
Curve Fitting

February 14, 2022

1 The Least Squares Method
1.1 Linear Regression
We can consider two linearly related variables and try to find the straight line (curve) that best
represents the relationship between them. The functional relationship between the dependent and
the independent variable is given by,

y = a+ bx.

The goal is to find the optimal values of a and b. It is impossible to exactly fit a straightline to
experimentally measured data like the one shown in the figure below. Because there are N points
while for a straightline one only needs two points. Moreover there are flucuations in the data. This
is a case of an overdetermined problem.

The data consists of pairs of measurements (xi, yi). Attributing all the experimental uncertainty
to the dependent variable, we want to find the values of a and b that minimize the discrepency
between the measured values yi and the predicted values y(xi) = a+ bxi of the dependent variable,

di = y(xi)− yi

= a+ bxi − yi.

It is sum of these deviations, also referred as residuals, that should be minimized to take into
account all the data points. However, the sum is not a good measure of the best fit since the large
positive fluctuations can cancel the large negative fluctuations still producing small

∑
i di. Although

summing the absolute values
∑

i |di| would work but is cumbersome to deal with analytically.
Therefore, it is sum of the squares that is widely used as a measure of the best fit and thus
minimized. The quantity that is actually minimized is χ2 and given as,

χ2 =
∑
i

(
y(xi)− yi

αi

)2

,

=
∑
i

(
a+ bxi − yi

αi

)2

,

where αi is the standard error in the ith data point. For analytical justification of χ2 or the sum of
the square of normalized residuals see Measurements and their Uncertainties by Hughes and Hase.

1

https://global.oup.com/ukhe/product/measurements-and-their-uncertainties-9780199566334?cc=pk&lang=en&

The choice of the analytical function y(x) is arbitrary and should be informed by the expected
trends in the data. Therefore, taking a careful look at the data before hand is instructive.

[1]: import numpy as np
import matplotlib.pyplot as plt
import time

For tex fonts and math-mode in figures
plt.rcParams['text.latex.preamble']=r'\usepackage{lmodern}'
params = {'text.usetex':True,'font.size':16,'font.family':

'serif','figure.autolayout': True}
plt.rcParams.update(params)

read data from file
data = np.loadtxt('data-01.txt',comments='#')

plot data
fig1 = plt.figure(figsize=(7.0,5.0))
fig1 = plt.plot(data[:,0],data[:,1], 'ro')
fig1 = plt.xlabel('x')
fig1 = plt.ylabel('y')

After choosing an analytical function to fit to the data, there are a number of ways to numerically

2

minimize the χ2. One of those methods is known as Gradient Descent.

1.2 Gradient Descent
Gradient descent like other minimization methods is iterative. A trial solution is assumed and χ2

is calculated. Then the values of the fitting parameters are updated to improve the trial solution
or minimize χ2. In gradient descent the vector ∇χ2 is calculated which points towards the minima
within the parameter space. The fitting parameters are updated to step towards the minima along
the line of steepest descent. The update rule for a straightline would be,

as+1 = as − β
∂χ2(a, b)

∂a

∣∣∣∣∣
a=as,b=bs

= as − 2
β

α

∑
i

(a+ bxi − yi)

bs+1 = bs − β
∂χ2(a, b)

∂b

∣∣∣∣∣
a=as,b=bs

= bs − 2
β

α

∑
i

(a+ bxi − yi)xi.

We have assumed that the standard error is constant for all points and β is chosen to control the
rate of descent. The update rules can be recast in vector form to take advantage of optimal vector
operations. The fitting parameters can be represented as a column vector of 2×1. The independent
variable can be reprsented by a N × 2 matrix where the first column contains ones, to represent
the intercept, and the second contains xi. Finally the dependent variable can be respresented by
an N × 1 vector,

a = a − 2
β

α
XT (Xa − y) .

