear system for joint state and parameter

estimation of the Duffing oscillator using only an angular position sensor remains

observable.

3.2.5.2 Estimating the cubic nonlinearity parameter using Extended

Kalman Filter

We augment the state vector with the nonlinear coefficient as a new state variable

x3 = β. The new joint state and parameter variables matrix is as follows:

x =
[
x1 x2 x3

]T
(3.109)

Here, x1 is the angular position, x2 is the angular velocity and x3 is the nonlinear

cubic term β. Thus, the dynamics of the system can be rewritten as:
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x1 = x

ẋ1 = ẋ

ẋ2 = − γẋ1 + ω2x1 − x3x
3
1 + f cos ρt (3.110)

ẋ3 = 0 (3.111)

(3.112)

where only angular position is being measured as:

H =
[
1 0 0

]
(3.113)

In this case, our system dynamics model after taking linearization is,

Φk =


0 1 0

−γ −x3
1 ω2 − 3x3x

2
1

0 0 0

 (3.114)

Using simple Euler integration of the state difference equations,

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t (3.115)

(x2)k = (x̂2)k−1 +
(
−γ(x̂2)k−1 − ω2(x̂1)k−1 − (x̂3)k−1(x̂1)3

k−1 + a cos ρt
)

∆t

(3.116)

(x3)k = (x̂3)k−1 (3.117)

the states of the Duffing system along with the unknown cubic nonlinear parameter

are propagated in time from k − 1 to k. This is the same a priori or Prediction

step as discussed previously.

The error covariance matrix P is propagated using Equation (3.96), where F is

the linearized state matrix derived from Equation (2.17),
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Fk ≈ 1 + Φk∆t (3.118)

=


1 ∆t 0

(−γ)∆t (1− x3
1)∆t (ω2 − 3x3x

2
1)∆t

0 0 1

 , (3.119)

The remaining steps to estimate the current state and error covariance matrix

remains the same as in previous sections. The Figure 3.9 exhibits the simulated

application of the Extended Kalman Filter estimating the nonlinear cubic term as

well as the states of the Duffing oscillator.
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Figure 3.9: The simulation of the joint state and parameter estimation of
Duffing oscillator using Extended Kalman Filter. (a) shows the simulated noisy
angular position with the output of the filter’s estimates EKF Estimate. (b)
shows the true simulated and estimated angular velocity of the system through
the process model of the filter. (c) shows the estimated value of the nonlinear

cubic parameter, the true value was 1 N/rad3.
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3.2.6 Applying Unscented Kalman Filter for state estima-

tion

To apply the Unscented Kalman Filter to the Duffing oscillator for the state es-

timation we first calculate the scaled sigma points using the Van der Merwe al-

gorithm. In this application we first generate 2n + 1 = 5 sigma points for our

states.

Our nonlinear difference equations are,

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 +
(
−γ(x̂2)k−1 − ω2(x̂1)k−1 − β(x̂1)3

k−1 + a cos ρt
)

∆t.
(3.120)

We get the following matrix containing the 5 scaled sigma points that approximate

our states of angular position and velocity.

χ =

[
χ0,0 χ0,1 χ0,2 χ0,3 χ0,4 χ0,5

χ1,0 χ1,1 χ1,2 χ1,3 χ1,4 χ1,5

]
, (3.121)

The associated weights for the sigma points are calculated using Equations (2.73)

and (2.74).

wm =
[
w0 w1 w2 w3 w4 w5

]T
. (3.122)

wc =
[
w0 w1 w2 w3 w4 w5

]T
. (3.123)

After we have generated sigma points and their associated weights, we pass them

through the nonlinear function,

yσ = f(χ1) (3.124)

= (χ)k−1 + (χ2)k−1∆t (3.125)

= (χ2)k−1 +
(
−γ(χ2)k−1 − ω2(χ1)k−1 − β(χ1)3

k−1 + a cos pt
)

∆t. (3.126)
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These transformed sigma points along with the weights are used to predict a priori

state and the Gaussian distribution of the error covariance using the following

equations,

xk =
4∑
i=0

wm
i yσ (3.127)

Pk =
4∑
i=0

wc
i(yσ − xk)(yσ − xk)

T + Q (3.128)

where, wm are the weights associated with the mean values and wc are the weights

of the error covariance Pk.

Next, we create a measurement function that converts the sigma points into the

measurements space for the update step of the filter,

Z = h(yσ) (3.129)

Again, using the Unscented Transform we pass the sigma points and associated

weights to the measurement function to compute the state and covariance in the

measurement space as follows,

µzk =
5∑
i=0

wmZ (3.130)

Pk =
5∑
i=0

wc(Z− µzk)(Z− µzk)T +R (3.131)

then we compute the residual of the predicted state and true measurement value,

y = z− µzk (3.132)
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Figure 3.10: The application of Unscented Kalman Filter to the Duffing Os-
cillator

Next, the Kalman Gain is computed using the cross covariance matrix between

the state and the measurements. The cross covariance matrix is calculated as

follows,

PxZ =
∑

wci (yσ − x)(Z− µz))T (3.133)

using in the calculation of Kalman Gain,

K = PxZP
−1
Z (3.134)

Last, we calculate the weighted residual to compute the a posteriori state estimate

x̂ and the new error covariance as,
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xk = x̂k +Ky (3.135)

Pk = Pk −KPZK
T (3.136)

The Figure 3.10 exhibits the simulated application of the Unscented Kalman Filter

algorithm to estimate the states of a highly nonlinear classic Duffing oscillator

problem. The robust sigma points calculation approximates the Duffing system

in a much more robust form than the Extended Kalman Filter. We compare the

state estimation results in Table 3.2.6.

θ rad θ̇ rads−1

EKF 0.3889 0.4789

UKF 0.1128 0.2124

Table 3.4: The performance comparison of Extended Kalman Filter and Un-
scented Kalman Filter using the Root Mean Square Error (RMSE) values for

the state estimation of the Duffing oscillator.

3.2.7 Estimating the nonlinear coefficient

We again calculate the sigma points for our joint state and parameter estimation.

We will have 2n + 1 = 7 sigma points to represent the distribution of our states

and the unknown parameter. The total number of sigma points calculated using

Van Der Merwe sigma point algorithm are packed in the sigma matrix as follows,

χ =


χ0,0 χ0,1 χ0,2 χ0,3 χ0,4 χ0,5 χ0,6 χ0,7

χ1,0 χ1,1 χ1,2 χ1,3 χ1,4 χ1,5 χ1,6 χ1,7

χ2,0 χ2,1 χ2,2 χ2,3 χ2,4 χ2,5 χ2,6 χ2,7

 , (3.137)

The associated weights for the sigma points matrix are,

wm =
[
w0 w1 w2 w3 w4 w5 w6 w7

]T
(3.138)

wc =
[
w0 w1 w2 w3 w4 w5 w6 w7

]T
(3.139)
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Passing these through the nonlinear function of the system.

yσ = f(χ) (3.140)

= (χ1)k−1 + (χ2)k−1∆t (3.141)

= (χ2)k +
(
−γ(χ2)k − ω2(χ1)k − β(χ1)3

k + a cos pt
)

∆t (3.142)

= (χ3)k (3.143)

Using the transformed sigma points the state containing unknown parameters

along with the error covariance are propagated to the next step using the following

equations,

xk =
7∑
i=1

wm
i yσ (3.144)

Pk =
7∑
i=1

wc
i(yσ − xk)(yσ − xk)

T + Q (3.145)

Next, the measurement function converts the sigma points into the measurements

space for the update step as follows,

Z = h(yσ) (3.146)

Again using the Unscented Transform we compute the Gaussian distribution for

the estimated state and error covariance matrix of our system as,

µzk =
7∑
i=1

wmZ (3.147)

Pk =
7∑
i=1

wc(Z− µzk)(Z− µzk)T +R (3.148)

then we compute the residual of the predicted state and true measurement value,
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y = z− µzk (3.149)

Next, the Kalman Gain is computed using the cross covariance matrix between

the state and the measurements. The cross covariance matrix is calculated as

follows,

PxZ =
7∑
i=1

wc
i(yσ − x)(Z− µz))T (3.150)

using in the calculation of Kalman Gain,

K = PxZP
−1
Z (3.151)

Last, we calculate the weighted residual to compute the a posteriori state estimate

x̂ and the new error covariance as,

xk = x̂k + Ky (3.152)

Pk = Pk −KPZK
T (3.153)

The Figure 3.11 shows the simulated application of the Unscented Kalman Filter

to our damped nonlinear harmonic oscillator problem for joint state and parameter

estimation.

The performance of both, the Extended Kalman Filter and the Unscented Kalman

Filter is compared by calculating the respective Root Mean Square Error (RMSE)

of the estimated states and parameters of the system. It measures how much error

is there between the estimated and actual values of the system.

The results are summarized in Table 3.2.7.
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Figure 3.11: The joint state and parameter estimation of a Duffing oscillator
system using the Unscented Kalman Filter.

Nonlinear coefficient (β)

EKF UKF

True value 1

Estimated 0.985 1.011

RMSE 0.149 0.105

Table 3.5: The performance comparison of Extended Kalman Filter and Un-
scented Kalman Filter using the Root Mean Square Error (RMSE) values for

the joint state and parameter estimation of the Duffing oscillator.
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3.3 Wilberforce pendulum

The Wilberforce pendulum is commonly used as an important qualitative demon-

stration in introductory mechanics [47]. It is shown in Figure 3.12. It is a vivid

demonstration of the interaction between two coupled harmonic oscillators: the

longitudinal stretching and the torsional twisting of a spiral spring attached to a

mass. It also illustrates the phenomenon of beats which arises because of the inter-

mixing of two normal modes. You can find an interesting experiment on exploring

the dynamics of the Wilberforce pendulum using a high speed digital camera here
1. Furthermore, it is a mechanical demonstraiton of the phenomena of avoided

crossings. Lionel Robert Wilberforce in 1896, proposed the use of a loaded spiral

spring to determine the Young’s modulus of the spring material and also identi-

fied the potential of this device to determine the transfer of energy between two

coupled modes of a harmonic oscillator.

z

h

r

q

Figure 3.12: A Wilberforce pendulum showing oscillations along z and rota-
tions through an angle θ. The radius and height of the cylinder are r and h

respectively.

3.3.1 Simulating the system

A spiral spring with linear spring constant, k and torsional spring constant, δ is

suspended from a fixed support. A metal cylinder with mass m, radius r and

height h, attached to the free end of the spring. This is shown in Figure 3.12. The

coordinate system is defined so that the z direction is along the axis of the spring

1https://www.physlab.org/experiment/wilberforce-pendulum/
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with positive z going downwards, and the θ direction corresponds to rotation

around the axis of symmetry of the system.

The equations of motion of this mass-spring system are given by,

m

(
d2z

dt2

)
+ kz + εθ/2 = 0 (3.154)

I

(
d2θ

dt2

)
+ δθ + εz/2 = 0 (3.155)

where εzθ/2 is the coupling between the translational and torsional motion. The ε

is a nonlinear parameter measuring the strength of the coupling, δ is the torsional

spring constant and I is the moment of inertia I = mr2

2
. If ε = 0, the physical

device would correspond simply two independent, uncoupled harmonic oscillators.
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Figure 3.13: The simulaiton of the Wilberforce pendulum’s kinematics.

Figure 3.13 shows the simulation of Wilberforce pendulum. The plot is a super im-

position of the vertical and angular movement of the pendulum that clearly transit

between each other. The vertical oscillations of the pendulum are represented by

the axis on the left and the rotational movement of the pendulum around its own

axis is represented by θ on the right axis. The simulation parameters were defined
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as, ω2 = 2.314 rad2/s2, ε = 9.27× 10−3 N, m = 0.4905 kg, I = 1.39× 10−4 kgm2,

θ0 = 2π, z0 = 0.

3.3.2 Deriving the state equations

For the state estimation of the Wilberforce pendulum our state equations are as

follows:

x =
[
x1 x2 x3 x4

]T
(3.156)

where, x1 = z , x2 = ż, x3 = θ, x4 = θ̇

ẋ1 = x2

ẋ2 = z̈ = − k
m
x1 −

1

2m
εx3 (3.157)

ẋ3 = x4

ẋ4 = θ̈ = −δ
I
x3 −

1

2m
εx1 (3.158)

These state equations are modeled as discussed previously in Chapter 3. We also

take ω2
z = k

m
and ω2

θ = δ
I

3.3.2.1 Nonlinear observability test for the Wilberforce pendulum

Before we begin applying our filters to the problem we will again perform the test

for observability of this nonlinear system.

For the Wilberforce pendulum we know from Equation (3.157) and (3.158) that,

f(x) =


x2

−ω2
zx1 − 1

2m
εx3

x4

−ω2
θx3 − 1

2m
εx1

 (3.159)
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We use a linear position sensor to estimate the other states. So, the measurement

equation is,

y(x) = H(x) = x1 (3.160)

Taking Lie derivatives of this measurement function,

£0
f (y(x)) = y(x) = x1 (3.161)

£1
f (y(x)) =

∂y

∂x
· f(x)

=
(
∂x1

∂x1

∂x1

∂x2

∂x1

∂x3

)
· f(x)

=
(

1 0 0 0
)


x2

−ω2
zx1 − 1

2m
εx3

x4

−ω2
θx3 − 1

2m
εx1

 = x2 (3.162)

£2
f (y(x)) =

∂£1
f

∂x
· f(x)

=
(
∂x2

∂x1

∂x2

∂x2

∂x2

∂x3

)
· f(x)

=
(

0 1 0 0
)


x2

−ω2
zx1 − 1

2m
εx3

x4

−ω2
θx3 − 1

2m
εx1


= − ω2

zx1 −
1

2m
εx3 (3.163)

£3
f (y(x)) =

∂£2
f

∂x
· f(x)

=
(
∂(−ω2

zx1− 1
2m

εx3)

∂x1
· · · ∂(−ω2

zx1− 1
2m

εx3)

∂x4

)
· f(x)

=
(
−ω2

z 0 1
2m
ε 0

)


x2

−ω2
zx1 − 1

2m
εx3

x4

−ω2
θx3 − 1

2m
εx1


= − x2ω

2
z +

1

2m
εx4 (3.164)

The resulting mapping matrix φ is,
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φ =


£0
f

£1
f

£2
f

£3
f

 =


x1

x2

−ω2
zx1 − 1

2m
εx3

−ω2
zx2 + 1

2m
εx4

 . (3.165)

Taking partial derivative of this mapping matrix with respect to the state variables

yields the following observability test matrix,

O =


1 0 0 0

0 1 0 0

−ω2 0 1
2m
ε 0

0 −ω2
z 0 1

2m
ε

 . (3.166)

The rank of this observability matrix is equal to the dimensions of the system i.e.

n = 4 meaning we can use a single position sensor to estimate the states of linear

velocity, angular position and angular velocity of a coupled Wilberforce pendulum.

Now, let’s apply the Kalman Filters to estimate the states.

3.3.3 State estimation of Wilberforce pendulum using Ex-

tended Kalman Filter

The nonlinear equations for the state propagation of the Wilberforce pendulum

are:

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 + (−ω2
z(x̂1)k−1 −

1

2m
ε(x̂3)k−1)∆t

(x3)k = (x̂3)k−1 + (x̂4)k−1∆t

(x4)k = (x̂4)k−1 + (−ω2
θ(x̂3)k−1 −

1

2m
ε(x̂1)k−1)∆t

(3.167)

For this case we assume our initial estimates of the state to be at around 0.1 m

and 0.1 m/s in the vertical oscillation while 0.1 rad and 0.1 rad/s in the rotational

movement of the pendulum respectively.
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Figure 3.14: Applying the Extended Kalman Filter to filter the Wilberforce
pendulum’s vertical and angular movement.

Po =


0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 (3.168)

The next most crucial step before moving on to the filter algorithm is the design

of Q matrix. We consider the case of constant acceleration to model the pro-

cess covariance matrix for both cases. Using the piecewise-noise model shown in

Equation (2.54) we derive the following Q matrix:

Q =


∆t4

4
∆t3

2
0 0

∆t3

2
∆t2 0 0

0 0 ∆t4

4
∆t3

2

0 0 ∆t3

2
∆t2

 (3.169)
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Using the state equations we design the system dynamic matrix A,

A =


0 1 0 0

−ω2
z 1 −1

2m
ε 0

0 0 0 1
−1
2m
ε 0 − ω2

θ 1

 (3.170)

Using (2.17) we derive the state transition matrix F of upto first order in ∆t,

F =


1 ∆t 0 0

−ω2
z∆t 1 + ∆t −1

2m
ε 0

0 0 1 ∆t
−1
2m
ε 0 −ω2

θ∆t 1 + ∆t

 (3.171)

Figure 3.14 exhibits the simulated application of the Kalman filter to the Wilber-

force pendulum. (a) exhibits the filtered transnational motion in z direction (b)

shows the estimated angular position simulated Wilberforce Pendulum that is in-

fested with σ2 = 0.001 m and σ2 = 0.01 rad noise respectively.

3.3.4 Estimating the modes and coupling constant of the

Wilberforce pendulum

Using the Extended Kalman Filter we try to estimate the parameters of the

Wilberforce pendulum, ω2
z , ω

2
θ and ε. We first build the augmented state space

model.

x =
[
x1 x2 x3 x4 x5 x6 x7

]T
(3.172)

where, x1 = z , x2 = ż, x3 = θ, x4 = θ̇, x5 = ω2
z , x6 = ω2

θ , x7 = ε.

