11. The Physics of Stacking Books

Every miser knows that a stack of pennies can be “leaned”
slightly off vertical without falling. How far can the top
penny be from its position in a vertical stack?”

— Paul B. Johnson'

The epigraph describes a situation that never fails to astonish all
who first see it. Johnson answered his penny question by deriving
a mathematical equation and solving it with some subtle arguments.
Here T'll do it using just some simple physics, in which the concept of
the center of mass of a spatially extended object will play an important
role. The center of mass is the point at which we can imagine the entire
mass of the object is concentrated as a point mass. Often, the center
of mass is obvious by inspection because of symmetry. For example,
the center of mass of a uniformly dense solid sphere is the geometric
center of the sphere. Similarly, the center of mass of a circular hoop
with uniform density is the center of the hoop (but notice there is,
in this case, no mass actually at the center of mass). If the extended
object is at all complicated, and symmetry arguments fail, then the
center of mass has to be calculated. In the simplest case, suppose we
have N point masses, m;, 1 <i < N, located at (x;, y;, z;). Then, the
x-coordinate of the center of mass is given by
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and similar expressions hold for ¥ and Z.
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Axis of symmetry

Figure 11.1. A circular disk with a square removed

Sometimes, when symmetry might appear to be absent, it really isn’t.
An example of this—a favorite of freshman physics teachers who need
an exam question on short notice—is shown in Figure 11.1. There you
see a circular disk of uniform thickness and density, with the largest
possible square cut out of the upper-right quadrant. When the disk
was still intact, symmetry told us that its center of mass was at the
origin. With the square removed, however, that’s no longer the case—
and that’s the question: where is the center of mass for the cut disk?
Let's call the answer to that question (X, Y). Now, even with the cut
there is still enough symmetry left in the disk to argue that ¥ = X (that
is, as the “axis of symmetry” shown in Figure 11.1 indicates, there is ' '
nothing to distinguish the x- and the y-directions). That observati
helps a bit, but we are still left with the question, what is X?

The center of mass of the square cut from the disk is, by s
in the middle of the square. From simple geometry (rememl
Pythagorean theorem), if the radius of the disk is R, then
length of the square is r = %, and so the center of the sg
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(éﬁﬁ’ Eﬁfé)' Now, here’s the crucial observation: if we put |
back into the cut disk, we get the infact disk back. Wh
with that? So, if m; is the mass of the cut disk and if 7

of the square, then the formula for the center of mass
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combining two individual masses says

m1X+m.2"—{
OE—M_

mi+me
The zero on the left is because, as argued by symmetry, that's the
x-coordinate of the center of mass of the once-again intact disk. So,
just like that, we have
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Or, since the disk and the square are of uniform thickness and density,
the masses of these two objects are directly proportional to their surface
areas (4, and Ao, respectively), we can write
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From geometry we have

Ay =7 R? — Ao,
and
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Isn’t that slick? Okay, now that you see how the center of mass formula
works, off we go to the real topics of this chapter.

Instead of Johnson's pennies (you'll see why in just a bit), imagine
a book of length 1 and mass 1 lying flat on a tabletop with the book’s
rightmost edge right at the edge of the table, as shown in Figure 11.2.
The left edge of the book is at x = 0, and so the right edge of the book
(and the edge of the table) is at x = 1. The center of mass of the book
i85 dt.% = Lul), and so we can slide che book forward distance é before the
book will fall off the table. The book projects out beyond the tabletop
by §, and that projection is called the overhang, denoted by S. So, for
one book, we have S(1) = % = %(1).
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Figure 11.2. A book lying flat on a tabletop

Now, imagine two such books neatly stacked on the table. From our
first analysis we know we can slide the top book forward distance §
before it falls off the bottom book. The center of mass of the top book
is now at x = 1. The center of mass of the two books together is at

1(H)+11) 3
r=--————

2 4’

and so we can slide the two-book combo forward distance } toward the
table edge before the combo falls off the table. Now, the projection of
the top book beyond the table edge is

Let’s do this just one more time, with three identical books neatly
stacked on the table. From our earlier results we know we can slide
the top book forward by distance % before it falls off the middle book,
and then we can slide the upper two-book combo forward by distance
% before the combo falls off the bottom book. The center of mass of
the upper two-book combo is now at x = 1. The center of mass of the
three-book combo is at

1(3)+2(1)
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and so we can slide the three-book combo forward by distance & toward
the table edge before the combo falls off the table. Now, the projection
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of the top book beyond the table edge is
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By now you have probably begun to suspect that, in general, if we keep
doing this, stacking ever more books, we'll find that

1 no1
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We can verify this suspicion by induction. That is, let’s suppose that for
n — 1 books,

} 1 n—1 1
Sn—1)= EZH 7

and then we'll show that this implies
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That would mean, since we've alread; shown by direct calculation that
our supposed formula for S(z) holds for n =3, that it must hold for
n =4 (which means it holds for n =5, and so on). We also know by
direct calculation that our formula holds for n = 1 and n = 2, as well,
of course.