[2]: N = len(data[:,0]) # size of the data set.
X = data[:,0].reshape(N,1) # to get a neat column vector

intCept = np.ones((N, 1))
X = np.hstack((intCept,X)) # to add a column of ones to the vector X

y = data[:,1].reshape(N,1) # get a neat column vector y

fittingParam = np.zeros((2,1)) # initialize the fitting parameters to zero

numbIter = 18000 # number of iteration of the gradient descent
beta = 0.00001 # rate of descent
alpha = np.std(y)/np.sqrt(N-1) # standard error
alphaS = alpha**2

xPrime = np.transpose(X) # to avoid calculating the transpose inside the loop

chiSHistory = np.zeros((numbIter, 1)) # to record how chi**2 changes
with iterations

paraHistory = np.zeros((2,numbIter+1))

def computeChiS(X,y, fittingParam):

3

chiS = 0;
auxVar = X@fittingParam - y
chiS = (1/alphaS)*(auxVar.T@auxVar)
return chiS

def gradDesc(X, y, fittingParam, beta, numbIter):
for iter in range(numbIter):

temp_param = fittingParam - (2*beta/alpha)*xPrime@(X@fittingParam - y)
fittingParam = temp_param
chiSHistory[iter,:] = computeChiS(X, y, fittingParam)
paraHistory[:,iter+1] = fittingParam[:,0]

return fittingParam

[3]: print(fittingParam)
curveParam = gradDesc(X,y,fittingParam,beta,numbIter)
print('The best fit parameters calculated by this program:\n a = '

, curveParam[0,0], '\n b = ', curveParam[1,0])

numpyParam = np.polyfit(data[:,0], data[:,1], 1)
numpyParam = numpyParam.reshape(2,1)
numpyParam = np.flip(numpyParam)
print('The best fit parameters from the built in numpy polyfit:\n a = '

, numpyParam[0,0], '\n b = ', numpyParam[1,0])

[[0.]
[0.]]
The best fit parameters calculated by this program:
a = 44.84352970665802
b = 1.3853441280883674
The best fit parameters from the built in numpy polyfit:
a = 45.86844040055611
b = 1.3663885635469724

[4]: fig2 = plt.figure(figsize=(14.0,6.0))
ax1 = fig2.add_subplot(1,2,1)
ax2 = fig2.add_subplot(1,2,2)

ax1.plot(chiSHistory)
ax1.set_xlabel('N')
ax1.set_ylabel(r'χ^2')

ax2.plot(data[:,0],data[:,1], 'ro', label= 'data')
ax2.plot(data[:,0], X@curveParam, 'k-', label= r'this program: $a + b x$')
ax2.plot(data[:,0], X@numpyParam, 'b--', label= r'numpy polyfit')
ax2.set_xlabel('x')
ax2.set_ylabel('y')
fig2 = ax2.legend(loc='upper left',fontsize=16, fancybox=True, framealpha=0.0)

4

1.3 Error Surface
The following graph shows a contour plot of the error surface and a few respresentative steps along
the gradient descent path. Although the step size is the same, the gradient is too steep in the
beginning. That is why it roles up and down and up again in the start but eventualy turns right
towards the valley.

[5]: M = 1000

a1min = curveParam[0,0]-2*curveParam[0,0]
a1max = curveParam[0,0]+2*curveParam[0,0]

a2min = curveParam[1,0]-2*curveParam[1,0]
a2max = curveParam[1,0]+2*curveParam[1,0]

a1 = np.linspace(a1min,a1max,M)
a2 = np.linspace(a2min,a2max,M)
A, B = np.meshgrid(a1, a2)

def computeChiSonGrid(X,y,A,B):
chiAux = 0
for it in range(N):

chiAux += (B*X[it,1] + A - y[it])**2
chiSonGrid = (1/alphaS)*chiAux
return chiSonGrid

chiSurfS = computeChiSonGrid(X,y,A, B)
chiSurfS = chiSurfS/(np.max(chiSurfS))

fig3, ax3 = plt.subplots()

5

cntr1 = ax3.contourf(A, B, chiSurfS, levels=60,cmap="RdBu_r")
ax3.set_xlabel('a')
ax3.set_ylabel('b')
cbar = plt.colorbar(cntr1)
cbar.set_label('χ^2')
scat2 = ax3.scatter(paraHistory[0,0:10:1],paraHistory[1,0:10:1],

c=np.nonzero(paraHistory[1,0:11:1]), cmap="bwr",
edgecolors=None)

scat2 = ax3.scatter(paraHistory[0,200:18000:1000],paraHistory[1,200:18000:1000],
c=np.nonzero(paraHistory[1,200:18000:1000]), cmap="RdYlGn",
edgecolors=None)

6

	The Least Squares Method
	Linear Regression
	Gradient Descent
	Error Surface