Our state equations in this case takes the following form,
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f(x) =



x2

−x5x1 − 1
2m

x7x3

x4

−x6x3 − 1
2m

x7x1

x5

x6

x7


(3.173)

We linearize this system by taking Jacobian of the function f(x) with respect to

the state variables. The resulting matrix is as follows,

Φ =
∂A

∂x
=



0 1 0 0 0 0 0

−x5 0 −1
2m

x7 0 −x1 0 1
2m

x3

0 0 0 1 0 0 0
−x7

2I
0 −x6 0 0 −x3

−1
2I
x1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, (3.174)

where, the resulting Φ matrix is the linearized system dynamic matrix. We dis-

cretize this system by taking the exponential which gives,

F =



1 ∆t 0 0 0 0 0

(−x5)∆t 1 (−1
2m

x7)∆t 0 (−x1)∆t 0 ( 1
2m

x3)∆t

0 0 1 ∆t 0 0 0

(−x7

2I
)∆t 0 −(x6)∆t 1 0 (−x3)∆t (−1

2I
x1)∆t

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


,

(3.175)

The state transition matrix F will be used to propagate the state error covariance

matrix in the filter’s algorithm.
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We specify the initial error covariance P̂0. For this case we assume that we are

pretty sure about our initial estimate of the state and so we define the errors in our

states to be at around 0.1 m and 0.1 m/s in the vertical oscillation while 0.1 rad

and 0.1 rad/s in the torsional movement of the pendulum.

P̂o =



0.1 0 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0 0

0 0 0 0.1 0 0 0

0 0 0 0 0.1 0 0

0 0 0 0 0 0.1 0

0 0 0 0 0 0 0.1


(3.176)

Following set of equations are augmented to include the unknown parameters

x5 = ω2
z , x6 = ω2

θ and x7 = ε. We propagate these through Euler integration in

the a priori prediction step,

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 + (−x̂5(x̂1)k−1 −
1

2m
(x̂7)k−1(x̂3)k−1)∆t (3.177)

(x3)k = (x̂3)k−1 + (x̂4)k−1∆t

(x4)k = (x̂4)k−1 + (−ω2
θ(x̂3)k−1 −

1

2m
(x̂7)k−1(x̂1)k−1) (3.178)

(x5)k = (x̂5)k−1 (3.179)

(x6)k = (x̂6)k−1 (3.180)

(x7)k = (x̂7)k−1 (3.181)

Using the piecewise-noise model shown in Equation (2.54) we derive the following

Q matrix:
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Figure 3.15: Estimating the normal modes and the coupling constant of a
Wilberforce pendulum using Extended Kalman Filter. The true values of the

parameters are ω2
z = 5.35, ω2

θ = 5.35, and ε = 9.29 × 10−3.

Q =



T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

T 4
s

4
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s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


σ2
v (3.182)

The variance σ2
v is inflated with σ2

v = 5.52 . As discussed before, this matrix acts

as a tuning parameter and greatly impacts the estimation abilities of the Kalman

filter.

The Figure 3.15 exhibits our application of the Extended Kalman Filter to estimate

the normal modes and the coupling constant of the Wilberforce pendulum system.



Chapter 3 Simulating Kalman Filters 96

The true values of the system are ωz = 2.314 rad/s, ωθ = 2.314 rad/s and ε =

9.27× 10−3 N.

In this problem, we have also used an angle sensor in the simulation. Due to this

inclusion the measurement matrix H takes the following form,

H =

[
1 0 0 0 0 0 0

0 0 1 0 0 0 0

]
(3.183)

This extracts the state of vertically oscillating position and the angular rotation

into the measurement space. In the measurement space we have a noisy vertical

position sensor infested with σ2
v = 0.01 m and a noisy rotatory sensor with σ2

v =

0.8 rad. Figure 3.15 exhibits this application. The normal mode along z direction

is estimated to be ω2
z = 1.056 m2/s2, along θ to be ω2

θ = 3.175 rad2/s2 and the

coupling constant to be ε = 0.044 N by the filter.

3.3.5 Applying Unscented Kalman Filter

We can also estimate the Wilberforce parameters using the Unscented Kalman

Filter.

Using the same state dynamic Equations (3.157) we first define our nonlinear

function,

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 + (−x̂5(x̂1)k−1 −
1

2m
(x̂7)k−1(x̂3)k−1)∆t (3.184)

(x3)k = (x̂3)k−1 + (x̂4)k−1∆t

(x4)k = (x̂4)k−1 + (−ω2
θ(x̂3)k−1 −

1

2m
(x̂7)k−1(x̂1)k−1) (3.185)

(x5)k = (x̂5)k−1 (3.186)

(x6)k = (x̂6)k−1 (3.187)

(x7)k = (x̂7)k−1 (3.188)
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Figure 3.16: Parameter estimation using Unscented Kalman Filter on Wilber-
force Pendulum. The true values of the parameters are ω2

z = 5.35, ω2
θ = 5.35,

and ε = 9.29 × 10−3.

We use the same Q matrix (3.189) as the piecewise noise model for our process

error covariance matrix.

Q =



T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


σ2
v (3.189)

Furthermore, in both cases we have assumed to be using two noisy sensors. One

sensor is to track the position of the oscillator in the vertical z direction in meters

while the other sensor measures the angular position θ in radians.
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Next, we have to initialize the belief in our system. We build our initial state error

covariance matrix P0 as follows:

P0 =



0.1 0 0 0 0

0 0.1 0 0 0

0 0 0.1 0 0

0 0 0 0.1 0

0 0 0 0 0.1


(3.190)

For parameter estimation our process noise covariance matrix is also augmented.

As we are trying to estimate a constant parameter we assume that there is no

processing uncertainty in the parameter estimation.

The Figure 3.16 shows the results of using the Unscented Kalman Filter algorithm

to filter a simulated Wilberforce Pendulum that is infested with σ2 = 0.001 m and

σ2 = 0.01 rad noise in vertical position z and angular measurement respectively.



Chapter 4

Experimental work

The numerical simulations in previous chapter highlight the applicability of Kalman

filter to some basic problems in physics. Now, we would like to explore it in the

realms of hands-on experiments with uncertainties and noisy sensors. In our first

experiment, we heat and cool a Peltier healter using a PID controller circuit and

Kalman filter the temperature measurements acquired from a temperature sensor

attached to it. The goal is to observe the variations of the filter against different

values of process noise.

Similarly, in our second experiment, we simply remove noise from a series of tem-

perature measurements of a liquid being heated over a hot plate and see how the

performance of Kalman filter varies with the change in process noise. Next, us-

ing a force sensor we measure the acceleration of a damped harmonic oscillator.

This acceleration is integrated to obtain the velocity and position. However, both

integrated quantities, velocity and position, contain the typical integration drift.

We use Kalman filter to filter out this drift and obtain true values of the velocity

and position. Last, using parameter estimation, we determine the normal resonant

modes and the coupling constant of a Wilberforce pendulum.

4.1 Changing temperature in steps

In our first experiment, we measure temperature of a Peltier heater that is heated

and cooled using a PID controller circuit. A set point temperature is given to the

circuit which regulates the voltage and flow of current to a Peltier heater. A Peltier

99



Chapter 4 Experimental work 100

heater works on the “Peltier effect” which is created by temperature difference that

is caused by the heat transfer between junctions of two electrical points. A voltage

is supplied across the junctions to create an electric current. When the current

flows through the junctions, heat is removed at one junction and cooling takes

place, while heating takes effect at the other junction. Using a temperature sensor

(LM35 ) we acquire the temperature readings into the computer using National

Instrument’s data acquisition card (NI-PCI-6221). Then we Kalman filter the

data and verify the effects of process noise Q on the performance of the filter.

4.1.1 Apparatus and schematic diagram

The apparatus consists of two DC Power supplies (V & A Instruments) that supply

negative and positive voltage to the Peltier heater. The supplies are connected

to the control box which houses the PID controller circuit. The circuit is built

using an LM324 operational amplifier. Depending upon the set point and gain,

the PID circuit controls the amount of current supplied to the Peltier heater. The

set-point and gain values are set using the resistors RV 3 and RV 1 respectively, as

shown in Figure 4.2.

Figure 4.1: Picture of the complete setup. The power supplies to provide
voltage and current to the Peltier heater. The control box houses the PID
circuit for temperature control. The NI SC 68 is National Instrument’s external
module connected to the PCI 6221 data acquisition card inside the computer.
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Figure 4.2: The schematic diagram of the PID based control circuit.

4.1.2 Applying the Kalman filter

This is an example of a one dimensional Scalar Kalman Filter (SKF). The process

model in this case is a constant state.

Hence, our time update equations are,

xk = Fx̂k−1 = xk−1 (4.1)

Pk = P̂k−1 + Q (4.2)

where, F = 1, P = 10 is the initial error variance in the state variable while Q is

the process variance of predicting the state at current time step.

Now, we want to see how the filter behaves when we change the values of Q as

any change would effect the Kalman gain in,

Kk = Pk(Pk + R)−1. (4.3)

Here, P is the uncertainty in the state prediction while R is the measurement

noise. As discussed in previous chapters, increasing the value of Q also increases

the value of P, resulting in the increase of Kalman gain. As the error in the process
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is increased, the filter prioritizes the values of measurements for next iterations.

However, as we reduce the value of Q, the Kalman gain decreases and the filter

tends to diverge ignoring measured temperature values altogether.

The resulting state estimate x̂k and its variation with regards to the altering

process noise variance Q is shown in Figure 4.3.

Time (min)

0 0.5 1 1.5 2 2.5

T
e

m
p

e
ra

tu
re

 (
°C

)

22

24

26

28

30

32

Sensor data at R=0.024

Q=0

Q=1x10
-12

Q=1x10
-11

Q=1x10
-10

Q=1x10
-9

Figure 4.3: Response of piecewise process noise model to the temperature
profile.

In Figure 4.3, we initially set the temperature value to 10◦C for 1 min and then

increase the set point to 30◦C for 1.5 min. The PID circuit regulates the current

to increase the temperature of Peltier to the set point temperatures. For a value

Q = 1×10−12 which is significantly lower than the measurement noise of 0.024◦C,

the filter prominently avoids the sensor data. At Q = 0 we already have the value

of P = 10 set as the initial error variance. So, the filter initially iterates with this

value shows the largest divergence. If the value of P was also set to zero then we

would see no change in temperature estimate and we would see a constant value

from the initialization of the state variable.

Now, as we increase the uncertainty in the process model the filter adjusts to the

measurement values and eventually starts following the exact sensor data iterating

the fact that Q acts as a tuning parameter. Finally, the value Q = 1×10−9 seems
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Figure 4.4: Apparatus for water heating experiment consisted of a hot plate
(Stuart CB − 168), a 200 ml beeker full of water, a k-type thermocouple and
the NI SC − 68 is National Instrument’s external module connected to the PCI

6221 data acquisition card inside the computer.

optimum but exhibits a lag in the filter estimates throughout the regions of change

in the temperature. This is because there is no process model provided to the filter

to fit this phenomena. The only tuning parameter is the uncertainty comparison

of the measurement noise R and a process noise Q.

4.2 Continuous increase of fluid temperature

As seen in previous example, when there is no process model available for a phe-

nomena we see a lag in the performance of the Kalman filter. To observe this more

closely we take a simple example of heating a beaker full of water.

Although we could model the heating of water using the mathematical model

describing the heat capacity of water but for this example we consider there is no

process model. The process model for the filter thus remains the same as,

xk = Fx̂k−1 (4.4)

Pk = P̂k−1 + Q (4.5)
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where, F = 1 and P = 10◦C while Q is the process variance that is to be varied.

4.2.1 Methodology

We take a 200 ml beaker full of water and heat it on a hot plate. The temperature

of water starts to increase. Using the same data acquisition setup as shown in pre-

vious experiment we log the change in temperature over time. The complete setup

is shown in Figure 4.4. The apparatus consisted of a hot plate (Stuart Equipment)

with a magnetic stirrer, a 200 ml beaker with some water, a k-type thermocouple

and National Instruments data acquisition card (NI SC 68) integrated with (NI

PCI 6221) inside the computer. Using the hot plate we heat the water inside the

beaker to around 90◦C. Using the magnetic stirrer we keep the temperature in the

liquid equally distributed.

In this case, the measurement uncertainty from the thermocouple readings is

around 0.01◦C. For measure this uncertainty by taking a series of measurements

at a constant temperature and calculating its variance. Because the state will not

change over time so there is no control input that will be altering it. However,

there will be noise in our system because of the measurement sensor.

4.2.2 Effect of varying process noise

Presuming a small process variance, we let Q = 0.005. The blue shaded region

is the output of the filter that is largely following the noisy data from the sensor.

This means that we have to reduce the uncertainty value of Q to optimize the

performance of the filter. We change the value to around Q = 1× 10−6. The filter

beautifully filters out the noise in the sensor. There is nothing stopping us from

going further. We reduce the value of Q to zero. However, the filter clearly shows

a huge lag from the actual values of the sensor. This lag is due to the fact that we

did not have a process model for this system and so we only used the uncertainty

in the model to tune the filter’s performance.
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Figure 4.5: The application of Kalman Filter to temperature measurements
obtained on a beaker containing water, using a thermocouple.

4.3 Damped harmonic oscillator

We have already created a simulation model of the mass spring damper system in

Chapter 3. Now, we use Kalman Filter in two folds to filter and estimate the states

of a mass spring damper experimental setup as well as estimate the parameters

of the system. In particular, we try to estimate the spring constant k and the

damping coefficient b. The actual values of both of these parameters have been

independently measured to verify the estimation.

The setup consists of a mass of 100 g that is hanging with a Force Sensor which

measures the downward force exerted by it. The mass is hung with a spring with

a spring constant k = 5.5 N/m. Water in a beaker of 2000 ml volume is used as

a damping medium. The force sensor is attached to the computer using Vernier’s

Lab Quest and a software Logger Lite is used to acquire data in the computer as

shown in Figure 4.6.
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Figure 4.6: Experimental setup for mass spring damper joint state and pa-
rameter estimation.

From Newton’s second law of motion,

F = ma (4.6)

The mass is made to oscillate vertically inside the water. The force sensor records

the amount of force being exerted the oscillating mass and reports it to the Logger

Lite software. From this data we extract values of the acceleration using Equa-

tion (4.6). The sampling rate of was set to be 0.02 seconds/sample. We use the

MATLAB’s cumtrapz command to find the cumulative trapezoidal numerical in-

tegration of this data to obtain velocity and position of the oscillator respectively.

Due to the integration, the position is infested by the integration drift and noise

ingrown due to the sensor’s sensitivity.

In the first attempt we try to filter only the drift in position and velocity using

the known parameters of this system through a Linear Kalman Filter (LKF).

4.3.1 Correcting the drift

The state dynamic equations for the filter are modeled as discussed previously in

Chapter 3. For our first case, we have a known spring constant k = 5.5 N/m and
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Figure 4.7: Drift removal in position and velocity of the Damped Harmonic
Oscillator system using a linear Kalman Filter.

damping coefficient b = 0.15 Ns/m.

The state transition matrix is thus,

F =

[
1 ∆t

(−k/m)∆t (1− b/m)∆t

]
(4.7)

To improve the performance of filter we consider using the position and velocity

obtained from the integration of acceleration.

For this, the measurement matrix is,

H =

[
1 0

0 1

]
(4.8)
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The Kalman filter time and measurement update equations remain the same. The

measurement noise in this case is set to R = 0.12 for both position and velocity.

Using the piecewise process noise model as derived in Equation (2.54) is,

Q = E[Γw(t)w(t)ΓT ]

=

[
1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t2

]
(4.9)

Figure 4.7 shows the application of Kalman filter to the drifting damped harmonic

oscillator. Figure (a) exhibits the drift correction in the position while Figure (b)

shows the drift correction in the velocity that was obtained in the same integral

before obtaining position.

4.3.2 Estimating ω2 and γ

In the previous case, we successfully filtered the integration drift in position and

velocity of a damped harmonic oscillator with known parameters. But, what if

the underlying parameters of the phenomena were unknown and we had to correct

the drift as well as estimate the parameters of the system. For this we explore

the applicability of both the Extended Kalman Filter and the Unscented Kalman

Filter.

4.3.2.1 Parameter estimation using Extended Kalman Filter

We have already performed the simulated application of this parameter estima-

tion in Chapter 3. The state variables matrix x is augmented with the unknown

variables as shown in Equation (3.38). Where x1 is position, x2 is velocity, x3 is

square of the frequency and x4 is the damping coefficient.

The nonlinear function f of the system is thus again defined as,
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f(x) =


x2

−x4x2 − x3x1

0

0

 (4.10)

Through Euler integration of Equation (4.10) the states are predicted in the time

update step of the filter. We take both position and velocity as the measurement

inputs to improve the performance of the filter. So, the measurement matrix is,

H =

[
1 0 0 0

0 1 0 0

]
(4.11)

The linearized state transition matrix for this system is already derived in Equation

(3.43). We rewrite it here for convenience,

F = eΦ∆t ≈ I + Φ∆t

=


1 ∆t 0 0

−x3∆t 1− x4∆t −x1∆t −x2∆t

0 0 1 0

0 0 0 1


(4.12)

The initialization values of the state variable matrix are,

x0 =
[
0 0.01 7 2

]T
(4.13)

Associated uncertainties of these variables in the initial error covariance matrix

are set to be:

P0 =


0.1 0 0 0

0 0.1 0 0

0 0 10 0

0 0 0 10

 (4.14)

For this experimental investigation we derive the continuous process noise covari-

ance matrix using Equation (2.50). The derivation is as follows,
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Q =

∆t∫
0

FtQcF
T
t dt (4.15)

= Φc

∆t∫
0

dt


1 ∆t 0 0

−x3∆t 1− x4∆t −x1∆t −x2∆t

0 0 1 0

0 0 0 1




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




1 −x3∆t 0 0

∆t (1− x4)∆t 0 0

0 −x1∆t 1 0

0 −x2∆t 0 1



= Φc

∆t∫
0

dt


1 ∆t 0 0

−x3∆t 1− x4∆t −x1∆t −x2∆t

0 0 1 0

0 0 0 1




0 −x3∆t 0 0

0 (1− x4)∆t 0 0

0 −x1∆t 0 0

0 −x2∆t 0 0



= Φc


0 −x3∆t2

2
+ ∆t2

2
− x4

∆t3

3
0 0

0 −x3 ∆t3

3
+ ∆t− 2x4

∆t2

2
+

x3
4

3
∆t3

3
+ x2

4
∆t4

4
+ x2

2
∆t3

3
0 0

0 0 −x1
∆t2

2
0

0 0 0 −x2
∆t2

2


(4.16)

We empirically tune the value of the spectral density Φc and find it to be 5.52. The

uncertainty in position and velocity measurement quantities is a diagonal matrix

with values,

R =

[
0.05 0

0 0.05

]
(4.17)

Figure 4.8 shows the application of the Extended Kalman Filter to our experimen-

tal regime. It is a joint state and parameter estimation along with drift removal

in the integrated position and velocity of the mass oscillator. In this application,

the primary role is played by the continuous piecewise noise covariance matrix Qc.