So, before the final adjustment of the bottom book (and all the other
books above it), the top n — 1 books have their combined center of mass
atx = 1 just before they will fall off the bottom book. The top book has
a projection of S(n— 1) beyond the edge of the table. The center of
mass of the n-book combo is at
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Thus, we can slide the n-book combo forward distance zl—ﬂ toward the
table edge before the n-book combo falls off the table. So,

1 | n—1 1
S(n)zS(n—lH—%—QZk_]k —Zk 1;;

just as we suspected, and our proof by induction is done.

Now, here’s the “surprise.” How big can S(n) be? Answer: as big
as you like! That’s because S(n) is the truncated form of the so-called
harmonic series, which is well known to blow up as n — 00.? As the
Russian-born physicist George Gamow (1904-1968) stated in one of
his books when discussing this problem:® “By stacking an unlimited
number of books ...we can make the top book protrude any desired
distance beyond the edge of the table.” His very next statement,
though, was far off the mark: “Because of the rapidly decreasing
contribution of each new book, however, we will need the entire Library
of Congress to make the overhang equal to three or four book lengths!”
That is not so.

It is quite easy to program a computer to evaluate S(n) for given
values of n; in fact, S(n) first exceeds 3 when n =227, and S(n) first
exceeds 4 when n = 1,674. Neither value of n is anywhere near the
number of books in the Library of Congress. It's an entirely different
story for larger values of S(n), however: the overhang S(n) first exceeds
50, for example, when n is something more than 1.5 x 10**. Now that
is many more books than are in the Library of Congress!*

The appearance of Paul Johnson’s note on the penny-stacking prob-
lem in the American Journal of Physics (note 1) prompted the following
reply from a physicist at The Ohio State University who had solved the
problem himself some years before: “To prove [the overhang] result
‘physically,” a fellow graduate student and I stacked bound volumes of
The Physical Review one evening, until an astonishingly large offset was
obtained and left them to be discovered the next morning by a startled
physics librarian. *5 Who says physicists are mostly shy, quiet nerds?
In my book—and as Eisner’s letter demonstrates—some of them are
really crazy-wild guys!

Before leaving the general topic of center of mass, Il end this
chapter by showing you a somewhat more serious application than
building stacks of offset pennies and books, namely, a dramatic




98 CHAPTER 11

Figure 11.3. A domino chain reaction

illustration of the exponential (indeed, explosive) growth of energy in a
chain reaction. To model neutrons successively splitting atomic nuclei,
as occurs in atomic fission bombs, we’ll use a falling domino to knock
over a slightly laiger domino, which will then knock over an even larger
domino, and so on® (unlike the dominos in Figure 11.3, which are all
the same size). The input energy required to knock over the initial
domino can be quite small, while the energy released by the final
falling domino can be billions of times larger (we'll prove this in just
a bit). You can find videos of such domino chain reactions on YouTube,
but they are strictly for fun viewing. Here I'll show you how to calculate
the energies involved, using simple physics.

The communication in note 6 describes a chain of 13 ever-larger
dominos, all made from acrylic plastic, with the smallest one (domino
#1) having the dimensions

thickness (w) = 1.19 x 10~% meters
width (/) =4.76 x 10~® meters

height (k) = 9.53 x 107> meters
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Figure 11.4. The geometry of an upright domino

and the largest one (domino #13) with the dimensions

thickness (w) = 76.2 x 107 meters
width (/) = 305 x 107 meters
height (h) = 610 x 1073 meters

Starting with the smallest domino, each subsequent domino in the
chain is slightly less than 1.5 times larger in each dimension than the
previous one; it was stated in note 6 that the energy required to knock
domino #1 over is 0.024 x 107° joules (see note 4 in Chapter 3 again),
and the energy released by the fall of domino #13 is about 51 joules,
an energy amplification factor of about 2 billion! The author of note 6
said: “It is easy to calculate [these energies]” but didn’t show how to do
it. So, let calculate them for ourselves.