The matrix is derived as shown in Equation (4.16). This is because the drift in

the integration implies a rapidly changing acceleration with everytime step. So,

the piecewise noise model is not applicable in this case. The spectral noise density

Φc acts as the tuning parameter in the continuous noise model. We empirically

find the optimum value which filters the drift and provides optimum estimates of

the unknown parameters of the system.
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Figure 4.8: Drift removal and joint state and parameter estimation of the
Damped Harmonic Oscillator system using Extended Kalman Filter.

4.3.2.2 Estimating parameters using Unscented Kalman Filter

In Chapter 3 we saw that the simulated application of Unscented Kalman Filter

to the Damped Mass oscillator problem exhibited better performance as compared

to the Extended Kalman Filter in the parameter estimation. We now verify this

simulation by application Unscented Kalman Filter to this experimental exam-

ple. Likewise, we will perform the drift removal and joint state and parameter

estimation.

Before finding the sigma points we first define the difference equations.

(x1)k = (x̂1)k−1 + (x̂2)k−1Ts (4.18)

(x2)k = (x̂2)k−1 + (x̂2)k−1Ts

= (x̂2)k−1 + (−(x̂4)k−1(x̂1)k−1 − (x̂3)k−1(x̂2)k−1)Ts (4.19)

(x3)k = (x̂3)k−1Ts (4.20)

(x4)k = (x̂4)k−1Ts (4.21)
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where x1 is position, x2 is velocity, x3 is square of the frequency ω2 and x4 is the

damping coefficient γ.

Using scaled sigma points and associated weights the states of the system are

predicted using Equation (3.72) and Equation (3.73).

xk =
8∑
i=0

wmyσ (4.22)

Pk =
8∑
i=0

wc(yσ − xk)(yσ − xk)
T + Q (4.23)

Now, to create the measurement function the sigma points from position and

velocity states of the system are transformed into the measurement space for the

update step of the filter in Equation (3.71).

Z =

[
h(yσ)p

h(yσ)v

]
(4.24)

The state and error covariance in measurement space is updated then using Equa-

tion (3.72) and (3.73)

µzk =
8∑
i=0

wmZ (4.25)

Pk =
8∑
i=0

wc(Z− µzk)(Z− µzk)T + R (4.26)

As we have two states being measured the residual is calculated using Equation

(3.149). The only difference is that the mean of the measurement space µzk is two

dimensional.
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Figure 4.9: Drift removal and joint state and parameter estimation of the
Damped Harmonic Oscillator system using Unscented Kalman Filter.

y = z− µzk (4.27)

= z−

[
µzp

µzv

]
k

(4.28)

Figure 4.9 shows the application of the Unscented Kalman Filter to the joint state

and parameter estimation with drift removal in the integrated position and velocity

of the mass oscillator. The Unscented Kalman Filter also successfully filters out

the drift in the position and gives a good estimate of the unknown parameters ω2

and γ.

The following table highlights the performance of both filters in this application.
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Square of frequency ω2 (rad2/s2) Damping coefficient γ (s−1)

True values 61.7 15.9

EKF UKF EKF UKF

Estimated 14.33 33.22 4.24 1.289

RMSE 48.85 33.03 12.02 14.89

Table 4.1: The performance comparison of Extended Kalman Filter and Un-
scented Kalman Filter using the Root Mean Square Error (RMSE) values for

estimating the parameters of the damped mass oscillator problem.

This methodology of using Kalman filter to remove drifts and estimate parame-

ters can play a pivotal role for a physicist in an experimental physics laboratory.

Various linear and nonlinear phenomena are current gauged using conventional

methodologies and are usually cumbersome but with Kalman filter we only need

a few sensors to study the phenomena and then use the filter to remove noise and

estimate its unknown parameters.

4.4 Dynamics of the Wilberforce pendulum

We have already simulated the application of Kalman filtering to Wilberforce pen-

dulum dynamics in Chapter 3. Now, we extend our work and perform Kalman

filtering on the Wilberforce experimental setup from the Physlab and try to esti-

mate the parameters that govern the nature of a Wilberforce pendulum.

4.4.1 Apparatus

The experimental apparatus consists of a standard laboratory stand with eight

different machined oscillators. These oscillators are hung using a spring on a

hooked arm clamped on to the lab stand. They have different geometry and mass

distribution. This alters their moment of inertia. Last, we have a smartphone

attached over a stand that is used to capture the video of the oscillating mass.

Figure 4.10 shows the complete apparatus.
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Figure 4.10: Experimental setup to track the dynamics of the Wilberforce
pendulum.

4.4.2 Methodology and experiment

In the conventional laboratory method, the parameters of the Wilberforce pen-

dulum are found through a tedious process of varying moment of inertia of the

oscillators and then mathematically fitting the data to an quadratic mathematical

model derived from Equations (3.154) and (3.155). These are the two equations

of motion that describe the translational and rotational oscillations of the Wilber-

force pendulum. These equations of motion are:

m

(
d2z

dt2

)
+ kz + εθ/2 = 0 (4.29)
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I

(
d2θ

dt2

)
+ δθ + εz/2 = 0 (4.30)

where εzθ/2 is the coupling between the translational and torsional motion. The

parameter ε is a measure of the strength of the coupling. For an uncoupled system,

the natural frequencies of the longitudinal oscillation and the torsional motion are

given by,

ωz =

√
k

m
(4.31)

ωθ =

√
δ

I
. (4.32)

The two mutually coupled equations of motion can be simultaneously solved to

determine the frequencies of the two normal modes of the system. This is what

we attempt to achieve in the conventional method.

Using the frequencies of the normal modes and the definition ω = 2πf we derive

the following algebraic equation,

(f 2
1 − f 2

2 )2 =

(
δ2

16π4

)(
1

I

)2

+

(
ε2 − 2δk

16π4m

)(
1

I

)
+

(
k2

16π4m2

)
. (4.33)

Defining two new variables,

φ = (f 2
1 − f 2

2 )2, (4.34)

J =
1

I
. (4.35)

Equation (4.33) can be rearranged in its quadratic guise,

φ = C2J
2 + C1J + Co. (4.36)

Now if we were to vary I and have some means of measuring the normal modes,

f1 and f2, we can fit the variation of φ with J = 1/I. The fitting constants will
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help us determine the parameters of the Wilberforce pendulum:

δ = 4π2
√
C2, (4.37)

k = 4π2m
√
Co, (4.38)

ε =
√

16π4mC1 + 2δ k. (4.39)

The determination of the two normal mode frequencies, f1 and f2 as a function of

moment of inertia I, therefore, in principle, allows to measure the coupling, spring

and torsional constants. This is precisely the way we find the parameters conven-

tionally. The students too observe the motion of the Wilberforce pendulum and

extract the normal modes by Fourier transforming the z motion of the pendulum

and quadratic fit against the changing inertia to find the parameters. Table 4.2

summarizes the dimensions of the masses, their respective moments of inertia and

the associated normal modes extracted using Fast Fourier Transform (FFT).
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Figure 4.11: The quadratic fit plot of the square of the difference between the
squared frequencies of the system and the different moment of inertia.

From the data obtained in Table 4.2 we create a plot shown in Figure 4.11. The

quadratic fit of the plot reveals the values of the parameters C2 = 1.6 × 10−12,

C1 = 2.2×10−6 and Co = 0.74. Using these values we find the torsional constant,

spring constant and the coupling constant of the pendulum. Solved as follows,
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Oscillator f1 f2 (f 2
1 − f 2

2 )2 Mass Diameter Height Moment of Inertia
(Kg) (m) (m) (Kgm2)×10−7

B 0.542 0.952 0.3752 0.0184 0.0459 0.0041 48.5
C 0.615 0.952 0.2789 0.0183 0.0411 0.0050 38.5
D 0.703 0.952 0.1699 0.0184 0.0356 0.0065 29.0
E 0.767 0.952 0.1011 0.0184 0.0291 0.0097 19.5
F 0.901 0.959 0.0119 0.0184 0.0272 0.0011 17.0
G 0.938 0.996 0.0128 0.0183 0.0252 0.0013 14.5
H 0.945 1.077 0.0714 0.0184 0.0230 0.0154 12.1
J 0.952 1.348 0.8292 0.0183 0.0178 0.0257 7.3

Table 4.2: The actual dimensions of the different mass oscillators used in the
Wilberforce experiment along with their moment of inertia and the two resonant

modes computed by Fast Fourier Transform.

Computing the torsional constant

δ = 4π2
√
C2

= 4(3.14)2
√

1.6 × 10−12

= 4.9886 × 10−5 kgm2/s2 (4.40)

Computing the spring constant

k = 4π2m
√
Co,

= 4(3.14)2(0.0184)(
√

0.74)

= 0.6242 N/m (4.41)

Computing the coupling constant

ε =
√

16π4mC1 + 2δ k.

=
√

(16)(3.14)4(0.0184)(−2.2 × 10−6) + (2)(4.9886e− 05)(0.6242)

= 6.84 × 10−7 N (4.42)

Once we have obtained the values of these parameters we now try to estimate

these parameters using Extended and Unscented Kalman Filters.
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4.4.3 Applying the Extended Kalman Filter

In this joint state and parameter estimation of the Wilberforce pendulum, the

state space variable matrix is quite large. This is because the first four state

variables represent the kinematic states i.e. x1 and x2 representing the position

and velocity respectively in the vertical z- direction while x3 and x4 represent

rotational position and angular velocity respectively. Whereas, the rest of the

state variables represent the unknown modes x5 = ω2
z , x6 = ω2

θ and the coupling

constant x7 = ε.

x =
[
x1 x2 x3 x4

]T
(4.43)

The discrete state transition matrix F in this case, as already derived in Equation

(3.175) is following,

F =



1 ∆t 0 0 0 0 0

(−x5)∆t 1 (−1
2m

x7)∆t 0 (−x1)∆t 0 ( 1
2m

x3)∆t

0 0 1 ∆t 0 0 0

(−x7

2I
)∆t 0 −(x6)∆t 1 0 (−x3)∆t (−1

2I
x1)∆t

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, (4.44)

Likewise, we set the initial error covariance matrix P0 as,

P̂o =



0.1 0 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0 0

0 0 0 0.1 0 0 0

0 0 0 0 0.1 0 0

0 0 0 0 0 0.1 0

0 0 0 0 0 0 0.1


(4.45)
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4.4.3.1 Predicting the state and errors for parameter estimation

Following set of equations are augmented to include the unknown parameters

x5 = ω2
z , x6 = ω2

θ and x7 = ε. We propagate these through Euler integration in

the a priori prediction step,

(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 + (−x̂5(x̂1)k−1 −
1

2m
(x̂7)k−1(x̂3)k−1)∆t (4.46)

(x3)k = (x̂3)k−1 + (x̂4)k−1∆t

(x4)k = (x̂4)k−1 + (−ω2
θ(x̂3)k−1 −

1

2m
(x̂7)k−1(x̂1)k−1) (4.47)

(x5)k = (x̂5)k−1 (4.48)

(x6)k = (x̂6)k−1 (4.49)

(x7)k = (x̂7)k−1 (4.50)

Using the piecewise-noise model shown in Equation (2.54) we derive the following

Q matrix:

Q =



T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


σ2
v (4.51)

The variance σ2
v is tuned to be σ2

v = 5.52 .

The Figure 4.12 exhibits our application of the Extended Kalman Filter to estimate

the normal modes and the coupling constant of the Wilberforce pendulum system.

The true values of the system are already computed using the conventional method

ωz = 5.81 rad/s, ωθ = 5.42 rad/s and ε = 6.84× 10−7 N.
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Figure 4.12: The application of Extended Kalman filter to the Wilberforce
pendulum, Figure (a) exhibits the video tracked position and the Kalman esti-
mate, Figure (b) and Figure (c) shows the estimated translational and angular
modes, the true values of which are ω2

z = 33.70 rad2/s2 and ω2
z = 29.35 rad2/s2

Figure (d) shows the estimated coupling constant 6.84 × 10−7 N between the
two motions of the Wilberforce pendulum.

4.4.4 Applying Unscented Kalman Filter

We also estimate the Wilberforce parameters using the Unscented Kalman Fil-

ter. Using the same state dynamic Equations (3.157) we first state our nonlinear

function,

For this application we will generate 2n+1 = 15 scaled sigma points, where n = 7,

that approximate the translational and rotational states along with the unknown

parameters of the Wilberforce pendulum system.

Likewise, as seen in various previous examples, the associated weights for the sigma

points are calculated using Equations (2.73) and (2.74).

After we have generated sigma points and their associated weights, we pass them

through the following nonlinear function,
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(x1)k = (x̂1)k−1 + (x̂2)k−1∆t

(x2)k = (x̂2)k−1 + (−x̂5(x̂1)k−1 −
1

2m
(x̂7)k−1(x̂3)k−1)∆t (4.52)

(x3)k = (x̂3)k−1 + (x̂4)k−1∆t

(x4)k = (x̂4)k−1 + (−ω2
θ(x̂3)k−1 −

1

2m
(x̂7)k−1(x̂1)k−1) (4.53)

(x5)k = (x̂5)k−1 (4.54)

(x6)k = (x̂6)k−1 (4.55)

(x7)k = (x̂7)k−1 (4.56)

The prediction and correction steps proceed in the usual way.

Next, we have to initialize the belief in our system. We build our initial state error

covariance matrix P0 as follows:

P0 =



0.1 0 0 0 0

0 0.1 0 0 0

0 0 0.1 0 0

0 0 0 0.1 0

0 0 0 0 0.1


(4.57)

We use the same process noise Q matrix (3.189) as the piecewise noise model for

this system.

Q =



T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

T 4
s

4
T 3
s

2
T 4
s

4
T 3
s

2
0 0 0

T 3
s

2
T 2
s

T 3
s

2
T 2
s 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


σ2
v (4.58)

We inflate the process variance σ2
v to tune the filter for getting the best estimate

of the parameters and the states. in this application it was found to be σ2
v = 5.52

that was most optimum.
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Figure 4.13: The application of Unscented Kalman filter to the Wilberforce
pendulum, Figure (a) exhibits the video tracked position, Figure (b) and Figure
(c) shows the estimated translational and angular modes, the true values of
which are ω2

z = 33.70 rad2/s2 and ω2
z = 29.35 rad2/s2 Figure (d) shows the

estimated coupling constant 6.84 × 10−7 N between the two motions of the
Wilberforce pendulum.

Furthermore, in both cases we are using only one noisy sensor to track the position

of the oscillator in the vertical z direction in meters. The rest of the Unscented

Kalman Filter algorithm runs as already described in various previous examples

and simulations.

Figure 4.13 shows the results of using the Unscented Kalman Filter algorithm to

filter a simulated Wilberforce Pendulum that is infested with σ2 = 0.001 m and

σ2 = 0.01 rad noise in vertical position z and angular measurement respectively.



Chapter 5

Summary and Conclusion

5.1 Summary

In the end we would like to present the summary of our expedition of Kalman Fil-

ter’s application in the realms of an experimental physics laboratory. In Chapter

1, we first share our motivation towards exploring these applications. We briefly

introduced the filter’s invention, historical background and its application areas

in process control, flood prediction, tracking and navigation and that how it is

integrated with sensors to output sophisticated data that can be used for better

analysis. We also defined our problem statement that in an experimental labo-

ratory students have to deal with infestation of noise into the experimental data

which requires post acquisition processing and filtering for analysis and largely for

estimating the unknown parameters of the system. We present Kalman Filter as a

modern technique for data filtration and parameter estimation. We also shared the

limitations of this dissertation and that how anyone could explore further appli-

cations in this unexplored potential area of experimental physics. We also shared

the great historical background of the invention of Kalman Filter and that how it

played its pivotal role in taking the mankind to the moon. We also discussed how

the filter has evolved over time to find its place in various domains of sciences and

engineering. We also present a literature review of the diverse ranged applications

of Kalman Filter in fields of computer science, physics and industrial engineering.

In Chapter 2, we build the theoretical foundation of the reader. In order to

understand Kalman Filter’s mathematical structure one has to understand the

state space formulation from the equation of motions of the system. From this

124
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we further describe an essential property of the system referred to as observability

test for both linear and nonlinear systems. The test evaluates whether using a

given set of sensors could estimate the states of a system or not. In some cases

we might not be fully estimate the states of the system using a particular set of

sensors but only may be able to estimate sub parts of the system. For this, the sub-

observable systems are extracted using the technique of Kalman Decomposition.

In this dissertation, we did not need to use Kalman Decomposition as our systems

were fully observable. However, the theoretical background was introduced as an

essential knowledge for the reader. We then derive the complete Kalman Filter

algorithm for a single dimensional state space problem and individually discuss

the Time Update and Measurement Update equations which govern the recursive

execution of the filter. We also describe the high dimensional Multivariate Kalman

Filter where we have more than one dimensions of the system. The filter equations

transform into high dimension matrices and the algorithm incorporates matrix

manipulation rules in order to process the application. We then describe the second

essence of this research work on using Kalman Filter for parameter estimation.

The parameters govern the trajectory of the system over time. We share the two

known forms of Kalman Filter for parameter estimation, i.e. Dual-State and Joint-

State Parameter estimation. For our thesis we choose joint state and parameter

estimation as our experimental systems were not complex. We then also discuss

the nonlinear form of Kalman Filter referred to as the Extended Kalman Filter.