Figure 11.4 shows a cross section of a domino, with its front face on
the y-axis and its lower front edge at the origin (you are to imagine that
the width, or /-dimension, is perpendicular to the page). The center
of mass, C, of the domino is, by symmetry, located at the combined
midpoints of each of the three dimensions. Imagine now that a force
is applied to the left face of the domino. The domino will start to
rotate clockwise round the lower front edge, and the center of mass will
clearly rise until it is directly over the front edge. Any further rotation
of the domino will place C beyond the front edge, and the domino will
then topple over.
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the distance

() +(2) 3= 3G - -4 1]

When C is directly above the front edge it will have elevated th rough

h 29 h

Thus, the potential energy of the domino increases by

AE =mgAy :mgg { 1+ (%)2 - 1} ;

where m is the mass of the domino. AE is the required input energy to
topple the domino. The mass m is

m = pwlh,

where p is the density of acrylic plastic. A quick search on
the Web gave the value of p as somewhere between 1.15 and

1.2 grams/cubic centimeter; I'll use an average of 1.18 grams/cubic
centimeter = 1.18 x 103%;3%%. So, for domino #1, the mass is

m = 1.19 x 4.76 x 9.53 x 10~ cubic meters x 1.18 x 10°Lograms

cubic meter
= 63.7 x 107% kilograms,

and therefore

1 :
AE = 563.7 x 10~ ® kilograms x 9.8 Lo
2 seconds squared

. 1.19 x 10-3\ 2
-3
x9.53 x 10 meters [\/1 + (w) == I]

il . - d
— 9975 x 10~ kilograms - meters-square (0.00777)
seconds squared

= 23 x 107 joules
= 0.023 x 107° joules,
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which is very close to the value declared by the author of note 6 (who
suggested that this really quite small energy input could “be supplied
by nudging [the domino] with a long wispy piece of cotton batton.”)

Finally, to compute the energy released by the toppling of the largest
domino, we start with its initial energy and then add the energy
required to raise its center of mass to the point where it is over the
domino’s front edge. We then subtract the potential energy retained
by the domino after it has fallen over. The result is the energy released
by the domino. So, when domino #13 is upright its center of mass is
at height 305 x 10~ meters. When it’s hit by domino #12 the center
of mass of domino #13 rises to a height of

1 y
5\/(610)2 +(76.2)2 x 10~ meters = 307.4 x 10~° meters.

When domino #13 has toppled, the original w dimension is the new
dimension, and so the center of mass is at height 38.1 x 107 meters.
The change (decrease) in the potential energy of the domino is
therefore

mgAy = pwlhg Ay

kilograms 9.8 meters
g
cubic meter seconds squared

% 305 x 76.2 x 610 x 107 cubic meters
x (307.4 — 38.1) x 10~ meters = 44 joules.

=1.18 x 10®

This result is “close” to 51 joules but still far enough off to warrant
some concern. My guess is that the author of note 6 simply did a rough
calculation and ignored the fact that the toppled center of mass was
actually not at zero height. That is, he did the mgAy calculation but
used 307.4 x 107® meters for Ay, which would result in a potential
energy decrease of 50.4 joules.

The energy amplification factor achieved by the 13 falling dominos
is, by the calculations here, the quite impressive value of

44

e 9 _ il
0.023 x 106 1.9 x 10° = 1.9billion!
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Notes

1. These are the opening words in Johnson’s cleverly titled note that
simultaneously alludes to Italian money and that country’s famous tower in
Pisa: “Leaning Tower of Lire,” American Journal of Physics, April 1955, p. 240.

2. Here's a simple demonstration of that:

. 1 1 1 1 1 1 1
hmwwﬂm=l+—+r+—+g+f+:+—+m
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>1+l+(l+l)+(l+l+l+l)+
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where we continuously replace each new subsequence of terms with length 2
(where & > 1) in the original series with a smaller subsequence that sums to ﬁ
Thus, a lower bound on the sum, is infinity, and so lim, ., S(n) = co.

3. George Gamow, Matter, Earth, and Sky (2nd ed.), Prentice-Hall, 1965,
p- 20. Gamow didn’t actually derive S(n), as done here, but simply alluded
to it.

4. This huge numerical value (it’s far bigger than the number of stars in the
Universe, estimated to be a “mere” 10*%) obviously can’t be found by simply
running a computer summation of the harmonic series. For an explanation
of how it was computed, see R. P. Boas, Jr, and J. W. Wrench, Jr, “Partial
Sums of the Harmonic Series,” American Mathematical Monthly, October 1971,
pp- 864-870, which gives the exact value of n for which S(n) first exceeds 50:
n = 150926886227 13788323693563264538101449859498. Do you know how
to even say that? I don’t!

5. Leonard Eisner, “Leaning Tower of the Physical Reviews,” American Journal
of Physics, February 1959, pp. 121-122.

6. This discussion on dominos is inspired by a brief note written by Lorne
A. Whitehead, “Domino ‘chain reaction,’” American Journal of Physics, February
1983, p. 182.
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