The EKF uses first approximations to linearize the given systems state as well

as the error covariances. This approximation is what makes Extended Kalman

Filter sub-optimal in applications with high dimensions. So, in the last we discuss

the Unscented Kalman Filter as an alternative to Extended Kalman Filter for

performance enhancement and robustness. We describe the complete algorithm

and underlying structure of the Unscented Kalman Filter.

In Chapter 3, we perform the numerical simulations of our application of Extended

and Unscented Kalman Filter on a a number of linear and nonlinear noisy sys-

tems with known and unknown parameters. Our first simulations was of a noisy

damped harmonic oscillator. We derive the equation of motion for the system

using the Euler-Lagrange classical mechanical approach and transform the equa-

tions into state space as described in Chapter 3. We then derive the state space

model of the mass-spring system and discretize it using the Taylor series approx-

imation. We then derive the process noise covariance matrix and measurement

noise matrix. We also perform the linear observability test and conclude that the
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system is observable using position or velocity sensor. We then explore parameter

estimation of the mass-oscillator problem using Extended and Unscented Kalman

Filter. We perform the nonlinear observability test in this case as the augmented

state becomes nonlinear due to the presence of the unknown parameter in the sys-

tem. We successfully estimate the frequency ω2 and the damping coefficient γ of

the system. We also worked on the application of the filter to a highly nonlinear

system. The Duffing Oscillator is a simple harmonic oscillator infested with a

cubic elasticity. We also consider this system to be driven by a cosine function.

We first simulate the true dynamics of the system and infest a simulated noise in

the position measurements. We use a position sensor in the Extended and Un-

scented Kalman Filter to filter the noise in position and estimate the velocity of

the system. We also check the application for the case of using only the velocity

sensor. Both the filters work perfectly fine. However, the application of UKF is

found to be more precise using the Root Mean Squared Error calculation. As this

nonlinear system was driven we also explore the input part of the Kalman Filter

algorithm which was not discussed in the previous simulation.

In Chapter 4, we proceed to the experimental realizations of the filter. We first

begin with a simple application to a one dimensional problem of temperature

measurement. Using a thermocouple we measure the temperature of a Peltier

heater that is heated using a PID controller circut. The heater is given a set point

temperature that is altered after regular intervals to see how the dynamics of

the filter adjusts to the variation in temperature and the associated process noise.

Using this system we explored the tuning factor of Process Noise. We then proceed

to our experimental mass-spring damper system. Using a force sensor we measure

the acceleration of an oscillating mass and convert it into position readings through

integration which adds integration drift to the position measurement. We also aim

to estimate the frequency ω2 and damping coefficient γ of the system. We apply

both the Extended and Unscented Kalman Filter. For our nonlinear system we

use apparatus of the Magnetic Pendulum in our laboratory. This apparatus uses

magnets to add nonlinear elasticity to a driven simple pendulum. We estimate

the value of this nonlinear elasticity using the Extended and Unscented Kalman

Filter.



Chapter 5 Summary and Conclusion 127

5.2 Conclusion

Through this research work we have tried to highlight the applications of Kalman

Filter and its variants in the largely unexplored realms of an experimental physics

laboratory. Generally, the most common platform for Kalman filters is found

in signal processing, robotics, image processing and navigation. However, use of

noisy sensors and mathematical processes are also a part of physics exploration

but students in this domain are rarely introduced to this modern technique.

Specifically, in an undergraduate physics laboratory, where through sensors and

data acquisition equipment students explore basic physical phenomena of kine-

matics, electromagnetism etc. They are already engaged in applying filters to

remove noise and perform tedious curve fitting to extract unknown parameters of

the system. Their introduction to a more robust and modern technique of Kalman

filters could help them not only in improving their exploration but it also helps

in exploring complex and high dimensional problems as well. We have explored a

few such examples through simulations and heuristic experiments. For example, in

Figure 3.2 we have shown an application of Kalman Filter to a Damped Harmonic

Oscillator. It is the most simplest and common example for a physics student. We

saw how noise is effecting the system and how uncertainty in the process model

effects the performance of the filter, shown in Figure 3.3 and then estimate its un-

known parameters, the spring constant and damping coefficient shown in Figure

3.5 and 3.6.

The nonlinear physics is a huge area for further research in Kalman filter’s ap-

plication and so we have also applied the nonlinear variants of Kalman filter to

nonlinear dynamical systems. Shown in Figure 3.8 is an application of the Ex-

tended Kalman Filter to a Duffing oscillator. Figure 3.9 shows the estimation

of the nonlinear parameter of the system using Extended Kalman Filter but as

EKF is considered to be sub-optimal we also applied the more robust Unscented

Kalman Filter as shown in Figure 3.10 and 3.11. The performance of both filters

is highlighted in Table 3.2.7. It verifies that the Unscented Kalman Filter per-

formed better than the Extended Kalman Filter in estimating the cubic nonlinear

parameter of the Duffing oscillator.

Last, we applied Kalman filter to a Wilberforce pendulum in an attempt to esti-

mate its governing parameters. It is a coupled harmonic oscillator that experiences
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coupling effect in between its translational and rotational displacement. The fre-

quency modes in both along with a coupling constant is generally computed by

varying the moments of inertia of the oscillator and curve fitting using a quadratic

Equation (4.36). We have tried to show that by using merely a position sensor one

can attempt to estimate the two modes as well as the coupling constant. However,

as shown in Figure 4.12 and 4.13. The coupling constant is at a good estimation

to around 6.367 × 10−7 N where the true value was 6.840 × 10−7 N making it a

percentage difference of 6.9% but the normal modes ω2
z and ω2

θ are estimated by

Extended Kalman Filter at a difference of 86.98% and 95.86% respectively from the

true values. This can be improved by including a secondary sensor to measure the

angular displacement of the pendulum as simulation in Chapter 3. Furthermore,

by using Kalman decomposition [38] the Wilberforce pendulum system could be

decomposed into observable and unobservable states using only a position sensor.

5.3 Future works

The smartphones today carry drifting inertial sensors. We can use these sensors

to measure kinematics of various phenomena. We would like to apply Kalman

filtering to remove the drifts in such sensors and estimate underlying parameters

of the systems. We can also use a digital camera to record objects and track their

trajectories, e.g. projectiles, using a tracking software [48].

We intend to apply Kalman filters to more and more problems in physics. In

particular, to the experiments in linear and nonlinear mechanics, electromagnetism

and nuclear physics.



Appendix A

MATLAB codes

A.1 Piecewise white noise model

1 func t i on output=p i e c e w i s e w h i t e n o i s e (ndim , var iance , dt )

2

3 % We have de f ined F f o r the standard kinemat ic equat ions .

4 % USage : p i e c e w i s e w h i t e n o i s e ( ndim=2 or 3 , var i ance o f no i se , dt=time step )

5

6 i f ndim==5

7 G=@(t ) [ t ˆ4/4 ; t ˆ3/3 ; t ˆ2/2 ; t ; 1 ] ;

8 Gc=@(t ) [ t ˆ4/4 t ˆ3/3 t ˆ2/2 t 1 ] ;

9 output=var iance *G( dt ) *Gc( dt ) ;

10

11 e l s e i f ndim==4

12 G=@(t ) [ t ˆ3/3 ; t ˆ2/2 ; t ; 1 ] ;

13 Gc=@(t ) [ t ˆ3/3 t ˆ2/2 t 1 ] ;

14 output=var iance *G( dt ) *Gc( dt ) ;

15

16 e l s e i f ndim==3

17 G=@(t ) [ t ˆ2/2 ; t ; 1 ] ;

18 Gc=@(t ) [ t ˆ2/2 t 1 ] ;

19 output=var iance *G( dt ) *Gc( dt ) ;

20

21 e l s e i f ndim==2

22 G=@(t ) [ t ˆ2/2 ; t ] ;

23 Gc=@(t ) [ t ˆ2/2 t ] ;

24 output=var iance *G( dt ) *Gc( dt ) ;

25 end

26 end

A.2 Continuous white noise model

129
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1 func t i on output=c ont in uo us wh i t e no i s e ( s p e c t r a l d e n s i t y , t ime s t ep )

2

3 % We have de f ined F f o r the w i l b e r f o r c e l i n e a r and angular movement

4 % [ pos i t i on , v e l o c i t y , angle , angular v e l o c i t y ] ˆT as the s t a t e func t i on

5

6

7 F=@(t ) [ 1 t 0 0 ;0 1 0 0 ;0 0 1 t ; 0 0 0 1 ] ;

8 Fc=@(t ) [ 1 0 0 0 ; t 1 0 0 ;0 0 1 0 ;0 0 t 1 ] ;

9 Qc=[0 0 0 0 ;0 1 0 0 ;0 0 0 0 ;0 0 0 1 ] ;

10 output=i n t e g r a l (@( t ) s p e c t r a l d e n s i t y *F( t ) *Qc*Fc ( t ) ,0 , t ime step , 'ArrayValued ' ,

t rue ) ;

11 end

A.3 Van Der Merwe algorithm

1 func t i on [ chi , s c a l e f a c t o r ,wm, wc]= vandermeer sigma2 (muu, sigma , alpha , beta , kappa )

2

3 %implementing van der Meer s c a l e d sigma point c a l c u l a t i o n

4 %usage : [ sigma , s c a l e f e c t o r ,wm, wc]= vandermeer sigma1 (mu, sigma , 0 . 4 , 0 . 9 , 0 . 3 )

5 %mu i s column vec to r

6 %sigma i s a square matrix

7

8 %genera t ing the sigma po in t s

9 ndim2=length (muu) ; %dimension o f s t a t e space

10 lambda=alpha ˆ2*( ndim2+kappa )−ndim2 ;

11 ch i=ze ro s ( ndim2 ,2* ndim2+1) ; %pre−a l l o c a t i n g space f o r the sigma po in t s

12 ch i ( : , 1 )=muu;

13

14 s c a l e f a c t o r=r e a l ( sqrtm ( ( ndim2+lambda ) * sigma ) ) ;

15 %s c a l e f a c t o r=cho l ( ( ndim2+lambda ) * sigma ) ;

16

17 f o r k=2:ndim2+1

18 ch i ( : , k )=muu+s c a l e f a c t o r ( : , k−1) ;

19 end

20

21 f o r k=ndim2+2:2*ndim2+1

22 ch i ( : , k )=muu−s c a l e f a c t o r ( : , k−ndim2−1) ;

23 end

24

25 %genera t ing the weights in means wm, and weights in cova r i ance s wc

26

27 wm=ze ro s (1 ,2* ndim2+1) ;

28 wc=ze ro s (1 ,2* ndim2+1) ;

29 wm(1)=lambda /( ndim2+lambda ) ;

30 wc (1)=wm(1)+1−alphaˆ2+beta ;

31

32 f o r k=2:2*ndim2+1

33 wm( k ) =1/(2*(ndim2+lambda ) ) ;

34 wc( k )=wm( k ) ;

35 end

36
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37 %f i g u r e ; e r r o r e l l i p s e ( sigma ,mu) ; hold on ; s c a t t e r ( ch i ( 1 , : ) , ch i ( 2 , : ) ) ;

38

39 end

A.4 Observability test for SHM

1 c l o s e a l l ; c l e a r a l l ; c l c ;

2

3 % Assign model parameters

4 m = 10 ; % mass

5 k = 5 ; % spr ing constant

6 b = 3 ; % damping c o e f f i c i e n t

7 A = [ 0 1 ; −k/m −b/m] ; % c o e f f i c i e n t matrix f o r cont inuous system

8 H=[1 0 ] ;

9

10 % Obse rvab i l i t y

11 Obs = obsv (A,H) ;

12

13 % Number o f obse rvab l e s t a t e s in A

14 rank (Obs)

A.5 Damped harmonic oscillator function file

1 func t i on xdot=damped ho ( t , x )

2

3 g l o b a l kspr ing bspr ing mass

4

5 xdot=ze ro s (2 , 1 ) ;

6

7 xdot (1 )=x (2) ;

8 xdot (2 )=−(kspr ing /mass ) *x (1)−(bspr ing /mass ) *x (2 ) ;

9

10 end

A.6 Simulating application of Kalman Filter to

a Simple Harmonic Oscillator

1 c l e a r a l l

2 c l c

3

4 % Assign model parameters

5 m = 10 ; % mass
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6 k = 5 ; % spr ing constant

7 b = 3 ; % damping c o e f f i c i e n t

8 A = [ 0 1 ; −k/m −b/m] ; % c o e f f i c i e n t matrix f o r cont inuous system

9 rhs = @(t , x ) A*x ; % r i g h t hand s i d e o f the func t i on

10 % Simulate system

11 x i n i t = [ 1 ; 0 ] ; % i n i t i a l va lue

12 h = 0 . 2 ; % time step

13 T = 30 ; %Fina l time value

14 time = 0 : h :T; %Ful l time s c a l e

15 [ t , t rueTra j e c to ry ] = ode45 ( rhs , time , x i n i t ) ;

16 obsNoise = 0 . 1 ; %Def ine obse rvat i on no i s e l e v e l

17 obs = trueTra j e c to ry ( : , 1 ) ; %F i r s t s t a t e i s obse rvab l e

18 obs = obs+obsNoise * randn ( s i z e ( obs ) ) ; %Add no i s e

19 xbar = [ 1 ; 0 ] ;

20 xbarEstimate = [ 1 ; 0 ] ; %I n i t i a l s t a t e

21 P = .1* eye ( l ength ( xbar ) ) ; %I n i t i a l covar iance

22 varEstimate = diag (P) ; %I n i t i a l s t a t e var i ance

23 F = eye ( l ength ( xbar ) )+h*A; %State t r a n s i t i o n matrix

24 H = [ 1 0 ] ; %Observation func t i on

25 Q variance =0.1ˆ2; %proce s s no i s e var iance , assume a p i e c e w i s e constant white

no i s e

26 Q=p i e c e w i s e w h i t e n o i s e (2 , Q variance , h ) ;

27 Q=kron (Q, eye (1 ) ) ;

28 D = obsNoise ;

29 Ob = obsv (A,H) ;

30 % I f rank = ndim o f s t a t e vec to r the system i s obse rvab l e

31 rank (Ob)

32

33 f o r i = 2 : l ength ( obs )

34 % Pred i c t i on step

35 xbar = F*xbar ;

36 P = F*P*F' + Q;

37 % Observation update

38 K = (P*H') /(H*P*H'+D) ; % aka K = . . .

39 %P*H'* inv (H*P*H'+D) ;

40 xbar = xbar + K*( obs ( i ) − H*xbar ) ;

41 P = P − K*H*P;

42 xbarEstimate ( : , i ) = xbar ;

43 varEstimate ( : , i ) = diag (P) ;

44

45 end

46

47 f i g u r e (1 ) ; subplot ( 2 , 1 , 1 ) ;

48 p l o t ( time , t rueTra j e c to ry ( : , 1 ) , 'k' , ' l i n ew id th ' , 2 ) ;

49 hold on ;

50 lower = xbarEstimate ( 1 , : ) +2* s q r t ( varEstimate ( 1 , : ) ) ;

51 upper = xbarEstimate ( 1 , : )−2* s q r t ( varEstimate ( 1 , : ) ) ;

52 c i p l o t ( lower , upper , time , 'b' )

53 p l o t ( time , obs , 'bo' , 'marke r f aceco l o r ' , 'b' , 'markers i ze ' , 3 )

54 p l o t ( time , xbarEstimate ( 1 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

55 a x i s ( [ 0 30 ,−1 1 . 5 ] )

56 s e t ( gca , ' f o n t s i z e ' , 8 )

57 t i x=get ( gca , ' y t i ck ' ) ' ;

58 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

59 legend 'True Tra jec tory ' 'Simulated Noise ' 'KF Estimate ' 'Confidence I n t e r v a l '
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60 x l a b e l ( 'Time ( s ) ' )

61 y l a b e l ( 'Pos i t i on (m) ' )

62

63 subplot ( 2 , 1 , 2 )

64 p l o t ( time , t rueTra j e c to ry ( : , 2 ) , 'k' , ' l i n ew id th ' , 3 ) ;

65 hold on ;

66 lower = xbarEstimate ( 1 , : ) +2* s q r t ( varEstimate ( 1 , : ) ) ;

67 upper = xbarEstimate ( 1 , : )−2* s q r t ( varEstimate ( 1 , : ) ) ;

68 c i p l o t ( xbarEstimate ( 2 , : ) +2* s q r t ( varEstimate ( 2 , : ) ) , xbarEstimate ( 2 , : )−2* s q r t (

varEstimate ( 2 , : ) ) , time , 'b' )

69 p l o t ( time , xbarEstimate ( 2 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

70 t i x=get ( gca , ' y t i ck ' ) ' ;

71 s e t ( gca , ' f o n t s i z e ' , 8 )

72 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

73 legend 'True Ve loc i ty ' 'KF Estimate ' 'Confidence I n t e r v a l '

74 x l a b e l ( 'Time ( s ) ' )

75 y l a b e l ( 'Ve loc i ty (m/ s ) ' )

A.7 Parameter estimation on Damped Harmonic

Oscillator using Extended Kalman Filter

1 c l o s e a l l

2 c l e a r a l l

3 c l c

4

5 % Assign model parameters

6 m = 10 ; % mass

7 k = 5 ; % spr ing constant

8 b = 3 ; % damping c o e f f i c i e n t

9 omega=s q r t ( k/m) ;

10 bspr ing = b/m;

11 A = [ 0 1 ; −k/m −b/m] ; % c o e f f i c i e n t matrix f o r cont inuous system

12 rhs = @(t , x ) A*x ; % r i g h t hand s i d e o f the func t i on

13 % Simulate system

14 x i n i t = [ 0 ; 1 ] ; % i n i t i a l va lue

15 h = 0 . 0 1 ; % time step

16 T = 100 ; %Fina l time value

17 time = 0 : h :T; %Ful l time s c a l e

18 [ t , t rueTra j e c to ry ] = ode45 ( rhs , time , x i n i t ) ;

19 obsNoise = 0 . 1 ˆ 2 ; %Def ine obse rvat i on no i s e l e v e l

20 obs = trueTra j e c to ry ( : , 1 ) ; %F i r s t s t a t e i s obse rvab l e

21 obs = obs+obsNoise * randn ( s i z e ( obs ) ) ; %Add no i s e

22

23 omega=k/m;

24 gamma=b/m;

25

26

27 %% Extended Kalman F i l t e r

28 xbar = [ 0 ; 1 ; 1 ; 1 ] ; %I n i t i a l s t a t e e s t imate

29 xbarEstimate=xbar ;
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30 P = diag ( [ 0 . 1 0 .1 0 .1 0 . 1 ] ) ; %I n i t i a l covar iance

31 varEstimate = diag (P) ; %I n i t i a l s t a t e var i ance

32 Aa = [ 0 1 0 0;−xbar (3 ) /m −xbar (4 ) /m −xbar (1 ) /m −xbar (2 ) /m; 0 0 0 0 ;0 0 0 0 ] ;

33 F = eye ( l ength ( xbar ) )+Aa*h+(Aaˆ2*hˆ2) / f a c t o r i a l (2 ) +(Aaˆ3*hˆ3) / f a c t o r i a l (3 ) +(Aaˆ4*

hˆ4) / f a c t o r i a l (4 ) +(Aaˆ5*hˆ5) / f a c t o r i a l (5 ) +(Aaˆ6*hˆ6) / f a c t o r i a l (6 ) ; %State

t r a n s i t i o n matrix

34 H = [ 1 0 0 0 ] ; %Observation func t i on

35 Q variance =0.01ˆ2; %proce s s no i s e var iance , assume a p i e c e w i s e constant white

no i s e

36 Q=p i e c e w i s e w h i t e n o i s e (4 , Q variance , h ) ;

37 %Q=kron (Q1, eye (2 ) ) ;

38 R = obsNoise ; %Measurement Noise

39

40 f o r i = 2 : l ength ( obs )

41 %Pred i c t i on step

42 f={@(x1 , x2 , x3 , x4 , t ) ( x1+x2* t ) ;

43 @(x1 , x2 , x3 , x4 , t ) ( x2+(−x4/m*x2−x3/m*x1 ) * t )

44 @(x1 , x2 , x3 , x4 , t ) ( x3 )

45 @(x1 , x2 , x3 , x4 , t ) ( x4 ) } ;

46 xbar (1 , 1 )=f {1}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) ,h ) ;

47 xbar (2 , 1 )=f {2}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) ,h ) ;

48 xbar (3 , 1 )=f {3}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) ,h ) ;

49 xbar (4 , 1 )=f {4}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) ,h ) ;

50

51 Aa = [ 0 1 0 0;−xbar (3 ) /m −xbar (4 ) /m −xbar (1 ) /m −xbar (2 ) /m; 0 0 0 0 ;0 0 0 0 ] ;

52 F = eye ( l ength ( xbar ) )+Aa*h+(Aaˆ2*hˆ2) / f a c t o r i a l (2 ) +(Aaˆ3*hˆ3) / f a c t o r i a l (3 ) +(Aa

ˆ4*hˆ4) / f a c t o r i a l (4 ) +(Aaˆ5*hˆ5) / f a c t o r i a l (5 ) +(Aaˆ6*hˆ6) / f a c t o r i a l (6 ) ; %State

t r a n s i t i o n matrix

53

54 P = F*P*F' + Q;

55

56 % Observation update

57 K = P*H'* inv (H*P*H'+R) ;

58 y=obs ( i ) − H*xbar ; %r e s i d u a l

59 xbar = xbar + K*( y ) ;

60 P = P − K*H*P;

61 xbarEstimate ( : , i ) = xbar ( : , 1 ) ;

62 varEstimate ( : , i ) = diag (P) ;

63 KalmanGain ( : , i ) = K;

64 Res idual ( : , i )=y ;

65 end

66

67 %% Pos i t i on and v e l o c i t y p l o t

68 f i g u r e ( 'Renderer ' , ' p a i n t e r s ' , 'Pos i t i on ' , [ 15 15 900 70 0 ] )

69 subplot ( 2 , 2 , 1 ) ;

70 p l o t ( time , t rueTra j e c to ry ( : , 1 ) , 'k' , ' l i n ew id th ' , 2 ) ;

71 hold on ;

72 p l o t ( time , obs , 'bo' , 'marke r f aceco l o r ' , 'b' , 'markers i ze ' , 3 )

73 p l o t ( time , xbarEstimate ( 1 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

74 lower x1 = xbarEstimate ( 1 , : ) +2* s q r t ( varEstimate ( 1 , : ) ) ;

75 upper x1 = xbarEstimate ( 1 , : )−2* s q r t ( varEstimate ( 1 , : ) ) ;

76 c i p l o t ( lower x1 , upper x1 , time , 'b' )

77 t i x=get ( gca , ' y t i ck ' ) ' ;

78 s e t ( gca , ' f o n t s i z e ' , 10)

79 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )
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80 a x i s ( [ 0 30 ,−1 1 . 5 ] )

81 g r id on ;

82 legend 'True Tra jec tory ' 'Simulated Noise ' 'KF Estimate ' 'Confidence I n t e r v a l '

83 x l a b e l ( 'Time ( s ) ' )

84 y l a b e l ( 'Pos i t i on (m) ' )

85

86 subplot ( 2 , 2 , 2 )

87 p l o t ( time , t rueTra j e c to ry ( : , 2 ) , 'k' , ' l i n ew id th ' , 3 ) ;

88 hold on ;

89 p l o t ( time , xbarEstimate ( 2 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

90 a x i s ( [ 0 30 ,−1 1 . 5 ] )

91 t i x=get ( gca , ' y t i ck ' ) ' ;

92 s e t ( gca , ' f o n t s i z e ' , 10)

93 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

94 lower x2 = xbarEstimate ( 2 , : ) +2* s q r t ( varEstimate ( 2 , : ) ) ;

95 upper x2 = xbarEstimate ( 2 , : )−2* s q r t ( varEstimate ( 2 , : ) ) ;

96 c i p l o t ( lower x2 , upper x2 , time , 'b' )

97 g r id on ;

98 legend 'True Tra jec tory ' 'KF Estimate ' 'Confidence I n t e r v a l '

99 x l a b e l ( 'Time ( s ) ' )

100 y l a b e l ( 'Ve loc i ty (m/ s ) ' )

101

102 %% Spring Constant and Damping c o e f f i c i e n t p l o t s

103 subplot ( 2 , 2 , 3 ) ;

104 p l o t ( time , xbarEstimate ( 3 , : ) , '−r ' , ' l i n ew id th ' , 2 ) ;

105 % t i x=get ( gca , ' yt ick ') ' ;

106 % s e t ( gca , ' f o n t s i z e ' , 10)

107 % s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ') )

108 a x i s ( [ 0 30 ,0 2 0 ] )

109 g r id on ;

110 legend 'KF Estimate ' ;

111 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( 'Spring Constant (N/m) ' )

112

113 subplot ( 2 , 2 , 4 )

114 p l o t ( time , xbarEstimate ( 4 , : ) , '−r ' , ' l i n ew id th ' , 2 ) ;

115 t i x=get ( gca , ' y t i ck ' ) ' ;

116 s e t ( gca , ' f o n t s i z e ' , 10)

117 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

118 a x i s ( [ 0 30 ,0 1 0 ] )

119 g r id on ;

120 legend 'KF Estimate ' ;

121 x l a b e l ( 'Time ( s ) ' ) ;

122 y l a b e l ( 'Damping C o e f f i c i e n t (N/msˆ−1)' )

123

124 rmse 1 = s q r t (sum ( ( xbarEstimate ( 3 , : )−k . * ones (1 , l ength ( time ) ) ) . ˆ 2 ) . / numel (

xbarEstimate ( 1 , : ) ) )

125 rmse 2 = s q r t (sum ( ( xbarEstimate ( 4 , : )−b . * ones (1 , l ength ( time ) ) ) . ˆ 2 ) . / numel (

xbarEstimate ( 2 , : ) ) )

126 rmse 3 = s q r t (mean( xbarEstimate ( 3 , : )−omega . * ones (1 , l ength ( time ) ) ) . ˆ 2 )

127 rmse 4 = s q r t (mean( xbarEstimate ( 4 , : )−gamma. * ones (1 , l ength ( time ) ) ) . ˆ 2 )
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A.8 Parameter estimation on Damped Harmonic

Oscillator using Unscented Kalman Filter

1 c l c ; c l e a r a l l ; c l o s e a l l ;

2 %some p h y s i c a l p r o p e r t i e s

3 g l o b a l kspr ing bspr ing mass

4 kspr ing =5;

5 bspr ing =3;

6 mass=10;

7

8 %some parameters

9 Nk=5000; %Number o f i t e r a t i o n s

10 ndim=4;

11 n meas=1; %we are only measuring the p o s i t i o n with a disp lacement s enso r

12 omega=s q r t ( kspr ing /mass ) ;

13 gamma=bspr ing /mass ;

14

15 s e n s o r x v a r i a n c e =0.01ˆ2;

16 dt =0.01; %time step

17

18 Q variance =0.01; %proce s s no i s e var iance , assume a p i e c e w i s e constant white no i s e

19 Q1=p i e c e w i s e w h i t e n o i s e (2 , Q variance , dt ) ;

20 Q=kron (Q1, eye (2 ) ) ;

21 R=diag ( [ s e n s o r x v a r i a n c e ] ) ; % Covariance f o r the measurement matrix

22

23 %i n i t i a l s t a t e e s t imate

24 %a c l o s e to the i n i t i a l measurement determines the i n i t i a l s t a t e

25 x i n i t i a l a c t u a l =[0 ; 1 ; 10 ; 1 0 ] ;

26 x =[−2;1 .5 ; 0 ; 0 ] ; %t h i s i s how the Kalman f i l t e r i s i n i t i a l i z e d

27 P max=10;

28 P=P max* eye (4 ) ;

29

30 %choos ing the sigma points , the covar iance matrix i s P

31 alpha =0.1 ; beta =2; kappa=3−l ength ( x ) ;

32 data=ze ro s (Nk, 7 ) ; %p la c eho ld e r f o r a l l the v a r i a b l e s

33 %d e f i n e the non l i n ea r p roce s s func t i on c a l l e d f

34 f={@(x1 , x2 , x3 , x4 , t ) ( x1+x2* t ) ;

35 @(x1 , x2 , x3 , x4 , t ) ( x2+(−(x3/mass ) *x1−(x4/mass ) *x2 ) * t )

36 @(x1 , x2 , x3 , x4 , t ) ( x3 )

37 @(x1 , x2 , x3 , x4 , t ) ( x4 ) } ;

38 y sigma=ze ro s (ndim ,2* ndim+1) ;

39

40 time=dt : dt :Nk*dt ;

41

42 %we f i r s t s imulate the behavior o f the harmonic o s c i l l a t o r y i e l d i n g t rue

43 %va lue s

44 [ tt , model ]=ode45 ( 'damped ho' , time , x i n i t i a l a c t u a l ( 1 : 2 ) ) ;

45

46 f o r k=1:Nk

47

48 %sigma po in t s

49 [ chi , s c a l e f a c t o r ,wm, wc]= vandermeer sigma2 (x ,P, alpha , beta , kappa ) ;

50 %p r e d i c t s tep
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51

52 f o r kk=1:2*ndim+1

53 y sigma (1 , kk )=f {1}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , dt ) ;

54 y sigma (2 , kk )=f {2}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , dt ) ;

55 y sigma (3 , kk )=f {3}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , dt ) ;

56 y sigma (4 , kk )=f {4}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , dt ) ;

57 end

58

59 %here we perform the unscented trans form

60 x=sum( repmat (wm, ndim , 1 ) . * y sigma , 2 ) ;

61 P temp=ze ro s (ndim , ndim ) ;

62 f o r kk=1:2*ndim+1

63 P temp=P temp+wc( kk ) *( y sigma ( : , kk )−x ) *( y sigma ( : , kk )−x ) ' ;

64 end

65 P=P temp+Q;

66

67 %d e f i n e the non l i n ea r measurement func t i on denoted h

68 h={@(y1 , y2 , y3 , y4 ) ( y1 ) ;

69 } ;

70

71 %Map the pred i c t ed p r i o r to the measurement space

72 %the mapped va lue s are s to r ed in the v a r i a b l e ZZ

73 ZZ=ze ro s ( n meas , 2* ndim+1) ;

74 f o r kk=1:2*ndim+1

75 ZZ(1 , kk )=h{1}( y sigma (1 , kk ) , y sigma (2 , kk ) ) ;

76 end

77

78 %Applying the unscented trans form in the measurement space

79 ZZmean=sum( repmat (wm, n meas , 1 ) . *ZZ , 2 ) ; %t h i s i s our mu z

80 Pz temp=ze ro s ( n meas , n meas ) ;

81 f o r kk=1:2*ndim+1

82 Pz temp=Pz temp+wc( kk ) *(ZZ ( : , kk )−ZZmean) *(ZZ ( : , kk )−ZZmean) ' ;

83 end

84 Pz=Pz temp+R;

85

86 %measurement vec to r z must come here

87 z=model (k , 1 )+s q r t ( s e n s o r x v a r i a n c e ) * randn ; %t h i s i s the p o s i t i o n measurement

88 y=z−ZZmean ; %r e s i d u a l

89

90 %Finding the Kalman gain

91 Kg temp=ze ro s (ndim , n meas ) ;

92 f o r kk=1:2*ndim+1

93 Kg temp=Kg temp+wc( kk ) *( y sigma ( : , kk )−x ) *(ZZ ( : , kk )−ZZmean) ' ;

94 end

95 Kg=Kg temp* inv (Pz) ;

96 x=x+Kg*y ;

97 P=P−Kg*Pz*Kg' ;

98

99 data (k , : ) =[z (1 ) x (1 ) x (2 ) x (3 ) x (4 ) P(1 , 1 ) P(2 , 2 ) ] ;

100 end

101 %

102 f i g u r e ( 'Renderer ' , ' p a i n t e r s ' , 'Pos i t i on ' , [ 15 15 900 70 0 ] )

103 subplot ( 2 , 2 , 1 ) ;

104 p l o t ( time , data ( : , 1 ) , ' ro ' ) ; hold on ;

105 p l o t ( time , data ( : , 2 ) , 'b−' , ' l i n ew id th ' , 2 ) ;
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106 t i x=get ( gca , ' y t i ck ' ) ' ;

107 s e t ( gca , ' f o n t s i z e ' , 10)

108 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

109 a x i s ( [ 0 30,−1 1 . 5 ] )

110 legend ( 'Measured disp lacement ' , ' F i l t e r e d disp lacement ' , ' l o c a t i o n ' , ' nor theas t ' ) ;

111 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( 'Pos i t i on (m) ' ) ;

112 g r id on ; hold o f f ;

113 %

114 subplot ( 2 , 2 , 2 )

115 p l o t ( time , model ( : , 2 ) , ' ro ' ) ; g r i d on ; hold on ;

116 p l o t ( time , data ( : , 3 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

117 s e t ( gca , ' f o n t s i z e ' , 10)

118 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

119 a x i s ( [ 0 30,−1 1 . 5 ] )

120 legend ( 'True speed ' , ' F i l t e r e d speed ' , ' l o c a t i o n ' , ' nor theas t ' ) ;

121 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( 'Ve loc i ty (m/ s ) ' ) ;

122

123 subplot ( 2 , 2 , 3 )

124 p l o t ( time , data ( : , 4 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

125 %a x i s ( [ 0 3 0 ] , [ 0 1 0 ] )

126 s e t ( gca , ' f o n t s i z e ' , 10)

127 % s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ') )

128 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( 'Spring Constant (N/m) ' ) ;

129 g r id on ;

130

131 subplot ( 2 , 2 , 4 )

132 %p lo t (gamma. * ones (1 ,Nk) , ' r ' , ' l inewidth ' , 4 ) ; hold on ;

133 p l o t ( time , data ( : , 5 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

134 %a x i s ( [ 0 3 0 ] , [ 0 1 0 ] )

135 s e t ( gca , ' f o n t s i z e ' , 10)

136 % s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ') )

137 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( 'Damping C o e f f i c i e n t (Ns/m) ' ) ;

138 g r id on ;

139 % % %%%%%%%%%%

140 % %

141 % %

142

143 rmse 1 = s q r t (sum ( ( data ( : , 4 )−kspr ing . * ones ( numel ( data ( : , 3 ) ) , 1 ) ) . ˆ 2 ) . / numel ( data

( : , 1 ) ) )

144 rmse 2 = s q r t (sum ( ( data ( : , 5 )−bspr ing . * ones ( numel ( data ( : , 3 ) ) , 1 ) ) . ˆ 2 ) . / numel ( data

( : , 1 ) ) )

145 % rmse 2 = s q r t ( ( mean( data ( : , 3 )−model ( : , 2 ) ) . ˆ 2 ) . / numel ( data ( : , 1 ) ) )

146 % rmse 3 = s q r t ( ( mean( data ( : , 4 )'−kspr ing . * ones (1 ,Nk) ) . ˆ 2 ) . / numel ( data ( : , 1 ) ) )

147 % rmse 4 = s q r t ( ( mean( data ( : , 5 )'−bspr ing . * ones (1 ,Nk) ) . ˆ 2 ) . / numel ( data ( : , 1 ) ) )

A.9 Duffing oscillator function file

1 func t i on xdot=d u f f i n g ( t , x )

2

3 g l o b a l gamma omega beta AMP rho

4
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5 xdot (1 )=x (2) ;

6 xdot (2 )=−gamma*x (2)+omegaˆ2*x (1 )−beta *x (1)ˆ3+AMP* cos ( rho * t ) ;

7

8 xdot=xdot ' ;

9

10 end

A.10 Simulating the Duffing oscillator

1 c l c

2 c l o s e a l l

3 c l e a r a l l

4

5 %% Simulat ing Duf f ing O s c i l l a t o r

6 g l o b a l gamma omega beta F rho

7

8 gamma=0.3; %Damping C o e f f i c i e n t

9 omega=−1; %S t i f f n e s s C o e f f i c i e n t

10 beta =1; %S t i f f n e s s C o e f f i c i e n t

11 F=0.5; %Amplitude o f d r i v i n g f o r c e

12 rho =1.25; %Frequency o f d r i v i n g f o r c e

13

14 [ t x]=ode45(@duf f ing , 0 : 2 * pi / rho /100 : 4000 , [ 1 0 ] ) ;

15

16 dst=t (1 : 6000 ) ; %time

17 yn=x ( 1 : 6 00 0 , 1 ) ; %p o s i t i o n

18 yv=x (1 : 6 0 00 , 2 ) ; %v e l o c i t y

19

20 %For Poincare Sec t i on

21 f o r i =200:100:78000

22 n=(i −100) /100 ;

23 x1 (n)=x ( i , 1 ) ;

24 x2 (n)=x ( i , 2 ) ;

25 end

26

27 %% Plo t t i ng

28 subplot ( 2 , 2 , [ 1 2 ] )

29 p l o t ( dst , yn , '−' )

30 a x i s ( [ 0 300 ,−2 2 ] ) ;

31 t i x=get ( gca , ' y t i ck ' ) ' ;

32 s e t ( gca , ' f o n t s i z e ' , 10)

33 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

34 x l a b e l ( 'Time ( s ) ' )

35 y l a b e l ( '$\ theta ( rad ) $' , ' i n t e r p r e t e r ' , ' l a t e x ' )

36 legend ( 'True Pos i t i on ' , 'Pos i t i on with no i s e ' , 'Linear Kalman F i l t e r ' )

37

38 %Poincare Sec t i on

39 subplot ( 2 , 2 , 3 )

40 p l o t ( x1 ( : ) , x2 ( : ) , '*' )

41 a x i s ( [−1.5 1.3 ,−0.5 1 . 0 ] ) ;

42 t i x=get ( gca , ' y t i ck ' ) ' ;
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43 s e t ( gca , ' f o n t s i z e ' , 10)

44 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

45 x l a b e l ( '\ theta ( rad ) ' )

46 y l a b e l ( '$\dot {\ theta }$ ( rad/ s ) ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

47

48 %Phase space

49 subplot ( 2 , 2 , 4 )

50 p l o t (yn , yv , 'b' )

51 a x i s ( [−1.8 1.8 ,−1.2 1 . 2 ] ) ;

52 t i x=get ( gca , ' y t i ck ' ) ' ;

53 s e t ( gca , ' f o n t s i z e ' , 10)

54 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

55 x l a b e l ( '\ theta ( rad ) ' )

56 y l a b e l ( '$\dot {\ theta }$ ( rad/ s ) ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

A.11 Simulating the application of EKF to Duff-

ing oscillator

1 c l c ; c l e a r a l l ;

2

3 %% Simulat ing Duf f ing O s c i l l a t o r

4 g l o b a l gamma omega beta AMP rho

5

6 gamma=0.3; %Damping C o e f f i c i e n t

7 omega=−1; %S t i f f n e s s C o e f f i c i e n t k1

8 beta =1; %S t i f f n e s s C o e f f i c i e n t k2

9 rho =1.25; %Frequency o f d r i v i n g f o r c e

10 AMP=0.5; %Amplitude o f d r i v i n g f o r c e

11 T = 100 ; %Fina l time value

12 dt = 2* pi / rho/T; % time step

13 time = 0 : dt :T; %Ful l time s c a l e

14 [ t , t rueTra j e c to ry ]=ode45(@duf f ing , time , [ 0 1 ] ) ;

15 obsNoise = 0 . 5 ˆ 2 ; %Def ine obse rvat i on no i s e l e v e l

16 obs pos = t rueTra j e c to ry ( : , 1 ) ; %F i r s t s t a t e i s obse rvab l e

17 n obs pos = obs pos+obsNoise * randn ( s i z e ( obs pos ) ) ; %Add no i s e

18 yx=trueTra j e c to ry ( : , 1 ) ; %True Pos i t i on vec to r

19 yv=trueTra j e c to ry ( : , 2 ) ; %True Ve loc i ty vec to r

20

21 %% Applying Extended Kalman F i l t e r

22 xbar = [ 0 ; 1 ] ; %I n i t i a l i z i n g the EKF

23 xbarEstimate=xbar ;

24 P = diag ( [ 1 , 1 ] ) ; %I n i t i a l covar iance

25 varEstimate = diag (P) ; %I n i t i a l s t a t e var i ance

26 H = [ 1 0 ] ; %Observation func t i on

27 Q variance =2.5ˆ2; %proce s s no i s e var iance , assume a p i e c e w i s e constant white

no i s e

28 Q=p i e c e w i s e w h i t e n o i s e (2 , Q variance , dt ) ;

29 D = obsNoise ; %Measurement Noise

30 var c = 5ˆ2 ; %c o n t r o l input no i s e

31
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32 % Def in ing the non l i n ea r func t i on

33 f={@(x1 , x2 , t ) ( x1+x2* t ) ;

34 @(x1 , x2 , t ) ( x2+(−gamma*x2+omegaˆ2*x1−beta *x1ˆ3+AMP* cos ( rho * t ) ) * t )

35 } ;

36

37 f o r i = 2 : l ength ( n obs pos )

38 %Pred i c t i on step

39 f o r kk=1:numel ( xbar )

40 xbar (1 )=f {1}( xbar (1 ) , xbar (2 ) , dt ) ;

41 xbar (2 )=f {2}( xbar (1 ) , xbar (2 ) , dt ) ;

42 end

43 Aa = [ 0 1;−omegaˆ2−3*beta *xbar (1 ) ˆ2 −gamma ] ;

44 F = eye ( l ength ( xbar ) )+Aa*dt+(Aaˆ2*dt ˆ2) / f a c t o r i a l ( 2 ) +(Aaˆ3*dt ˆ3) / f a c t o r i a l ( 3 ) ; %

State t r a n s i t i o n matrix

45 P = diag ( [P(1 , 1 ) ,P(2 , 2 ) ] ) ;

46 M = [ 0 0 ;0 var c ] ;

47 V = [ 0 0 ;0 −AMP* s i n ( rho *dt ) ] ;

48 P = F*P*F'+V*M*V' ;

49 % Observation update

50 K=(P*H') /(H*P*H'+D) ;

51 y=n obs pos ( i ) − H*xbar ; %Res idua l

52 xbar = xbar + K*( y ) ;

53 P = P−K*H*P;

54 xbarEstimate ( : , i ) = xbar ;

55 varEstimate ( : , i ) = diag (P) ;

56 r e s i d u a l ( : , i )=y ;

57 end

58

59 %% Pos i t i on and v e l o c i t y p l o t

60 subplot ( 2 , 1 , 1 ) ;

61 %p lo t ( time , yx , 'k' , ' l inewidth ' , 2 ) ; % P lo t t i ng the t rue t r a j e c t o r y

62 p l o t ( time , n obs pos , 'o' , 'marke r f aceco l o r ' , 'bl ' , 'markers i ze ' , 1 ) ; hold on ;

63 lower x1 = xbarEstimate ( 1 , : ) +2* s q r t ( varEstimate ( 1 , : ) ) ;

64 upper x1 = xbarEstimate ( 1 , : )−2* s q r t ( varEstimate ( 1 , : ) ) ;

65 c i p l o t ( lower x1 , upper x1 , time , 'b' , 0 . 0 5 )

66 p l o t ( time , xbarEstimate ( 1 , : ) , ' r ' , ' l i n ew id th ' , 2 ) ;

67 %s e t ( gca , ' f o n t s i z e ' , 10)

68 legend ({ 'Noisy angular p o s i t i o n ' , 'Confidence I n t e r v a l ' , 'EKF Estimate '} , '

FontSize ' , 7 )

69 x l a b e l ( 'Time ( s ) ' )

70 h l = y l a b e l ( '$\ theta ˜( rad ) $' ) ;

71 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

72 dim = [ . 1 4 .82 . 1 . 1 ] ;

73 s t r = 'a ) ' ;

74 annotat ion ( ' textbox ' , dim , ' St r ing ' , s t r , 'FitBoxToText' , 'on' , 'LineSty l e ' , 'none ' )

75

76 g r id on ;

77 %

78 subplot ( 2 , 1 , 2 )

79 p l o t ( time , yv , '−−' , ' l i n ew id th ' , 1 ) ; % P lo t t i ng the t rue t r a j e c t o r y

80 %p lo t ( time , n obs ve l , 'o ' , ' marker faceco lo r ' , ' bl ' , ' markers ize ' , 1 )

81 hold on ;

82 lower x2 = xbarEstimate ( 2 , : ) +2* s q r t ( varEstimate ( 2 , : ) ) ;

83 upper x2 = xbarEstimate ( 2 , : )−2* s q r t ( varEstimate ( 2 , : ) ) ;

84 c i p l o t ( lower x2 , upper x2 , time , 'b' , 0 . 0 5 )
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85 p l o t ( time , xbarEstimate ( 2 , : ) , 'bl ' , ' l i n ew id th ' , 2 ) ;

86 legend ({ 'True angular v e l o c i t y ' , 'Confidence i n t e r v a l ' , 'EKF Estimate '} , 'FontSize '

, 7 )

87 x l a b e l ( 'Time ( s ) ' )

88 h l = y l a b e l ( '$\dot {\ theta }˜( rad/ s ) $' ) ;

89 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

90 g r id on ;

91

92 % %% RMSE p l o t s

93 f o r r e s = 1 : numel ( xbarEstimate ( 1 , : ) )

94 rmse x1 ( r e s ) = s q r t (sum( r e s i d u a l . ˆ 2 ) / r e s ) ;

95 end

96 f i g u r e ;

97 subplot ( 1 , 2 , 1 )

98 p l o t ( rmse x1 , 'bl ' , ' l i n ew id th ' , 2 )

99 x l a b e l ( 'Number o f i t e r a t i o n s ' ) ; y l a b e l ( 'RMSE' )

100

101 f o r r e s2 = 1 : numel ( xbarEstimate ( 2 , : ) )

102 rmse x2 ( r e s2 ) = s q r t (sum ( ( xbarEstimate ( 2 , : )−yv ') / r e s2 ) ) ;

103 end

104 subplot ( 1 , 2 , 2 )

105 p l o t ( rmse x2 , 'bl ' , ' l i n ew id th ' , 2 )

106 x l a b e l ( 'Number o f i t e r a t i o n s ' ) ; y l a b e l ( 'RMSE' )

107 %

108 rmse x1 = s q r t (sum ( ( xbarEstimate ( 1 , : )−yx ') . ˆ 2 ) /numel ( time ) )

109 rmse x2 = s q r t (sum ( ( xbarEstimate ( 2 , : )−yv ') . ˆ 2 ) /numel ( time ) )

110 % %

A.12 Parameter estimation in Duffing oscillator

using Extended Kalman Filter

1 c l c ; c l e a r a l l ;

2

3 %% Simulat ing Duf f ing O s c i l l a t o r

4 g l o b a l gamma omega beta AMP rho

5

6 gamma=0.3; %Damping C o e f f i c i e n t

7 omega=−1; %S t i f f n e s s C o e f f i c i e n t k1

8 beta =1; %S t i f f n e s s C o e f f i c i e n t k2

9 rho =1.25; %Frequency o f d r i v i n g f o r c e

10 AMP=0.5; %Amplitude o f d r i v i n g f o r c e

11 T = 100 ; %Fina l time value

12 dt = 2* pi / rho/T; % time step

13 time = 0 : dt :T; %Ful l time s c a l e

14 [ t , t rueTra j e c to ry ]=ode45(@duf f ing , time , [ 0 1 ] ) ;

15 obsNoise = 0 . 5 ˆ 2 ; %Def ine obse rvat i on no i s e l e v e l

16 obs pos = t rueTra j e c to ry ( : , 1 ) ; %F i r s t s t a t e i s obse rvab l e

17 n obs pos = obs pos+obsNoise * randn ( s i z e ( obs pos ) ) ; %Add no i s e

18 o b s v e l = t rueTra j e c to ry ( : , 2 ) ; %Second s t a t e i s obse rvab l e

19 n o b s v e l = o b s v e l+obsNoise * randn ( s i z e ( o b s v e l ) ) ; %Add no i s e
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20 o b s e p s i l o n=beta . * ones ( numel ( o b s v e l ) , 1 ) ;

21 yx=trueTra j e c to ry ( : , 1 ) ; %Pos i t i on vec to r

22 yv=trueTra j e c to ry ( : , 2 ) ; %Ve loc i ty vec to r

23 %p lo t ( yx , yv )

24 %p lo t ( n obs , yv )

25

26 t i c

27 %% Applying Extended Kalman F i l t e r

28 xbar = [ 0 ; 1 ; 0 ] ; %I n i t i a l i z i n g the EKF

29 xbarEstimate=xbar ;

30 P = diag ( [ 0 . 1 , 0 . 1 , 0 . 1 ] ) ; %I n i t i a l covar iance

31 varEstimate = diag (P) ; %I n i t i a l s t a t e var i ance

32 H = [ 1 0 0 ] ; %Observation func t i on

33 Q variance =2.5ˆ2; %proce s s no i s e var iance , assume a p i e c e w i s e constant white

no i s e

34 Q=p i e c e w i s e w h i t e n o i s e (3 , Q variance , dt ) ;

35 D = obsNoise ; %Measurement Noise

36

37 f o r i = 2 : l ength ( n obs pos )

38 % Def in ing the non l i n ea r p roce s s func t i on

39 f={@(x1 , x2 , x3 , t ) ( x1+x2* t ) ;

40 @(x1 , x2 , x3 , t ) ( x2+(−gamma*x2+omegaˆ2*x1−x3*x1ˆ3+AMP* cos ( rho * t ) ) * t )

41 @(x1 , x2 , x3 , t ) ( x3 ) ;

42 } ;

43 %Pred i c t i on step

44 xbar (1 )=f {1}( xbar (1 ) , xbar (2 ) , xbar (3 ) , dt ) ;

45 xbar (2 )=f {2}( xbar (1 ) , xbar (2 ) , xbar (3 ) , dt ) ;

46 xbar (3 )=f {3}( xbar (1 ) , xbar (2 ) , xbar (3 ) , dt ) ;

47

48 Aa = [ 0 1 0 ; omegaˆ2−3*xbar (3 ) *xbar (1 ) ˆ2 −gamma −xbar (1 ) ˆ3 ;0 0 0 ] ;

49 F = eye ( l ength ( xbar ) )+Aa*dt+(Aaˆ2*dt ˆ2) / f a c t o r i a l ( 2 ) +(Aaˆ3*dt ˆ3) / f a c t o r i a l ( 3 ) ; %

State t r a n s i t i o n matrix

50 P = F*P*F'+Q;

51 % Observation update

52 K=(P*H') /(H*P*H'+D) ;

53 xbar = xbar + K*( n obs pos ( i ) − H*xbar ) ;

54 P = P−K*H*P;

55 xbarEstimate ( : , i ) = xbar ;

56 varEstimate ( : , i ) = diag (P) ;

57 KalmanGain ( : , i )=K;

58 end

59

60 toc

61

62 %% Pos i t i on and v e l o c i t y p l o t

63 f i g u r e ( 'Renderer ' , ' p a i n t e r s ' , 'Pos i t i on ' , [ 15 15 900 70 0 ] )

64 subplot ( 2 , 2 , 1 ) ;

65 p l o t ( time , yx , 'k' , ' l i n ew id th ' , 2 ) ; % P lo t t i ng the t rue t r a j e c t o r y

66 p l o t ( time , n obs pos , 'o' , 'marke r f aceco l o r ' , 'bl ' , 'markers i ze ' , 1 )

67 hold on ;

68 p l o t ( time , xbarEstimate ( 1 , : ) , ' r ' , ' l i n ew id th ' , 2 ) ;

69 t i x=get ( gca , ' y t i ck ' ) ' ;

70 s e t ( gca , ' f o n t s i z e ' , 10)

71 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

72 legend ({ 'Noisy ang l e s ' , 'EKF Estimate '} , 'FontSize ' , 7 )
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73 x l a b e l ( 'Time ( s ) ' )

74 h l = y l a b e l ( '$\ theta ˜( rad ) $' ) ;

75 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

76 g r id on ;

77 %

78 subplot ( 2 , 2 , 2 )

79 p l o t ( time , yv , 'k' , ' l i n ew id th ' , 2 ) ; % P lo t t i ng the t rue t r a j e c t o r y

80 hold on ;

81 p l o t ( time , xbarEstimate ( 2 , : ) , 'bl ' , ' l i n ew id th ' , 2 ) ;

82 t i x=get ( gca , ' y t i ck ' ) ' ;

83 s e t ( gca , ' f o n t s i z e ' , 10)

84 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

85 legend ({ 'True angular v e l o c i t y ' , 'EKF Estimate '} , 'FontSize ' , 7 )

86 x l a b e l ( 'Time ( s ) ' )

87 h l = y l a b e l ( '$\dot {\ theta }˜( rad/ s ) $' ) ;

88 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

89 g r id on ;

90 %

91 subplot ( 2 , 2 , [ 3 4 ] )

92 %p lo t ( time , e p s i l o n . * ones (1 , l ength ( time ) ) , ' r ' , ' l inewidth ' , 2 ) ; hold on ;

93 p l o t ( time , xbarEstimate ( 3 , : ) , 'b' , ' l i n ew id th ' , 2 ) ;

94 %legend ({ 'True value ' 'EKF Estimate '} , ' FontSize ' , 7 )

95 x l a b e l ( 'Time ( s ) ' )

96 h l = y l a b e l ( '$\ beta $' ) ;

97 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

98 g r id on ;

99 t i x=get ( gca , ' y t i ck ' ) ' ;

100 s e t ( gca , ' f o n t s i z e ' , 10)

101 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.1 f ' ) )

102

103 f i g u r e ; subplot ( 3 , 1 , 1 )

104 p l o t ( time , KalmanGain ( 1 , : ) , 'b' , ' l i n ew id th ' , 2 ) ;

105 x l a b e l ( 'Time ( s ) ' )

106 h l = y l a b e l ( 'Gain in $\ theta $' ) ;

107 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

108 g r id on ;

109

110 subplot ( 3 , 1 , 2 )

111 p l o t ( time , KalmanGain ( 2 , : ) , 'b' , ' l i n ew id th ' , 2 ) ;

112 x l a b e l ( 'Time ( s ) ' )

113 h l = y l a b e l ( 'Gain in $\dot {\ theta }$ ' ) ;

114 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

115 g r id on ;

116

117 subplot ( 3 , 1 , 3 )

118 p l o t ( time , KalmanGain ( 3 , : ) , 'b' , ' l i n ew id th ' , 2 ) ;

119 x l a b e l ( 'Time ( s ) ' )

120 h l = y l a b e l ( 'Gain in $\ beta $' ) ;

121 s e t ( hl , ' I n t e r p r e t e r ' , ' l a t e x ' ) ;

122 g r id on ;

123

124 % %%%%%%%

125 % rmse 1 = s q r t ( ( sum( xbarEstimate ( 1 , : ) )−sum( yx ) ') .ˆ2/ numel ( yx ) )

126 % rmse 2 = s q r t ( ( sum( xbarEstimate ( 2 , : ) )−sum( yv ) ') .ˆ2/ numel ( yx ) )
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127 rmse 3 = s q r t (sum ( ( xbarEstimate ( 3 , : )−beta . * ones (1 , l ength ( time ) ) ) . ˆ 2 ) . / numel (

xbarEstimate ( 2 , : ) ) )

128 %

A.13 Parameter estimation in Duffing oscillator

using Unscented Kalman Filter

1 c l c ; c l e a r a l l ;

2 g l o b a l gamma omega e p s i l o n AMP OMEG

3

4 gamma=0.3; %Damping C o e f f i c i e n t

5 omega=−1; %S t i f f n e s s C o e f f i c i e n t k1

6 e p s i l o n =1; %S t i f f n e s s C o e f f i c i e n t k2

7 OMEG=1.25; %Frequency o f d r i v i n g f o r c e

8 AMP=0.5; %Amplitude o f d r i v i n g f o r c e

9

10 %some parameters

11 Nk=100; %Number o f i t e r a t i o n s

12 ndim=3;

13 n meas=1; %we are only measuring the p o s i t i o n with a disp lacement s enso r

14 % % omega=s q r t ( kspr ing /mass ) ;

15 % % gamma=bspr ing /mass ;

16

17 s e n s o r x v a r i a n c e =0.5ˆ2;

18 dt=2*pi /OMEG/Nk ; %time step

19

20 Q variance =5.2 ; %proce s s no i s e var iance , assume a p i e c e w i s e constant white no i s e

21 Q=p i e c e w i s e w h i t e n o i s e (3 , Q variance , dt ) ;

22 Q=kron (Q, eye (1 ) ) ;

23

24 R=diag ( [ s e n s o r x v a r i a n c e ] ) ; % Covariance f o r the measurement matrix

25

26 %i n i t i a l s t a t e e s t imate

27 %a c l o s e to the i n i t i a l measurement determines the i n i t i a l s t a t e

28 x i n i t i a l a c t u a l =[0 ; 1 ; 10 ; 10 ; 2 0 ] ;

29 x = [ 0 ; 1 ; 1 0 ] ; %t h i s i s how the Kalman f i l t e r i s i n i t i a l i z e d

30 P max=10;

31 P=P max* eye (3 ) ;

32

33 %choos ing the sigma points , the covar iance matrix i s P

34 alpha =0.1 ; beta =2; kappa=3−l ength ( x ) ;

35 data=ze ro s (Nk, 1 0 ) ; %p la c eho ld e r f o r a l l the v a r i a b l e s

36 %d e f i n e the non l i n ea r p roce s s func t i on c a l l e d f

37 f={@(x1 , x2 , x3 , t ) ( x1+x2* t ) ;

38 @(x1 , x2 , x3 , t ) ( x2+(−gamma*x2+omegaˆ2*x1−x3*x1ˆ3+AMP* cos (OMEG) ) * t )

39 @(x1 , x2 , x3 , t ) ( x3 ) %e p s i l o n

40 } ;

41 y sigma=ze ro s (ndim ,2* ndim+1) ;

42

43 time =0: dt :Nk ;
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44

45 %we f i r s t s imulate the behavior o f the harmonic o s c i l l a t o r y i e l d i n g t rue

46 %va lue s

47 [ tt , model ]=ode45(@duf f ing , time , x i n i t i a l a c t u a l ( 1 : 2 ) ) ;

48

49 t i c

50 f o r k=1:numel ( model ( : , 1 ) )

51

52 %sigma po in t s

53 [ chi , s c a l e f a c t o r ,wm, wc]= vandermeer sigma2 (x ,P, alpha , beta , kappa ) ;

54 %p r e d i c t s tep

55

56 f o r kk=1:2*ndim+1

57 y sigma (1 , kk )=f {1}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , dt ) ;

58 y sigma (2 , kk )=f {2}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , dt ) ;

59 y sigma (3 , kk )=f {3}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , dt ) ;

60 end

61

62 %here we perform the unscented trans form

63 x=sum( repmat (wm, ndim , 1 ) . * y sigma , 2 ) ;

64 P temp=ze ro s (ndim , ndim ) ;

65 f o r kk=1:2*ndim+1

66 P temp=P temp+wc( kk ) *( y sigma ( : , kk )−x ) *( y sigma ( : , kk )−x ) ' ;

67 end

68 P=P temp+Q;

69

70 %d e f i n e the non l i n ea r measurement func t i on denoted h

71 h={@(y1 , y2 , y3 ) ( y1 ) ;

72 } ;

73

74 %Map the pred i c t ed p r i o r to the measurement space

75 %the mapped va lue s are s to r ed in the v a r i a b l e ZZ

76 ZZ=ze ro s ( n meas , 2* ndim+1) ;

77 f o r kk=1:2*ndim+1

78 ZZ(1 , kk )=h{1}( y sigma (1 , kk ) , y sigma (2 , kk ) , y sigma (3 , kk ) ) ;

79 end

80

81 %Applying the unscented trans form in the measurement space

82 ZZmean=sum( repmat (wm, n meas , 1 ) . *ZZ , 2 ) ; %t h i s i s our mu z

83 Pz temp=ze ro s ( n meas , n meas ) ;

84 f o r kk=1:2*ndim+1

85 Pz temp=Pz temp+wc( kk ) *(ZZ ( : , kk )−ZZmean) *(ZZ ( : , kk )−ZZmean) ' ;

86 end

87 Pz=Pz temp+R;

88

89 %measurement vec to r z must come here

90 z=model (k , 1 )+s q r t ( s e n s o r x v a r i a n c e ) * randn ; %t h i s i s the p o s i t i o n measurement

91 y=z−ZZmean ; %r e s i d u a l

92

93 %Finding the Kalman gain

94 Kg temp=ze ro s (ndim , n meas ) ;

95 f o r kk=1:2*ndim+1

96 Kg temp=Kg temp+wc( kk ) *( y sigma ( : , kk )−x ) *(ZZ ( : , kk )−ZZmean) ' ;

97 end

98 Kg=Kg temp* inv (Pz) ;
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99 x=x+Kg*y ;

100 P=P−Kg*Pz*Kg' ;

101

102 data (k , : ) =[z (1 ) x (1 ) x (2 ) x (3 ) P(1 , 1 ) P(2 , 2 ) Kg(1) Kg(2) Kg(3) P(3 , 3 ) ] ;

103 end

104

105 toc

106

107 % %

108 subplot ( 2 , 2 , 1 )

109 p l o t ( time , data ( : , 1 ) , ' ro ' ) ; hold on ;

110 p l o t ( time , data ( : , 2 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

111 %s e t ( gca , ' f o n t s i z e ' , 10)

112 legend ({ 'Raw data ' , 'UKF Estimate '} , 'FontSize ' , 7 ) ;

113 %a x i s ( [ 0 100 −5 5 ] )

114 x l a b e l ( 'Time ( s ) ' )

115 y l a b e l ( '$\ theta $ ( rad ) ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

116 g r id on ; hold o f f ;

117 %

118 subplot ( 2 , 2 , 2 )

119 p l o t ( time , model ( : , 2 ) , ' ro ' ) ; hold on ;

120 p l o t ( time , data ( : , 3 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

121 %s e t ( gca , ' f o n t s i z e ' , 10)

122 legend ({ 'Raw data ' , 'UKF Estimate '} , 'FontSize ' , 7 )

123 %a x i s ( [ 0 100 −5 5 ] )

124 x l a b e l ( 'Time ( s ) ' ) ;

125 y l a b e l ( '$\dot {\ theta }$ ( rad/ s ) ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

126 g r id on ;

127

128 subplot ( 2 , 2 , [ 3 4 ] )

129 p l o t ( time , data ( : , 4 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

130 x l a b e l ( 'Time ( s ) ' ) ;

131 y l a b e l ( '$\ beta $' , ' i n t e r p r e t e r ' , ' l a t e x ' )

132 a x i s ( [ 0 100 −10 1 0 ] )

133 g r id on ;

134

135 %% Kalman Gain p l o t s

136 f i g u r e ; subplot ( 3 , 1 , 1 )

137 p l o t ( time ( 1 : 2 0 0 ) , data ( 1 : 2 0 0 , 7 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

138 y l a b e l ( 'Gain $\ theta $' , ' i n t e r p r e t e r ' , ' l a t e x ' )

139 x l a b e l ( 'Time ( s ) ' ) ;

140 g r id on ;

141

142 subplot ( 3 , 1 , 2 )

143 p l o t ( time ( 1 : 2 0 0 ) , data ( 1 : 2 0 0 , 8 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

144 x l a b e l ( 'Time ( s ) ' ) ;

145 y l a b e l ( 'Gain $\dot {\ theta }$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

146 g r id on ;

147

148 subplot ( 3 , 1 , 3 )

149 p l o t ( time ( 1 : 2 0 0 ) , data ( 1 : 2 0 0 , 7 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

150 x l a b e l ( 'Time ( s ) ' ) ;

151 y l a b e l ( 'Gain $\ beta $' , ' i n t e r p r e t e r ' , ' l a t e x ' )

152 g r id on ;

153



Appendix A MATLAB codes 148

154 %% Error covar iance

155 f i g u r e ; subplot ( 3 , 1 , 1 )

156 p l o t ( time ( 1 : 2 0 0 ) , data ( 1 : 2 0 0 , 5 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

157 x l a b e l ( 'Time ( s ) ' ) ;

158 y l a b e l ( '$P { (1 , 1 ) }$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

159 g r id on ;

160

161 subplot ( 3 , 1 , 2 )

162 p l o t ( time ( 1 : 2 0 0 ) , data ( 1 : 2 0 0 , 6 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

163 x l a b e l ( 'Time ( s ) ' ) ;

164 y l a b e l ( '$P { (2 , 2 ) }$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

165 g r id on ;

166

167 subplot ( 3 , 1 , 3 )

168 p l o t ( time ( 1 : 2 0 0 ) , data ( 1 : 2 00 , 10 ) , 'b−' , ' l i n ew id th ' , 2 ) ; hold on ;

169 x l a b e l ( 'Time ( s ) ' ) ;

170 y l a b e l ( '$P { (3 , 3 ) }$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

171 g r id on ;

172

173 rmse 1=s q r t (sum ( ( data ( : , 4 )−e p s i l o n ) . ˆ 2 ) . / numel ( data ( : , 1 ) ) )

174

175

176 % % % %%%%%%%%%%

177 % % %

178 % % %

A.14 Wilberforce pendulum function file

1 func t i on xdot=w i l b e r f o r c e f u n c ( t , x )

2

3 g l o b a l omega mass i n e r t i a e p s i l o n

4

5 xdot (1 )=x (2) ;

6 xdot (2 )=(−omegaˆ2*x (1) −0.5/mass* e p s i l o n *x (3) ) * t ;

7 xdot (3 )=x (4) ;

8 xdot (4 )=(−omegaˆ2*x (3) −0.5/ i n e r t i a * e p s i l o n *x (1 ) ) * t ;

9

10 xdot=xdot ' ;

11

12 end

A.15 Simulating the application of Kalman Fil-

ter to the Wilberforce pendulum

1 c l c ; c l e a r a l l ; c l o s e a l l ;

2
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3 % Assign model parameters

4 g l o b a l omega e p s i l o n mass i n e r t i a

5 omega = 2 . 3 1 4 ; % rad . s−1

6 e p s i l o n = 9.27 e−3; % N

7 mass = 0 . 4 9 0 5 ; % kg

8 i n e r t i a = 1 .39 e−4; % kg .m2

9 theta=2*pi ; % I n i t i a l ang le

10 z=0; % Sta r t i ng p o s i t i o n

11

12 % Simulate system

13 x i n i t = [ 0 ; 0 ; 2 * pi ; 0 ] ; % i n i t i a l va lue

14 h = 0 . 0 1 ; % time step

15 T = 40 ; %Fina l time value

16 time = 0 : h :T; %Ful l time s c a l e

17 [ t , t rueTra j e c to ry ]=ode45(@ w i l b e r f o r c e f u n c , time , x i n i t ) ;

18 obsNo i se z = 0 . 0 1 ; %Noise in p o s i t i o n measurement

19 obsNoise ang = 0 . 5 ; %Noise in ang le measurement

20 obs z = trueTra j e c to ry ( : , 1 ) ; %F i r s t s t a t e i s obse rvab l e

21 obs z = obs z+obsNo i se z * randn ( s i z e ( obs z ) ) ; %Add no i s e

22 obs ang = trueTra j e c to ry ( : , 3 ) ;

23 obs ang = obs ang+obsNoise ang * randn ( s i z e ( obs ang ) ) ; %Add no i s e

24 %plotyy ( t , obs z , t , obs ang )

25

26 %% Linear Kalman F i l t e r Parameters

27 xbar = [0 ; 0 ; 2* pi ; 0 ] ;

28 xbarEstimate = xbar ; %I n i t i a l s t a t e

29 P = 1* eye ( l ength ( xbar ) ) ; %I n i t i a l covar iance

30 varEstimate = diag (P) ; %I n i t i a l s t a t e var i ance

31 A = [ 0 1 0 0;−omegaˆ2 1 −0.5/mass* e p s i l o n 0 ;0 0 0 1 ; −0.5/mass* e p s i l o n 0 −omegaˆ2

1 ] ;

32 F = eye ( l ength ( xbar ) )+h*A; %State t r a n s i t i o n matrix

33 H = [ 1 0 0 0 ;0 0 1 0 ] ; %Observation func t i on

34 v a r i a n c e p r o c e s s x =1.5ˆ2; %proce s s var i ance in p o s i t i o n z

35 v a r i a n c e p r o c e s s y =80ˆ2; %proce s s var i ance in ang le theta

36 Q1=p i e c e w i s e w h i t e n o i s e (2 , v a r i a n c e p r o c e s s x , h ) ;

37 Q2=p i e c e w i s e w h i t e n o i s e (2 , v a r i a n c e p r o c e s s y , h ) ;

38 Q=ze ro s (4 , 4 ) ;

39 Q( 1 : 2 , 1 : 2 )=Q1 ;

40 Q( 3 : 4 , 3 : 4 )=Q2 ;

41

42 D = [ obsNo i se z 0 ;0 obsNoise ang ] ;

43

44 % Ob = obsv (A,H) ;

45 % % I f rank = ndim o f s t a t e vec to r the system i s obse rvab l e

46 % rank (Ob)

47 %

48 f o r i = 2 : l ength ( time )

49 % Pred i c t i on step

50 xbar = F*xbar ;

51 P = F*P*F' + Q;

52 % Observation update

53 K = (P*H') /(H*P*H'+D) ; % aka K = . . .

54 P*H'* inv (H*P*H'+D) ;

55 xbar = xbar + K* ( [ obs z ( i ) ; obs ang ( i ) ] − H*xbar ) ;

56 P = P − K*H*P;
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57 xbarEstimate ( : , i ) = xbar ;

58 varEstimate ( : , i ) = diag (P) ;

59

60 end

61 f i g u r e ( 'Renderer ' , ' p a i n t e r s ' , 'Pos i t i on ' , [ 15 15 900 70 0 ] )

62 subplot ( 2 , 1 , 1 ) ;

63 %p lo t ( time , t rueTra j e c to ry ( : , 1 ) , 'k' , ' l inewidth ' , 3 ) ; hold on ;

64 p l o t ( time , obs z , 'bo' , 'marke r f aceco l o r ' , 'b' , 'markers i ze ' , 2 ) ; hold on ;

65 p l o t ( time , xbarEstimate ( 1 , : ) , ' r ' , ' l i n ew id th ' , 2 ) ;

66 upper z = xbarEstimate ( 1 , : ) +2* s q r t ( varEstimate ( 1 , : ) ) ;

67 l ower z = xbarEstimate ( 1 , : )−2* s q r t ( varEstimate ( 1 , : ) ) ;

68 c i p l o t ( lower z , upper z , time , 'b' , 0 . 0 8 )

69 s e t ( gca , ' f o n t s i z e ' , 10)

70 a x i s ( [ 0 T −0.1 0 . 1 ] )

71 t i x=get ( gca , ' y t i ck ' ) ' ;

72 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.2 f ' ) )

73 dim = [ . 1 4 .82 . 1 . 1 ] ;

74 s t r = 'a ) ' ;

75 annotat ion ( ' textbox ' , dim , ' St r ing ' , s t r , 'FitBoxToText' , 'on' , 'LineSty l e ' , 'none ' )

76 legend 'V e r t i c a l Po s i t i on ' 'KF Estimate '

77 x l a b e l ( 'Time ( s ) ' )

78 y l a b e l ( 'z (m) ' )

79 %

80 subplot ( 2 , 1 , 2 )

81 %p lo t ( time , t rueTra j e c to ry ( : , 3 ) , 'k' , ' l inewidth ' , 2 ) ; hold on ;

82 p l o t ( time , obs ang , 'bo' , 'marke r f aceco l o r ' , 'b' , 'markers i ze ' , 2 ) ; hold on ;

83 p l o t ( time , xbarEstimate ( 3 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

84 % upper theta = xbarEstimate ( 3 , : ) +2* s q r t ( varEstimate ( 3 , : ) ) ;

85 % lower the ta = xbarEstimate ( 3 , : )−2* s q r t ( varEstimate ( 3 , : ) ) ;

86 % c i p l o t ( lower theta , upper theta , time , 'b ' , 0 . 1 )

87 t i x=get ( gca , ' y t i ck ' ) ' ;

88 a x i s ( [ 0 T −6 6 ] )

89 s e t ( gca , ' y t i c k l a b e l ' , num2str ( t ix , '%.2 f ' ) )

90 legend 'Angular Pos i t i on ' 'KF Estimate '

91 dim = [ . 1 4 .35 . 1 . 1 ] ;

92 s t r = 'b) ' ;

93 annotat ion ( ' textbox ' , dim , ' St r ing ' , s t r , 'FitBoxToText' , 'on' , 'LineSty l e ' , 'none ' ) ;

94 x l a b e l ( 'Time ( s ) ' )

95 y l a b e l ( '\ theta ( rad ) ' )

A.16 Parameter estimation in Wilberforce pen-

dulum using Extended Kalman Filter

1 c l c ; c l e a r a l l ; c l o s e a l l ;

2

3 % Assign model parameters

4 g l o b a l omega e p s i l o n mass i n e r t i a

5 omega = 2 . 3 1 4 ; % rad . s−1

6 e p s i l o n = 9.27 e−3; % N

7 mass = 0 . 4 9 0 5 ; % kg
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8 i n e r t i a = 1 .39 e−4; % kg .m2

9 theta=2*pi ; % I n i t i a l ang le

10 z=0; % Sta r t i ng p o s i t i o n

11

12 % Simulate system

13 x i n i t = [ 0 ; 0 ; 2 * pi ; 0 ] ; % i n i t i a l va lue

14 h = 0 . 0 2 ; % time step

15 T = 100 ; %Fina l time value

16 time = 0 : h :T; %Ful l time s c a l e

17 [ t , t rueTra j e c to ry ]=ode45(@ w i l b e r f o r c e f u n c , time , x i n i t ) ;

18 obsNo i se z = 0 . 0 1 ; %Noise in p o s i t i o n measurement

19 obsNoise ang = 0 . 1 ; %Noise in ang le measurement

20 obs z = trueTra j e c to ry ( : , 1 ) ; %F i r s t s t a t e i s obse rvab l e

21 obs z = obs z+obsNo i se z * randn ( s i z e ( obs z ) ) ; %Add no i s e

22 obs ang = trueTra j e c to ry ( : , 3 ) ;

23 obs ang = obs ang+obsNoise ang * randn ( s i z e ( obs ang ) ) ; %Add no i s e

24 %plotyy ( t , obs z , t , obs ang )

25

26 %% Extended Kalman F i l t e r Parameters

27 xbar = [0 ; 1 ; 2* pi ; 1 ; 1 ; 1 ; 1 ] ;

28 xbarEstimate = xbar ; %I n i t i a l s t a t e

29 P = 0.1* eye ( l ength ( xbar ) ) ; %I n i t i a l covar iance

30 varEstimate = diag (P) ; %I n i t i a l s t a t e var i ance

31 H = [ 1 0 0 0 0 0 0 ;0 0 1 0 0 0 0 ] ; %Observation func t i on

32 Q=ze ro s (7 , 7 ) ;

33 v a r i a n c e p r o c e s s =2.5ˆ2; %proce s s var i ance in p o s i t i o n z

34 % v a r i a n c e p r o c e s s t h e t a =0.2ˆ2; %proce s s var i ance in p o s i t i o n z

35 %Q=p i e c e w i s e w h i t e n o i s e (7 , va r i anc e p ro c e s s , h ) ;

36 %Q2=p i e c e w i s e w h i t e n o i s e (2 , v a r i a n c e p r o c e s s t h e t a , h) ;

37 % Q( 1 : 2 , 1 : 2 )=Q1 ;

38 % Q( 3 : 4 , 3 : 4 )=Q2 ;

39 s =0.01;

40 G=@(t ) [ t ˆ2/2 ; t ; t ˆ2/2 ; t ; 0 . 0 1 ; 0 . 0 1 ; 0 . 0 1 ] ;

41 Gc=@(t ) [ t ˆ2/2 t t ˆ2/2 t 0 .01 0 .01 0 . 0 1 ] ;

42 Q=v a r i a n c e p r o c e s s *G(h) *Gc(h) ;

43 D = [ obsNo i se z 0 ;0 obsNoise ang ] ;

44 %

45 f o r i = 2 : l ength ( time )

46 % Def in ing non l i n ea r func t i on

47 f={@(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x1+x2* t ) ;

48 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x2+(−x5*x1−x7/2/mass*x3 ) * t ) ;

49 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x3+x4* t ) ;

50 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x4+(−x6*x3−x7/2/ i n e r t i a *x1 ) * t ) ;

51 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x5 ) ;

52 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x6 ) ;

53 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x7 ) } ;

54 % Pred i c t i on step

55 xbar (1 )=f {1}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

56 xbar (2 )=f {2}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

57 xbar (3 )=f {3}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

58 xbar (4 )=f {4}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

59 xbar (5 )=f {5}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

60 xbar (6 )=f {6}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

61 xbar (7 )=f {7}( xbar (1 ) , xbar (2 ) , xbar (3 ) , xbar (4 ) , xbar (5 ) , xbar (6 ) , xbar (7 ) ,h ) ;

62 A = [ 0 1 0 0 0 0 0 ;
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63 −xbar (5 ) 0 −0.5/mass*xbar (7 ) 0 −xbar (1 ) 0 −0.5/mass*xbar (3 ) ;

64 0 0 0 1 0 0 0 ;

65 −0.5/ i n e r t i a *xbar (7 ) 0 −xbar (6 ) 0 0 −xbar (3 ) −0.5/ i n e r t i a *xbar (1 ) ;

66 0 0 0 0 0 0 0 ;

67 0 0 0 0 0 0 0 ;

68 0 0 0 0 0 0 0 ] ;

69 F = eye ( l ength ( xbar ) )+h*A; %State t r a n s i t i o n matrix

70 P = F*P*F' + Q;

71 % Observation update

72 K = (P*H') /(H*P*H'+D) ; % aka K = . . .

73 %P*H'* inv (H*P*H'+D) ;

74 xbar = xbar + K* ( [ obs z ( i ) ; obs ang ( i ) ] − H*xbar ) ;

75 P = P − K*H*P;

76 xbarEstimate ( : , i ) = xbar ;

77 varEstimate ( : , i ) = diag (P) ;

78

79 end

80

81 f i g u r e ; subplot ( 3 , 2 , 1 ) ;

82 p l o t ( time , obs z , 'bo' , 'marke r f aceco l o r ' , 'b' , 'markers i ze ' , 2 ) ; hold on ;

83 p l o t ( time , xbarEstimate ( 1 , : ) , ' r ' , ' l i n ew id th ' , 2 ) ;

84 s e t ( gca , ' f o n t s i z e ' , 10)

85 legend 'Noisy p o s i t i o n in z a x i s ' 'EKF Estimate '

86 x l a b e l ( 'Time ( s ) ' )

87 y l a b e l ( 'z (m) ' )

88 %

89 subplot ( 3 , 2 , 2 )

90 p l o t ( time , obs ang , 'bo' , 'marke r f aceco l o r ' , 'b' , 'markers i ze ' , 2 ) ; hold on ;

91 p l o t ( time , xbarEstimate ( 3 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

92 s e t ( gca , ' f o n t s i z e ' , 10)

93 legend 'Noisy ang le ' 'EKF Estimate '

94 x l a b e l ( 'Time ( s ) ' )

95 y l a b e l ( '\ theta ( rad ) ' )

96

97 subplot ( 3 , 2 , 3 )

98 p l o t ( time , xbarEstimate ( 5 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

99 s e t ( gca , ' f o n t s i z e ' , 10)

100 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( '\omegaˆ2 z ' )

101

102 subplot ( 3 , 2 , 4 )

103 p l o t ( time , xbarEstimate ( 6 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

104 s e t ( gca , ' f o n t s i z e ' , 10)

105 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( '\omegaˆ2 \ theta ' )

106

107 subplot ( 3 , 2 , [ 5 6 ] )

108 p l o t ( time , xbarEstimate ( 7 , : ) , ' r ' , ' l i n ew id th ' , 3 ) ;

109 s e t ( gca , ' f o n t s i z e ' , 10)

110 x l a b e l ( 'Time ( s ) ' ) ; y l a b e l ( '\ e p s i l o n ' )
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A.17 Parameter estimation in Wilberforce pen-

dulum using Unscented Kalman Filter

1 c l c ; c l e a r a l l ; c l o s e a l l ;

2

3 %some p h y s i c a l p r o p e r t i e s

4 g l o b a l omega gamma e p s i l o n mass i n e r t i a theta z

5

6 omega = 2 . 3 1 4 ; % m. s−1

7 gamma = 2 . 3 1 4 ; % rad . s−1

8 e p s i l o n = 9.27 e−3; % N

9 mass = 0 . 4 9 0 5 ; % kg

10 i n e r t i a = 1 .39 e−4; % kg .m2

11 theta=2*pi ; % I n i t i a l ang le

12 z=0; % Sta r t i ng p o s i t i o n

13

14 %some parameters

15 Nk=5000; %Number o f i t e r a t i o n s

16 ndim=7;

17 n meas=2; %we are only measuring z with a motion senso r

18

19 s e n s o r x v a r i a n c e =0.001ˆ2; %Pos i t i on measurement e r r o r

20 s e n s o r y v a r i a n c e =0.01ˆ2; %Angular measurement e r r o r

21

22 dt =0.01; %time step

23

24 v a r i a n c e p r o c e s s x =0.05ˆ2; %proce s s var i ance in p o s i t i o n z

25 v a r i a n c e p r o c e s s y =0.5ˆ2; %proce s s var i ance in ang le theta

26 Q1=p i e c e w i s e w h i t e n o i s e (2 , v a r i a n c e p r o c e s s x , dt ) ;

27 Q2=p i e c e w i s e w h i t e n o i s e (2 , v a r i a n c e p r o c e s s y , dt ) ;

28 Q=ze ro s (7 , 7 ) ;

29 Q( 1 : 2 , 1 : 2 )=Q1 ;

30 Q( 3 : 4 , 3 : 4 )=Q2 ;

31 Q=kron (Q, eye (1 ) ) ;

32

33 R=[ s e n s o r x v a r i a n c e 0 ;0 s e n s o r y v a r i a n c e ] ; % Covariance f o r the measurement

matrix

34

35 %i n i t i a l s t a t e e s t imate

36 %a c l o s e to the i n i t i a l measurement determines the i n i t i a l s t a t e

37 x i n i t i a l a c t u a l =[z ; 0 ; theta ; 0 ] ;

38 x=[z ; 0 ; theta ; 0 ; 1 0 ; 1 0 ; 5 ] ; %t h i s i s how the Kalman f i l t e r i s i n i t i a l i z e d

39 P max=10;

40 P=P max* eye (7 ) ;

41

42 %choos ing the sigma points , the covar iance matrix i s P

43 alpha =0.1 ; beta =2; kappa=3−l ength ( x ) ;

44 data=ze ro s (Nk, 1 0 ) ; %p la c eho ld e r f o r a l l the v a r i a b l e s

45

46 %d e f i n e the non l i n ea r p roce s s func t i on c a l l e d f

47 f={@(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x1+x2* t ) ;

48 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x2+(−x5ˆ2*x1−(0.5/ mass*x7*x3*x1 ) ) * t ) ;

49 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x3+x4* t ) ;
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50 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x4+(−x6ˆ2*x3−(0.5/ i n e r t i a *x7*x1*x3 ) ) * t ) ;

51 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x5 ) ;

52 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x6 ) ;

53 @(x1 , x2 , x3 , x4 , x5 , x6 , x7 , t ) ( x7 ) ;

54 } ;

55 y sigma=ze ro s (ndim ,2* ndim+1) ;

56

57 %we f i r s t s imulate the behavior o f the harmonic o s c i l l a t o r y i e l d i n g t rue

58 %va lue s

59 [ tt , model ]=ode45 ( ' w i l b e r f o r c e f u n c 2 ' , dt : dt :Nk*dt , x i n i t i a l a c t u a l ) ;

60

61 f o r k=1:Nk

62

63 %sigma po in t s

64 [ chi , s c a l e f a c t o r ,wm, wc]= vandermeer sigma2 (x ,P, alpha , beta , kappa ) ;

65 %p r e d i c t s tep

66

67 f o r kk=1:2*ndim+1

68 y sigma (1 , kk )=f {1}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

69 y sigma (2 , kk )=f {2}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

70 y sigma (3 , kk )=f {3}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

71 y sigma (4 , kk )=f {4}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

72 y sigma (5 , kk )=f {5}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

73 y sigma (6 , kk )=f {6}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

74 y sigma (7 , kk )=f {7}( ch i (1 , kk ) , ch i (2 , kk ) , ch i (3 , kk ) , ch i (4 , kk ) , ch i (5 , kk ) , ch i (6 , kk ) ,

ch i (7 , kk ) , dt ) ;

75 end

76

77 %here we perform the unscented trans form

78 x=sum( repmat (wm, ndim , 1 ) . * y sigma , 2 ) ;

79 P temp=ze ro s (ndim , ndim ) ;

80 f o r kk=1:2*ndim+1

81 P temp=P temp+wc( kk ) *( y sigma ( : , kk )−x ) *( y sigma ( : , kk )−x ) ' ;

82 end

83 P=P temp+Q;

84

85 %d e f i n e the non l i n ea r measurement func t i on denoted h

86 h={@(y1 , y3 ) ( y1 ) ;

87 @(y1 , y3 ) ( y3 ) ;

88 } ;

89

90 %Map the pred i c t ed p r i o r to the measurement space

91 %the mapped va lue s are s to r ed in the v a r i a b l e ZZ

92 ZZ=ze ro s ( n meas , 2* ndim+1) ;

93 f o r kk=1:2*ndim+1

94 ZZ(1 , kk )=h{1}( y sigma (1 , kk ) , y sigma (2 , kk ) ) ;

95 ZZ(2 , kk )=h{2}( y sigma (4 , kk ) , y sigma (3 , kk ) ) ;

96 end

97
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98 %Applying the unscented trans form in the measurement space

99 ZZmean=sum( repmat (wm, n meas , 1 ) . *ZZ , 2 ) ; %t h i s i s our mu z

100 Pz temp=ze ro s ( n meas , n meas ) ;

101 f o r kk=1:2*ndim+1

102 Pz temp=Pz temp+wc( kk ) *(ZZ ( : , kk )−ZZmean) *(ZZ ( : , kk )−ZZmean) ' ;

103 end

104 Pz=Pz temp+R;

105

106 %measurement vec to r z must come here

107 zz (1 )=model (k , 1 )+s q r t ( s e n s o r x v a r i a n c e ) * randn ; %t h i s i s the p o s i t i o n measurement

108 zz (2 )=model (k , 3 )+s q r t ( s e n s o r y v a r i a n c e ) * randn ; %t h i s i s the p o s i t i o n measurement

109 y=zz'−ZZmean ; %r e s i d u a l

110

111 %Finding the Kalman gain

112 Kg temp=ze ro s (ndim , n meas ) ;

113 f o r kk=1:2*ndim+1

114 Kg temp=Kg temp+wc( kk ) *( y sigma ( : , kk )−x ) *(ZZ ( : , kk )−ZZmean) ' ;

115 end

116 Kg=Kg temp* inv (Pz) ;

117 x=x+Kg*y ;

118 P=P−Kg*Pz*Kg' ;

119

120 data (k , : ) =[ zz (1 ) zz (2 ) x (1 ) x (2 ) x (3 ) x (4 ) x (5 ) x (6 ) x (7 ) P(1 , 1 ) ] ;

121 end

122 %

123 f i g u r e ; subplot ( 3 , 2 , 1 ) ;

124 p l o t ( data ( : , 1 ) , ' ro ' ) ; hold on ;

125 p l o t ( data ( : , 3 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

126 legend ( 'Measured ' , ' F i l t e r e d ' , ' l o c a t i o n ' , ' nor theas t ' ) ;

127 x l a b e l ( ' t ' ) ; y l a b e l ( 'z ' ) ;

128 g r id on ; hold o f f ;

129 %

130 subplot ( 3 , 2 , 2 )

131 p l o t ( data ( : , 2 ) , ' ro ' ) ;

132 x l a b e l ( ' t ' ) ; y l a b e l ( '\ theta ' ) ;

133 g r id on ; hold on ;

134 p l o t ( data ( : , 5 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

135 legend ( '\ theta ' , ' F i l t e r e d ' , ' l o c a t i o n ' , ' nor theas t ' ) ;

136 x l a b e l ( ' t ' ) ; y l a b e l ( '\ theta ' ) ;

137

138 subplot ( 3 , 2 , 3 )

139 p l o t ( data ( : , 7 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

140 x l a b e l ( ' t ' ) ; y l a b e l ( '\omegaˆ2 z ' ) ;

141 g r id on ;

142

143 subplot ( 3 , 2 , 4 )

144 p l o t ( data ( : , 8 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

145 x l a b e l ( ' t ' ) ; y l a b e l ( '\omegaˆ2 \ theta ' ) ;

146 g r id on ;

147

148 subplot ( 3 , 2 , [ 5 6 ] )

149 p l o t ( data ( : , 9 ) , 'b−' , ' l i n ew id th ' , 2 ) ;

150 x l a b e l ( ' t ' ) ; y l a b e l ( '\ e p s i l o n ' ) ;

151 g r id on ;
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